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Abstract
This paper describes a new sonar system that

can perform target localisation in two dimensions
and classification into planes, concave corners
and convex edges with no extra time overhead.
That is, the sensor transmits on two transmitters a
short time apart, thereby collecting echoes in
virtually the same time as a single transmitter
system.  Moreover, the time separation of the
transmitted pulses acts to identify the particular
sonar system so that interference from other
systems can be rejected.  The sensor combines two
previous sonar research efforts on double pulse
coding [2] and classification [1] in a real time
DSP based sensing module that is also smaller
than previous sensors.  Since the classification is
performed with such a short delay between
transmitter firings, the sensor could be deployed
on moving platforms to achieve on-the-fly
mapping.  This paper describes the sonar hard-
ware, the Maximum Likelihood Estimation (MLE)
classification approach and experimental results.

1 Introduction
How much information can sonar provide?

Accurate range and bearing measurements of
multiple targets have been achieved [1,2,4,5],
interference can be rejected [2,3,4], and targets
can be classified [1,5,6].  Properly implemented,
sonar accuracy may exceed that of laser
rangefinders, while still being cheap and reliable.

Knowing the shape, or class, of a target assists
in robot localisation.  It enables prediction of how
the target will appear from different sensor
positions, and it simplifies matching sensed
environmental features to a map.

It is now common to use the three classes of
target: plane, 90° concave corner and convex
edge.  The minimum requirements to classify
targets into these categories are two transmitter
positions and two receivers [1].

Existing methods require multiple readings of
the target, to obtain coordinates of virtual images

of a transmitter in two different positions.  This
means moving a single transmitter, or
incorporating two transmitters into the sensor.
Either way, in the interval between taking the two
readings there can be significant air movement,
which contributes to errors in the measurement,
and reduces the reliability of the eventual
classification.

If the interval can be reduced, reliability
should be improved.  Additionally, the latency
before the target can be classified will be reduced.

We present a method of reducing this latency,
and two methods of classifying the target as a
corner, plane, edge, or unknown.

The whole process can be compressed into a
single processing cycle by firing two transmitters
nearly simultaneously.  Indeed, the precise
separation used can then identify the sensor, and
aid in eliminating crosstalk and interference – a
technique known as double pulse coding [2].  This
paper presents new work that integrates
interference rejection with target classification.

Using DSP technology we have produced a
sensor that provides high range and bearing
accuracy, implements a proven interference
rejection method, and classifies multiple targets.
It does this all with a single sensing of the
environment, and in a package smaller than
previously achieved – [1] has a transmitter
separation of 260 mm, this paper shrinks this to
40 mm.  The repetition rate depends on the
number of pulses processed (clutter in the
environment), and is typically 15-27 Hz.

This paper is organised as follows.  Section 2
introduces the sensor hardware and configuration
while the association of echo arrival times is
discussed in section 3.  Geometrical models of the
target types are presented in section 4, so that
classification algorithms can be described in
section 5 where two approaches are discussed: the
delta classifier that is based on the bearing
difference resulting from firing the two
transmitters, and the MLE classifier that exploits
all four times of flight directly.  Section 6 presents
experimental results from the sensor.



2 Four TOF Sensor
An important feature of sonar is that time of

flight errors are well correlated in time and space
[1, 2].  By placing two receivers close together,
we can still obtain a very accurate measurement of
bearing despite the short baseline [1], because the
bearing calculation depends critically on the
difference between the two times-of-flight from a
single transmitter to the two receivers.  The error
in this difference is typically much smaller than
the straight time of flight errors since these are
highly correlated.

Additionally placing the two transmitters
close together produces highly correlated errors
for all the four time-of-flight measurements of a
target.  This is important because the dominant
factor in determining the class of a target is the
difference between the two measured bearings.

Since both classifiers described in Section 5
depend primarily on differences in time-of-flight,
this results in low error rates from the classifiers.

Our sensor package measures about 15 cm x
10 cm x 7 cm, it is powered by a single 5 V
supply and communicates with its host by a high-
speed serial link.  Two transmitters are mounted
above two receivers, forming a square with only
40 mm between centres.  We use Polaroid 7000
series transducers with the front grille removed.

The received signals are amplified, low pass
filtered and digitised at 1 Mz and 12 bit precision,
then processed on an Analog Devices 33 MHz
ADSP2181.  The DSP also generates the transmit
waveforms and communicates with the host via an
external UART.

A pulse is fired from the right transmitter first,
and rapidly followed from the left (200 µs delay is
typical).  Echoes are digitised and processed on a
DSP, yielding up to four arrival times for
reflections from each target.

We find it clearer to think of these as arrival
times, rather than times-of-flight, since at this
point we do not know whether an echo is a
reflection of the first or second pulse fired, so
actual time-of-flight is ambiguous.

3 Forming Tuples
Matching up all the echoes from a single

target is not trivial.  Sometimes, not all four
echoes will be detected.  In a cluttered
environment, they may be interleaved with echoes
from another target.

Both transmitted pulses are the same shape, as
this accelerates processing (fewer matched filters
are required), but means that echoes of first and

Table 1
Hardware

T1 right-hand transmitter
T2 left-hand transmitter
R1 right-hand receiver
R2 left-hand receiver
T1′′ virtual image of T1
T2′′ virtual image of T2
d separation between transceivers (m)

Delta Classifier
R1 θθ1 measured coordinates of T1′
R2 θθ2 measured coordinates of T2′
delta θ1 – θ2

ωω theoretical delta value
MLE Classifier

rmm n measured range from Tm to Rn.
rem n estimated range from Tm to Rn.
S least squares error
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Figure 1 – Hardware Block Diagram
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Figure 2 – the sensor unit, showing the layout of the
transmitters T1, T2, and the receivers R1, R2.



second pulses are indistinguishable.  However,
geometry provides a means to differentiate them.

We rely on the fact that the time-of-flight
from a transmitter at A to a receiver at B is the
same as going from B to A; and knowledge of the
precise interval between the two transmitted
pulses.  Since our hardware has separate
transmitters and receivers, we use the times-of-
flight from T1 to R2, and from T2 to R1.  By
symmetry, these times are always equal for
vertical targets (plane, corner or edge), because
they reflect sound from the point where they
intersect the horizontal plane through the sensor.

The first phase is a search for a pair of
received pulses bearing the same interval as the
transmitted pulses.  We call these ‘double pulse
pairs’.  For example, if the transmitted pulses
were separated by 200 µs, and we get a pulse on
the R2, then 200 µs later (±1 µs, or so) we get a
pulse on R1, we can reasonably assume that the
first pulse had been transmitted by T1, and the
second by T2.  The two received pulses should
also be of similar amplitude.

The converse does not apply – that is, a pulse
at R1 followed 200 µs later by a pulse at R2 does
not indicate a valid target.  The timing of such
pulses depends on the bearing to the target, so it is
not useful for discriminating genuine signal from
interference.

The second stage is a search for the same
reflected pulse at both R1 and R2.  These two
times-of-flight allow us to determine the bearing
of a target, so we call them a ‘bearing pair’.  The
criteria for forming such a pair are that the
amplitudes are similar (within a factor of 2) and
the times-of-flight differ by less than 22µs
(corresponding to about 11° from normal
incidence).  Additionally, if the pairing of a given
pulse is ambiguous it is ignored rather than
producing possibly incorrect results.

4 Target Models
To determine the class of target indicated by a

set of returns, or tuple, we must know what to
expect in each case.  That is, we want to know the
relationships that hold between the four ranges,
designated r11, r12, r21 and r22; or the relationship
between the two measured bearings, θ1 and θ2.
These relationships are different for each of the
three target classes we consider.

4.1 Plane

From the geometry we have

11122 sin2 θdrr −= (1)

Applying the cosine rule to the triangle
formed by R1, R2, T1′:
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So by substitution
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4.2 Corner

The lines labelled r11 and r22 bisect each other
at the corner, C.

We apply the cosine rule twice more, first to
the triangle R1, R2, T1′ and multiply the result by
2 then to triangle R1, R2, C and multiply the
result by 4:
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Take the difference and solve for r12:
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Figure 3 – Reflections from a plane.

Figure 4 – Reflections from a corner.
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4.3 Edge

For an edge, we can read r12 directly from the
diagram:

2/)( 221112 rrr += . (7)
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5 Classification
Depending on the classification method used,

we may calculate the range and bearing of the
virtual image of each transmitter, and use the
difference between bearings to classify the target.
Alternatively, a maximum likelihood estimator is
applied to the four range measurements to obtain a
classification directly.

5.1 Delta classifier
When an echo of a pulse is detected at two

receivers, we can triangulate to determine the
bearing to the target.  More precisely, if the target
is a plane or corner, we can determine the bearing
to the virtual image of the transmitter reflected in
the target.  Call this θ1.  If the target is an edge
then the same calculation is a good approximation
of the target’s position [1].

When two transmitters are used, the
difference between the bearings thus obtained can
identify the target type.  We define

21 θθ −=delta . (9)

Then, theory [1] predicts
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Using thresholds at ω2
1± , a target can be

classified as edge, plane or corner.

5.2 MLE classifier
When doing target classification using MLE,

the measured data is compared with the model for
each case, obtaining for each the most likely
actual range values and also a least squares error
that indicates which classes are plausible matches
to the measured data.

Compared with the delta classifier, this has
the advantage of fully utilising the available
measurements, whereas the delta classifier only
considers differences, and of producing an
improved estimate of actual ranges in the cases
where classification is successful.

5.2.1 Maximum Likelihood Estimation

Maximum likelihood estimation is a technique
that uses noisy measurements of a system and
determines the most likely actual state.  We apply
it to the four measured ranges, rm11, rm12, rm21

and rm22, to obtain an estimate of the actual
ranges, re11 and re22, which are sufficient to fully
describe the target position.

Let us begin by defining

Y – a vector of k noisy observations,
X – a state vector of i parameters,
F – a function relating X to Y, and
N – the k noise components.

Then we can write the non-linear equation

NXY += )(F . (11)

If the system is linear with Gaussian
conditional probability functions and Gaussian
noise, then MLE can be applied.  We linearise the
non-linear model equations (8) obtained in section
4, about the measured values Xm = [rm11 rm22]

T

We define different variables to apply to the linear
case:

A – a k dimensional observation vector
B – an i dimensional state vector
J – k×i Jacobian of F elaborated about Xm

N – the k dimensional noise vector
R – the k×k noise covariance matrix

and write the linear equation

NJBA += . (12)

Linearisation about Xm gives
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Figure 5 – Reflections from an edge.
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so now we rewrite the non-linear form from
equation (11) as
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which we recognise as equation (11) with
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The maximum likelihood estimate of B,

,B̂ and the least squares error, S, are given by [7]
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Our input to the estimator is therefore
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and the Jacobian is
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where the functions rij are from the appropriate
form of equation (8), derived in section 4. The
result vector is
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thus yielding the estimated ranges, re11 and re22.

5.2.2 Classification

The normalised least squares error, S, is
minimised by MLE.  The resulting value is a
measure of how well the observed data fits the
linear form in equation (11), and has a χ2

distribution with k – i degrees of freedom.  We
have k = 4, i = 2, therefore two degrees of
freedom.  A different value for S is obtained for
each target class; the value corresponding to the
correct target class will likely be much smaller
than those for the incorrect classes.

We can set a threshold for S, c, specifying that
only some small proportion, ε, of correctly
classified measurements shall exceed c.  That is,

ε=> )( cSP . (20)

Then the condition for accepting a given
classification is that S ≤ c.  For the χ2 distribution
with two degrees of freedom, and a false rejection
rate (ε) of 5%, c = 5.99.

If the target is found to belong to exactly one
class, that class is accepted as the object’s class.
Otherwise its class remains unknown.

6 Results
The purpose of the first experiment described

in this section is to show how the noise due to
increasing pulse separation of the right and left
transmitters, affects the MLE’s ability to
discriminate between target classes.  Conversely,
we aim to show the advantage of the high error
correlation experienced when using short delays.

The experiment consists of sensing a wall at
3 m range using different pulse separations, from
200 µs to 200 ms.  These measurements were
repeated 200 times to obtain experimentally four
mean ranges, which may be taken as an ideal
measurement of the wall, and the error
covariance, R of the measurements.  Then we
applied MLE for each target class and each pulse
separation (i.e. differing covariance) to the mean,
to obtain the least squares error, S.

Figure 6 shows the results.  The top trace may
be viewed as “This is how much unlike a corner
the wall appeared.”  The second trace is similar,
but contemplating if the wall might be an edge.  It
is immediately obvious that although the target is
accepted as a wall in all cases, for separations of
50 ms and over, the confidence that it could not be
anything else (that is, definitely not a corner or

Figure 6 – Dependence of S on pulse separation.
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edge), is much diminished.  In fact, for
separations of 100 ms and 200 ms, the wall was
accepted as a possible edge.  The experiment was
conducted under air conditions that were
deliberately turbulent – a fan and an air
conditioner were operating in the laboratory.  We
conclude that for durations up to 10 ms in these
conditions, the air column may be assumed
approximately static and errors are well
correlated, but by 50 ms this assumption has
broken down.

Another experiment was conducted to
illustrate the region of recognition of planes that
can be achieved.  Figure 7 shows points
corresponding to detected planes as the sensor is
swept at various ranges.  The shape of this region
is constrained by the 22 µs bearing association
window described in section 3, and the 5.4 metre
range limit.

7 Conclusions
This paper has described an approach to target

localisation and classification that for the first
time also integrates an interference rejection
scheme proposed in [2].  The classification into
corners, planes and edges, is performed with
virtually no overhead, and very low latency – a
significant improvement on previous systems.

Firing pulses from two closely spaced
transmitters with a time separation in the order of
1 ms provides three important functions.
Sufficient echoes are returned from a target to
enable its classification.  Accuracy is improved by
utilising the high correlation of errors in the air
column.  Finally, the precise time separation
serves to identify the sonar system and enable
interference rejection.

The self-contained, real time DSP based
sensing module is also smaller than previous
sensors.

Further improvements in accuracy are
expected by using a single transducer as both
transmitter and receiver.  Concurrent work on a
sonar ring uses this design.

Since the classification is performed with such
a short delay between transmitter firings, the
sensor could be deployed on moving platforms to
achieve on-the-fly mapping – this will be
implemented in future work.
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Figure 7 – Plane recognition region.
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