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Abstract

This paper describes a mobile robot equipped with a sonar sensor array in a guided

feature based map building task in an indoor environment. The landmarks common to

indoor environments are planes, corners and edges, and these are located and classified

with the sonar sensor array. The map building process makes use of accurate odometry

information that is derived from a pair of knife edged unloaded encoder wheels. Discrete

sonar observations are incrementally merged into partial planes to produce a realistic

representation of environment that is amenable to sonar localisation. Collinearity

constraints among features are exploited to enhance both the map feature estimation

and robot localisation.  The map update employs an Iterated Extended Kalman Filter

(IEKF) in the first implementation and subsequently a comparison is made with the

Julier-Uhlmann-Durrant-Whyte Kalman Filter (JUDKF) which improves the accuracy of

covariance propagation when non-linear equations are involved. The map accounts for

correlation among features and robot positions. Partial planes are also used to

eliminate phantom targets caused by specular reflection of the sonar. Unclassifiable

sonar targets are integrated into the map for the purpose of obstacle avoidance. The

paper presents simulated and experimental  data.
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1. Introduction

The objective of this work is to implement an autonomous mobile robot capable of

navigating in an a priori unknown indoor environment using a sonar sensor. To this end,

the robot requires the capability to build a map of the environment, which is a cyclic

process of moving to a new position, sensing the environment, updating the map and

planning subsequent motion.  Map building and navigation is a complex problem because

map integrity cannot be sustained by odometry alone due to errors introduced by wheel

slippage and distortion. Exteroceptive sensing, such as sonar sensing as employed in this

paper, is necessary, but any sensing is also subject to random errors. Hence, neither

odometry nor matching sensory data to the map gives flawless estimation of the robot’s

position, yet this position estimate becomes a reference for the integration of new features

in the map. Consequently, with time, errors in robot position influence errors in the map

and map errors influence the position estimation.

This paper employs sonar sensing in the map building process for many reasons.

Sonar has the property that the data is sparse and naturally selects useful landmarks, such

as walls, wall mouldings and corners.  This alleviates the data processing compared to

dense ranging devices such as laser range finders and stereo vision systems.  Sonar also

offers a high degree of ranging and bearing accuracy in an array configuration as deployed

in this paper.  Since most robots today employ some form of sonar due to the cost and

power consumption advantages, there is considerable interest in its application.

Sonar sensing has some important properties that need to be carefully understood in

order to properly exploit the sensing data.  Firstly, sonar transducers have a significant

angular spread of energy known as the beamwidth.  In many systems, the beamwidth
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gives rise to large angular uncertainty in measurement.  Some researchers have attempted

to deal with this uncertainty by employing grid based maps and repetitive measurements,

as in the work by (Moravec and Elfes 1985). Grid map update schemes range

from Bayesian (Lim and Cho 1993), evidential (Pagac, Nebot, and Durrant-Whyte 1996)

to fuzzy (Oriolo, Vendittelli and Ulivi 1995) and rely on viewing targets from many

locations.  Localisation with a grid map can be complex.  A grid map based localisation

scheme has been developed in (Gonzalez 1992), but this work is suitable for laser

rangefinder systems only.  Other researchers do not consider localisation necessary in

their applications (Dudek, Freedman and Rekleitis 1996; Ohya, Nagashima, and Yuta

1995).  Feature-based mapping schemes have become more commonplace (Leonard and

Durrant-Whyte 1991, Rencken 1993) after Kuc and Siegel (Kuc and Siegel 1987)

presented a method for discriminating planes, corners and edges using sonar data gathered

at two positions. Two significant follow-ups to (Kuc and Siegel 1987) include the work by

Barshan and Kuc (Barshan and Kuc 1990), which differentiates planes and corners with

multiple transducers at a single position, and the work by Bozma and Kuc (Bozma and

Kuc 1991), which differentiates planes and corners with one transducer at two positions.

Later (Kleeman and Kuc 1995) developed a sonar sensor which allows target

discrimination at one position and target localisation with high precision.  (Hong and

Kleeman 1995) have successfully demonstrated the localisation capability of a mobile

robot with a sonar array in a known environment using 3D features.  Data fusion methods

associated with feature based mapping include the Kalman Filter (Ayache and Faugeras

1989; Moutarlier and Chatila 1989; Smith and Cheeseman 1986), maximum likelihood

estimation (Lu and Milios 1995), evidential reasoning (Pagac, Nebot and Durrant-Whyte

1996), and heuristic rules (Dudek, Freedman and Rekleitis 1996).
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Sonar Sensor

Phantom

Corner

Actual Corner

Figure 1 : Phantom Target Example

The second important property of sonar systems is the appearance of phantom

targets that are due to multiple specular reflections. For example, a sonar sensor will see a

virtual image of a corner due to the reflection from the wall in the outwards and return

paths in Figure 1.  A credibility count (Leonard and Durrant-Whyte 1991) has been used

to identify these phantom targets, however this approach fails when the phantom target

appears consistently from different positions as is the case in the example of Figure 1.  A

physically based solution is presented in this paper.  The third important property of

sonar systems is that, when sensing a planar wall, the sensor can only see the part of the

wall which is orthogonal to the line of sight - like phantom targets, this property results

from specular reflection. Therefore, if the robot navigates along a wall, the robot sees the

wall not as an entity but as a set of discrete, approximately collinear planar elements.

Postulates need to be made about the relationships between various sonar features during

map matching. Furthermore, to reduce the risk of wrongly associating two features, the

robot has to be refrained from moving a long distance between successive scanning points

during map building.
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In the authors’ opinion, prolonged navigation can best be achieved when map

feature errors are systematically generated from the sensor and odometry errors.  It is

convenient, and usually justifiable, to assume that errors are approximately Gaussian in

their distribution, and to represent the errors with covariance matrices, since robust noise

filtering tools use this form of representation.  The authors employ the Kalman Filter

because the basis of the Kalman Filter is the Bayesian formula and the principle of

minimum mean square error (Bar-Shalom and Li 1993) that are well understood and

physically acceptable.  The Kalman Filter reduces the uncertainties of the parameters of

interest by weighting the initial estimation of errors with the errors associated with the new

information (known as observations) about the parameters. In the context of sonar map

building, the parameters to be estimated are the robot’s position and the features in the

map.  The observations are the postulates about the relational constraints among the new

features and the existing features.  The Kalman Filter makes available knowledge about the

uncertainties of map features that is important for path planning that avoids obstacles and

localisation within the map.

The Kalman Filter is based on a linear system model.  To overcome this limitation,

the Extended Kalman Filter (EKF) can be employed and is founded on the assumption

that for small noise, first order linearisation of the system model is sufficient for

propagating the noise covariance. The problem with discarding higher order terms is that

bias can accumulate after repeated estimation.  Two approaches have been proposed to

deal with this bias:  The first approach, called the Iterated Extended Kalman Filter (IEKF),

iteratively estimates the parameters of interest by repetitively linearising the system

equations about the new estimates until little change results.  The second approach, which

will be referred to as the Julier-Uhlmann-Durrant-Whyte method (JUDKF) (Julier,
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Uhlmann and Durrant-Whyte 1995), is based on generating a set of data points using the

error covariance of the input parameters, propagating the data points and computing the

resulting error covariance, thus obviating the need to manually evaluate various Jacobian

matrices.  This paper compares the accuracy of the two methods.

The mapping strategy presented here is feature based and has the following

attributes:

1. All three types of primitive features recognisable by our advanced sonar sensor are

processed to become part of a map:  Discrete planar and corner elements gathered by

the sonar sensor at various stages are merged incrementally to form partial planes.

Planar elements are only merged to the adjacent partial planes to avoid falsely closing a

gap, such as a doorway.  Discrete edge elements do not partake in the process of

forming partial planes, but they are still used to enhance localisation accuracy and map

integrity.

2. Not only does ‘plane to plane’, ‘corner to corner’ and ‘edge to edge’ matching occur

as in other approaches (Leonard and Durrant-Whyte 1991; Kuc and Siegel 1987), but

the relational constraint between a corner and two intersecting planes is exploited to

further improve the fidelity of map.  Relational constraints are described in (Ayache

and Faugeras 1989) and are used by (Neira et al 1996) for a known environment.

3. The partial planes are used to distinguish and subsequently eliminate phantom corner

targets and edge targets caused by specular reflection.

4. Two implementations based on the two filters, JUDKF and IEKF, are used to evaluate

state transition equations, generate state-measurement cross covariance and propagate

error covariance matrices.  The two approaches are compared.

This paper is organised as follows.  The robot processing, locomotion, odometry and
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sonar sensor are described in Section 2.  Section 3 presents a summary of the IEKF and

JUDKF filters.  In section 4 the map environmental model is presented and formulated as

a statistical optimisation problem that is solvable with a Kalman Filter.  Two sets of

equations, one for the IEKF and one for the JUDKF, are derived.  The results of four

experiments are shown in Section 5.  Finally the conclusion summarises the mapping

technique and the findings of the comparison between the IEKF and JUDKF filters and

also presents future directions for the research.

2. Robot Architecture

486DX2
66MHz Board

8MB RAM

Sonar
Sensor
Card

Motion
Control (PID)

Card

ISA   AT   Bus

Drive Wheel
Servomotor Encoder

Panning Servomotor
and Encoder Drive

Wheel
Encoder
WheelX2

Figure 2 : The robot system architecture

As shown in Figure 2, the communication backbone of the robot is an ISA AT Bus with a

486DX2-66MHz processor board controlling a custom sonar sensor card and a custom

servo motion control card.  The sensor control card sends transmit pulses and captures

entire echoes from three receiving transducers.  The transmit pulse is generated from a

10 µs 300 to 0 to 300 Volt pulse and the echo waveform is sampled with a 12 bit ADC at

1 MHz.  The motion control card contains a MC1401 chip which provides PID control to

the four DC motors, two in the pan tilt mechanism and two for the drive wheels.  For
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every motor, an encoder is mounted on the actuation shaft (ie after a gear box) to generate

feedback information that is not corrupted by backlash in the gearbox.

2.1. The Sonar Array

T2

R2

TR1 T0R0

40mm 85mm

40mm

125mm

T : Transmitter

R : Receiver

Figure 3: The sonar array configuration

The sonar array illustrated in

Figure 3 has a multiple transducer configuration which makes it possible to classify

common indoor features into planes, 90° concave corners and edges.  The sonar array

accurately estimates specular target ranges to within 0.2 mm and elevation and azimuth

angles to within 0.02° for  ranges to 5  meters within the sensor beamwidth (Kleeman and

Kuc 1995).  At every scanning point, the sensor first simultaneously fires TR1 while

scouting anticlockwise at 90° per second to locate the directions of potential targets from

the echoes on the three receivers. Then, it pans clockwise at the same speed, only slowing

down at the directions of the potential targets found earlier and fires T0 followed by T2.  If

classification is unsuccessful, the target is tagged as unknown but range and bearing are

still recorded to unknown objects.



Mobile Robot Map Building from an Advanced
Sonar Array and Accurate Odometry

9

2.2. The Locomotion and Odometry System

castor

drive wheel

encoder wheel

B

castor

x

y

+

motor

optical
shaft

encoder

Figure 4 : The odometry system

The locomotion and odometry system shown in Figure 4 consists of drive wheels and

separate encoder wheels that generate odometry measurements from optical shaft

encoders. The encoder wheels are made with O-rings contacting the floor so as to be as

sharp-edged as practically possible to reduce wheelbase uncertainty, and are

independently mounted on linear bearings to allow vertical motion, and hence minimise

problems of wheel distortion and slippage.  This design greatly improves the reliability of

odometry measurements. The odometry error model used to propagate error covariance

and odometry benchmarking can be found in (Chong and Kleeman 1997).

3. Summary of the Iterated Extended Kalman Filter (IEKF) and the Julier-

Uhlmann-Durrant-Whyte Kalman Filter (JUDKF)

The section begins by introducing Kalman Filter in a general context. Before proceeding,

the  notation used will be explained.  A circumflex above a random variable, $( )S k + 1 , is

used to indicate the estimator of the random variable, whereas a bar over a random
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variable, S( )k + 1 , is used to indicate the mean of the random variable.  The partial

derivative operator is denoted by ∇  and is defined by (1).

∇ = =








X x

∂
∂

∂
∂

∂
∂

∂
∂x x xn1 2

L     where    [ ]x = x x xn1 2 L (1)

Suppose the state vector S(k) contains all the randomly distributed parameters of interest

which evolve with discrete time according to the state transition equation

( ))1(),()1( +=+ kkk USFS (2)

where U(k) is the input vector.  At stage k+1, these random parameters can be observed

with a set of measurements M(k) via the observation model

( )G S M 0( ), ( )k k+ + =1 1 (3)

The estimation of S(k+1) with equation (2) and (3) is inherently imperfect because

of the noise in S(k), U(k+1) and M(k+1).  The goal of optimisation is to generate a new

state estimate $( )S k + 1  that minimises the mean square error of the parameters S(k+1)

conditioned on all the past observations which is equal to the mean of the parameters

conditioned on all the past observations (Bar-Shalom and Li 1993).   Let Zj be all the

observations gathered up to stage j, and $( | )S i j  be the minimum mean square error

estimate of S(i) conditioned on Zj, then
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{ }$( | ) ( ( ), ( )|S F S U Zk k E k k k+ = +1 1  (4)

and

( )( ){ }kT

ss kkkkkkEkk ZSSSSP |)|1(ˆ)1()|1(ˆ)1()|1( +−++−+=+  (5)

where E{.}  is the expectation of a random variable.

A set of measurements M( )k + 1  about S(k+1) can also be gathered at stage k+1.

Due to the noise in both S( )k + 1  and M( )k + 1 , equation (3) does not hold exactly. A

residual vector can be defined as

{ }z G S M Z( ) ( ( ), ( ))|k E k k k+ = − + +1 1 1  (6)

With the residual vector, the Kalman Filter can be invoked to generate a better

estimate of S(k+1), namely $( | )S k k+ +1 1  based on (Bar-Shalom and Li 1993),

$( | ) $( | ) ( | ) ( | ) ( )S S P P zk k k k k k k k ksz zz+ + = + + + + +−1 1 1 1 1 11 (7)

and the error covariance is also reduced to

P P P P Pss ss sz zz xz
Tk k k k k k k k k k( | ) ( | ) ( | ) ( | ) ( | )+ + = + − + + +−1 1 1 1 1 11 (8)

Where Psz(k+1|k) is the cross-covariance between $( | )S k k+ 1  and z(k+1), and
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Pzz(k+1|k) is the covariance of z(k+1), defined in a similar fashion.

In practice, the state transition equation and the observation equation are non-linear.

Some methods are required to estimate the covariance and cross-covariance matrices

required by Kalman Filter.  The IEKF filter and the JUDKF are introduced for this

purpose.

3.1. The IEKF Method

The IEKF method is an extension of the Extended Kalman Filter (EKF) which is

discussed first.  With the EKF method,

$ ( | ) ($ ( | ), $ ( ))S F S UIEKF k k k k k+ ≈ +1 1 (9)

( )
{ } { }

z G S M

G S S G M MS M

IEKF k k k k

k k k k k k

( ) $ ( | ), $ ( )

( | ) $ ( | ) ( ) $ ( )

+ ≈ − + +

≈ ∇ + + − + + ∇ + − +

1 1 1

1 1 1 1 1
 (10)

The noise associated with all random vectors is assumed small, so that applying a

first order Taylor’s expansion about the estimator is reasonable for propagating the error

covariance through non-linear equations.  Suppose the error of $( | )S k k+ 1  is not correlated

with U(k), then

P FP F FCov U FS S U Uss
IEKF

ss
T Tk k k k k( | ) ( | ) ( ( ))+ ≈ ∇ ∇ + ∇ + ∇1 1 (11)

where ∇F  is the Jacobian matrix of F() evaluated around S(k|k) or U(k+1), as indicated

by the subscript. ∇F  is also known as the state transition matrix.  Cov(U(k+1)) is the
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error covariance of the input vector U(k+1).  In a similar manner,

P GP G GCov M GS S M Mzz
IEKF

ss
T Tk k k k k( | ) ( | ) ( ( ))+ ≈ ∇ + ∇ + ∇ + ∇1 1 1  (12)

P P GSsz
IEKF

ss
IEKF Tk k k k( | ) ( | )+ ≈ + ∇1 1 (13)

The IEKF method improves the performance of the Extended Kalman Filter by

linearising the measurement equation about the new estimate $( | )S k k+ +1 1 , and attempts

to iteratively draw $( | )S k k+ +1 1  closer to the true mean, in a way similar to solving a non-

linear algebraic equation using Newton Raphson algorithm. Let η i
IEKF i k k= + +$ ( | ),S 1 1 ,

with η0 1= +$ ( | )S IEKF k k , the pseudo code is as follows,

set i←0

repeat {

( )[ ]
η η η

η η η

i sz i zz i

i i i

k k k k k k

k k k k k

+
−= + + + + + +

+ − ∇ + + + −

1
11 1 1 1 1

1 1 1 1

$ ( | ) ( | ; ) ( | ; )

( ; ) ( | ; ) $( | )

S P P

z G SS

i←i+1

} while ( η η εηi i− >−1 )

P P P P Pss
IEKF

ss sz i zz i sz
T

ik k k k k k k k k k( | ) ( | ) ( | ; ) ( | ; ) ( | ; )+ + = + − + + +−1 1 1 1 1 11η η η

where the notation ‘;ηi’ means ‘evaluated at the new estimator ηi’, and εη is a threshold

vector.  Further details on the IEKF can be found in (Bar-Shalom and Li 1993; Jazwinski

1970).
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3.2. The JUDKF Method

Julier, Uhlmann and Durrant-Whyte (Julier, Uhlmann and Durrant-Whyte 1995)

have developed a method for accurately propagating a covariance matrix through non-

linear equations while reducing the bias associated with the result. This section

summarises and generalises the JUD method in the context of this paper.  Examples of

how this method can be used with the Kalman Filter (hence the JUDKF) are given at the

end of this section.

Suppose that $( | )S k k  of size ns×1 is an estimate of a particular random vector S(k),

and associated with the estimate is an error covariance matrix Pss(k|k) of size ns×ns, then a

set of sigma points σj are generated from the 2ns columns of

[ ]± = ± = ±−n k ks ss ns
P L( | ) σ σ σ0 1 1L  (14)

where L is the lower triangular matrix of the Cholesky Decomposition of nsPss(k| k)=LLT.

A set of 2ns data points can be formed,

{ }S S Si i i
i

n

k k k k k k
s

( | ) $( | ) , $ ( | )∈ + −
=

−

σ σ
0

1

U (15)

Let X and Y be non-linear nx×1 and ny×1 functions of S,

X X S Y Y S( ) ( ( )) ( ) ( ( ))k k k k+ = + =1 1 (16)

The following quantities can be calculated with Si(k|k)

$ ( | ) ( ( | ))X X Sk k k kn i
i

n

s

s

+ =
=

−

∑1 1
2

0

2 1

(17)
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$ ( | ) ( ( | ))Y Y Sk k k kn i
i

n

s

s

+ =
=

−

∑1 1
2

0

2 1

(18)

[ ][ ]P X S X X S XXX n i i

T

i

n

k k k k k k k k k k
s

s

( | ) ( ( | )) $ ( | ) ( ( | )) $ ( | )+ = − + − +
=

−

∑1 1 11
2

0

2 1

(19)

[ ][ ]P Y S Y Y S YYY n i i

T

i

n

k k k k k k k k k k
s

s

( | ) ( ( | )) $ ( | ) ( ( | )) $ ( | )+ = − + − +
=

−

∑1 1 11
2

0

2 1

(20)

[ ][ ]P X S X Y S YXY n i i

T

i

n

k k k k k k k k k k
s

s

( | ) ( ( | )) $ ( | ) ( ( | )) $ ( | )+ = − + − +
=

−

∑1 1 11
2

0

2 1

(21)

The equations (19) to (21) for obtaining the covariance and cross-covariance are

considered suboptimal (Julier, Uhlmann and Durrant-Whyte 1995) at the expense of

ensuring positive (semi)definiteness. To simplify subsequent discussion, the

computational details are encapsulated into the following functions:

1. Ω( , ( ), )k SSX S P  takes the transformation equations, X(S) and the covariance matrix Pss

of the random vector S and generates the means of X(S).

2. Λ( , ( ), ( ), )k SSX S Y S P takes the transformation equations, X(S) and Y(S) and the

covariance matrix Pss of the random vector S and generates the cross-covariance

between X(S) and Y(S). Λ( , ( ), )k SSX S P  returns the covariance of X(S).

In both functions, k is the stage specifier for all the independent parameters.

The computation of the square root of a matrix is computationally expensive and

simplication is desirable. For example, if Pss has a diagonal structure, that is, Pss= diag(Pi),

then

( )± = ± = ±n n n diags SS s SS s iP P P (22)



Mobile Robot Map Building from an Advanced
Sonar Array and Accurate Odometry

16

The JUD method can now be applied to a Kalman Filtering problem:

( )( )$ ( | ) | , ( $, $ ), , ( )S F S U P Cov UJU
ssk k k k diag+ ≈1 Ω (23)

( )( )z G S U P Cov MJU
ssk k k diag( ) | , ( $, $ ), , ( )+ ≈ − +1 1Ω (24)

( )( )P F S U P Cov Uss
JU

ssk k diag≈ Λ | , ( $, $ ), , ( ) (25)

( )( )P G S M P Cov Mzz
JU

ssk k diag≈ +Λ 1| , ( $, $ ), , ( ) (26)

( )( )P S G S M P Cov Msz
JU

ssk k diag≈ +Λ 1| , , ( $, $ ), , ( ) (27)

where diag(.)  here is the matrix formed by the argument matrices on the diagonal.

4. Map Building Formalism

This section is further subdivided into nine parts. Section 4.1 contains a discussion

of the environment model and pinpoints the parameters to be optimised. Section 4.2

details all mapping scenarios that must be considered in order to grow the map primitives.

Section 4.3 presents map building as a statistical optimisation problem and formulates

solutions in the context of Kalman Filter. Two formulations are presented: The classical

Global approach (Leonard, Durrant-Whyte and Ingemar 1992) and the Relocation-Fusion

approach (Moutarlier and Chatila 1989). The authors’ formulations bear resemblance to

these precursors, but are more general in the sense that they extend beyond feature-to-

feature matching in order to tackle the more complex scenarios faced by sonar mapping.

Section 4.4 explains why a corner should be merged to two intersecting partial planes, not

one. Section 4.5 describes how a collinearity constraint should be validated.  Section 4.6 to

section 4.9 focus on the discussion for other important map management details, namely,
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discrimination of phantom targets, incorporation of new measurement, as well as

mergence and removal of existing primitives.

4.1. Map Primitives

The environmental model comprises two types of primitives:

Partial Plane is characterised by its state parameters [ ]x k a k b ki i i

T
( ) ( ) ( )=  from the line

equation ax by a b+ = +2 2 , the Cartesian coordinates of its approximate endpoints,

and a status associated with each endpoint, indicating whether it is terminated with

another partial plane to form a corner. When a wall is first detected, it is registered as a

partial plane with only one endpoint. It is then grown to have two endpoints and

extended as the robot moves along the wall.

ax+by=a +b 2 2

a

b

y

x

Figure 5 : Parameterisation of a partial plane

Corner is characterised by its Cartesian coordinates [ ]x k x k y ki i i

T
( ) ( ) ( )=  only. The sonar

sensor provides no indication of its orientation.

Edge is similarly characterised by its Cartesian coordinates [ ]x k x k y ki i i

T
( ) ( ) ( )=  only.
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The sonar sensor provides no indication of its orientation.

In addition, the covariance and cross-covariance between these features are also

kept (Leonard, Durrant-Whyte and Ingemar 1992, Moutarlier and Chatila 1989). Each time

a new primitive is added, it will expand the number of system state parameters by two.

The current strategy also records the unclassifiable features as unknown.

4.2. Growing Map Primitives

A snapshot of the map building scenario at stage k+1 is depicted in Figure 6.  The robot

has just moved to a new position and sensed a few new features. It is now ready to use

some features for localisation, and add the remaining features to the map.

new plane

new plane

corner

new plane

existing plane

existing plane

= connectivity yet to be established

robot

Figure 6 : Status of map and data fusion process at stage k+1

Since the robot is operating indoors, discrete feature elements are assumed to

come from a few planes, so that they can be merged using some collinearity constraint to

give a more realistic representation of the environment.



Mobile Robot Map Building from an Advanced
Sonar Array and Accurate Odometry

19

the partial plane have ?
How many endpoints does

1 2

Is the new plane
collinear with the partial plane

yes

no

Is the new plane
far from the endpoint ?

no

Form the second
endpoint {end}

Where is this new plane
on the partial plane ?

outside

inside

Is it far from the nearest
endpoint ?

no

Is that nearest 
endpoint terminated ?

no

Fusion
Extend the partial plane

Fusion {end}

Invalid mergence
register as new plane

yes

yes

{end}

{end}

Fusion

Figure 7 : Conditions for growing map primitives with a plane measurement

no

Are both the endpoints 

no

closer to the corner unterminated?

Are they terminated
with each other?

Fusion {end}

Fusion

Set status, both planes
planes now terminated 
with each other
Endpoint extended

Invalid mergence
Register as new
corner

yes

yes

no

Are the partial planes involved
collinear?

no

Is an endpoint of both partial planes
close enough to the corner?

yes

Figure 8 : Conditions for growing map primitives with a corner measurement

A planar measurement would be fused to a partial plane if it satisfies the conditions

depicted in Figure 7. A corner measurement would be fused to an existing corner feature if

it is close enough to it, otherwise it would be fused to two existing intersecting planes if it

satisfies the conditions depicted in Figure 8. In a typical real environment, edges are

produced by the artefacts on the walls such as mouldings.  While being excellent
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stationary landmarks for map building and localisation, they cannot be considered as

collinear with the nearby walls.  Therefore an edge is only fused to an existing edge if they

are in the proximity of each other.  For all greyed condition boxes in the figures, χ2 tests

(to be described later) are applied. Every time a re-observation of a feature/relation occurs,

the state of every map feature would be updated because of their correlation. The

unterminated endpoints of partial planes are projected to the new gradient determined by

the new state parameters, whereas the terminated endpoints are re-calculated from the

intersections of all pairs of partial planes marked as terminated with each other.

4.3. The Kalman Filter Formulation of Map Building Problem

Under this section, the map building problem is first formulated according to the classical

global approach. A few equations are then highlighted and modified according to the

concept of the Relocation-Fusion approach introduced by (Moutarlier and Chatila 1989).

All these are done in the specific context of the sonar mapping. After embedding IEKF or

JUDKF, the result is more general than the original formulation.

The two dimensional coordinates and orientation (collectively known as the state) of

the robot, as well as the speed of sound, at stage k is denoted by the random vector

x0( ) [ ( ) ( ) ( ) ( )]k x k y k k c ks
T= θ  with respect to a global reference frame. Further

assume that a partial map already exists, and the random parameter vectors of the existing

features xi(k) are concatenated with x0(k) to form the global state vector S(k). S(k)

contains all the parameters to be optimised, and S is the set of all state vectors to be

optimised.

S x x x x0 1 2 n( ) [ ( ) ( ) ( ) ... ( )]k k k k k T= (28)



Mobile Robot Map Building from an Advanced
Sonar Array and Accurate Odometry

21

{ }S =
=

x i
i

n

0
U (29)

At stage k+1, the robot travels to a new destination. The intermediate state of the

robot $( | )S k k+ 1  can be predicted as a function of its preceding state $( | )S k k  and the input

vector U(k+1) using the state transition equation (9) or (23). In this case U(k+1) is

specified by the distance travelled by the left wheel and right wheel. Strictly speaking, the

time histories of the left and right wheel rotations, L(t) and R(t),  are required to compute

the intermediate state. In this experiment, the motion types are confined to linear

translation and on the spot rotation only. If the motion is a translation, L and R should

have equal sign; Likewise, if the motion is a rotation, L and R should have opposite sign.

U U= + =
+
+







( )

( )

( )
k

L k

R k
1

1

1
(30)

Cov U( ( ))
$( )

$( )
k

k L k

k R k

L

R

+ =
+

+













1
1 0

0 1

2

2
(31)

Since a new model has been developed in (Chong and Kleeman 1997) for

propagating random odometry errors, and motion will only transform x0(k|k), equation

(9), (23), (11) and (25) can be simplified further. For the IEKF method,

$ ( | ) ($ ( | ), $ ( ))x F x U0 01 1IEKF k k k k k+ = + (32)

P FP F Odom U Cov Ux x00 001
0 0

IEKF Tk k k k( | ) ( | ) ( $ , ( ))+ = ∇ ∇ + (33)

P FPxj
IEKF k k k k j0 001 0

0
( | ) ( | )+ = ∇ ∀ > (34)
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and for the JUDKF method,

( )( )$ ( | ) | , ( $ , $ ), , ( )x F x U P Cov U0 0 001JU k k k k diag+ = Ω (35)

( )P F x U P Odom U Cov U00 0 001JU k k k k( | ) | , ( $ , $ ), ( $ , ( ))+ = +Λ (36)

P F x U x
P P

P P0 0

00 0

0

1 0j
JU

j

j

j jj

k k k k j( | ) | , ( $ , $ ), $ ,+ =


















 ∀ >Λ (37)

where Odom() represents the new odometry error model developed in (Chong and

Kleeman 1997) that takes in the robot’s wheel covariance matrix Cov(U(k+1)) and wheel

turns $U  and outputs the propagated covariance matrix.

A measurement vector consists of a time of flight ri and a direction Ψi to a target,

and is denoted by

[ ]M M= + = + +i i i

T
k r k k( ) ( ) ( )1 1 1ψ (38)

Every new measurement is tested against all the possible collinearity constraints set

out in section 4.2, in order to grow the map primitives. A typical constraint would take the

form of (3). Its residual vector (also known as innovation) and its covariance can be

computed for each measurement, using (10) and (11) for IEKF and (24) and (26) for

JUDKF respectively.

Since the noise incurred on these residuals are not correlated, block processing is not

necessary (Bar-Shalom and Li 1993) (that is, they can be processed one at a time). Each
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residual vector zi k( )+ 1  is just a function of $ ( | )x0 k k , the measurement $ ( )Mi k + 1  and the

corresponding ‘matched’ map features, therefore there are significant zero submatrices in

the Jacobian matrix on which simplification can be made. The following simplifying

formulation involves only one feature, $ ( | )x i k k . Formulation involving two states (for

example, fusing a new corner measurement to two existing intersecting partial planes) is

similar so will not be detailed. The modified residual vector looks like

z G x x Mi
IEKF

r i ik k k k k k( ; ) ( $ ( | ), $ ( | ), $ ( ))+ = − + + +1 1 1 10η (39)

z G x x M
P P

P P
Cov Mi

JU
i i

i

i ii
ik k k diag( ) | , ( $ , $ , $ ), , ( )+ = − +





























1 1 0

00 0

0

Ω (40)

and its error covariance,

[ ]P G G
P P

P P

G

G

GCov M G

x x
x

x

M M

zz
IEKF

r
i

i ii

T

T

i
T

k k
k k k k

k k k k

k

i

i

i i

( | ; )
( | ) ( | )

( | ) ( | )

( ( ))

+ = ∇ ∇










∇
∇











+∇ + ∇

1

1

0

000 0

0

η
(41)

P G x x M
P P

P P
Cov Mzz

JU
i i

i

i ii
ik k k k diag( | ) | , ( $ , $ , $ ), , ( )+ = +





























1 1 0

00 0

0

Λ (42)

where ηr is the rth $ ( | )S k k+ +1 1  generated by IEKF, triggered with η0 1= +$ ( | )S k k . Here

$ ( | )S k k+ 1  includes $ ( | )x0 1k k+  and $ ( | )xi k k+ 1  only.

The covariance of the measurement should account for the imperfect polygonal

world assumption. For example, not all walls are strictly flat. It has a form depicted by
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equation (43) but more about the matrix values is presented later.

Cov M( ( ))i
r r

r

k i i i

i i i

+ =








1

2

2

σ σ
σ σ

ψ

ψ ψ

(43)

Kalman Filter equations require that the cross-covariance between the observation

matrix and the state matrix be evaluated with equation (13) and (27). After that, the state

and the error covariance matrix of the map features together with the robot’s position can

be updated with equation (7) and (8). Once again, efficiency can be improved by

processing the covariance matrix in disparate blocks. To update the state of x j ∈S,

P P G P Gx xjz
IEKF

r j
T

ji
Tk k k k k k

i
( | ; ) ( | ) ( | )+ = + ∇ + + ∇1 1 10 0

η (44)

P x G x x M

P P P

P P P

P P P

Cov Mjz
JU

j i i

i j

i ii ij

j ji jj

ik k k k diag( | ) | , $ , ( $ , $ , $ ), , ( )+ = +

















































1 1 0

00 0 0

0

0

Λ (45)

For IEKF, let η j r,  be the iterator for xj only, $ ( | )x j k k+ +1 1 , after the rth iteration,

starting with the initial value η j j k k,
$ ( | )0 1= +x

( )[ ]η η η η η η ηj r j jz r zz r i r rk k k k k G, , ( | ; ) ( | ; ) ( ; )+
−= + + + + − ∇ −1 0

1
01 1 1P P z S (46)

For JUDKF, $ ( | )x j k k+ +1 1  is simply found with the following classical equation,

$ ( | ) $ ( | ) ( | ) ( | ) ( )x x P P zj j jz zz ik k k k k k k k k+ + = + + + + +−1 1 1 1 1 11 (47)
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Both cases share the same covariance update formula.  For all combinations of state

m and n,

P P P P Pmn mn mz r zz r zn rk k k k k k k k k k( | ) ( | ) ( | ; ) ( | ; ) ( | ; )+ + = + − + + +−1 1 1 1 1 11η η η (48)

Extra care has been taken when forming the covariance matrices required by

JUDKF. For example, in equation (4444), if j=0 or j=i, then the composite covariance

matrix passed into the JUDKF function should only include P00, P0i, Pi0 and Pii only.

Otherwise, a redundant (hence singular with zero determinant) covariance would be

formed which triggers a fatal computer run-time error.

The process is then repeated until all observations have been processed. Since IEKF

is also an extremely computationally demanding implementation, simplification becomes

essential. The original algorithm is modified such that it terminates after exactly three

iterations. Under this simplification, the iterator should only contain the states which affect

all the matrix terms appearing in the IEKF algorithm, namely x0 and xi.

After the fusion of all measurements associated with the reobserved features, the

remaining features are considered new and are simply incorporated into the global state.

More information about fusing new observations is contained in section 4.7.

The Relocation-Fusion approach formulated by (Moutarlier and Chatila 1989)

makes a minor variation on the Global approach. The measurement error is first used to

update the robot’s state x0 ONLY. The improved x0 is then used to re-calculate the

residual vector and all the related Jacobian matrices, which are then used to update the

remaining map features. Stepwise, after zi is computed, x0 and P00 and the cross-
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covariance between x0 and all other map features xn can be found using (47) by setting j=0

and (48) by setting m=0, respectively.

With the improved x0, zi, (∇x G
0

 and ∇x G
i

 in case of IEKF), Pzz, and Pjz can be re-

generated, in this particular order, by applying equation (39) to (42). This is followed by

the update of the states of all other map features, all covariance and cross-covariance,

excluding x0 and P00, using equation (47) to (48). To embed the IEKF algorithm, iteration

is first performed on x0. The matched feature xi is included in the iteration after three runs.

After this, the remaining states follow.

set  r←0

set η0 0 1, ( | )r k k= +x , η i r i k k, ( | )= +x 1

repeat { /* Relocation with IEKF */

evaluate zi,∇x G
0

,∇x G
i

, Pzz, P0z at η0,r and ηi,0

( )( )η η η η0 1 0 0
1

0 0 00, , , ,r oz zz i r+
−= + − ∇ −P P z Gx

r←r+1

} while (r<3)

{ }∀ ∈x xj S \ 0 , evaluate Pjz

∀ ∈x j S, update P0j and Pj0

set  r←0

repeat { /* Fusion with IEKF */

evaluate zi,∇x G
0

,∇x G
i

, Pzz, Piz ,P0z at η0,2 and ηi,r

( )( )η η η ηi r i iz zz i i i ri, , , ,+
−= + − ∇ −1 0

1
0P P z Gx

r←r+1
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} while (r<3)

{ }∀ ∈x xj iS \ , evaluate Pjz

{ }∀ ∈x x xj iS \ ,0 , update xj

{ }∀ ⊂x xm n, S, update Pmn (exclude P00)

The Relocation-Fusion (Moutarlier and Chatila 1989) approach has been shown to

be less sensitive to position bias introduced by non-linearities and non-ideal odometry

model, at the expense of optimality caused by the removal of position information from

map features update. In the implementation here, this approach is applied hand in hand

with the IEKF and JUDKF to achieve the maximal effect.

4.4. Why Should a New Corner be Fused to Two Intersecting Partial Planes ?

If a corner measurement fails to be fused to one of the standalone corners, an attempt will

be made to fuse it to two intersecting planes.  The reason behind fusing a corner to two

intersecting planes is that, a corner measurement vector [ai(x0,Mi) bi(x0,Mi)]T has a size

2×1. If it sets up a collinearity constraint with one partial plane [a b]T only, then the

residual vector formed would have a size 1×1, that is, zi=[aia+bib-a2-b2]. After fusion, three

options for dealing with the corner are available:

• Discard the corner measurement. This wastes some information.

• Parameterise again the partial plane to create some kind of ‘plane-corner’ entity, which

should have size(partial plane vector) + size(corner vector) - size(residual vector) = 3

state parameters. This leads to a series of avalanche effects. For example, it would later

lead to some ‘plane-corner-plane’ entity and so forth. This complicates the map
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management process many folds.

• Register the corner as a new map feature too. However, since it has been used to fuse a

partial plane before, any composite covariance matrix involving both of these features,

like the state covariance matrix, would carry redundancy (not full rank), hence suffer

the risk of singularity (zero determinant). Once again, this choice calls for complex map

management scheme, as instances like this increase.

On the contrary, if it is not used at all, then there wouldn’t be redundancy to

consider. If two intersecting partial planes could be found, the constraint would be ‘the

corner should be collinear with two partial planes’, so the residual vector would have a

size of 2×1. This means the corner measurement can be discarded after fusion without

wasting any information. On top of that, the two partial planes would be marked as

terminated with each other, so the corner position could always be generated if required

by subsequent path planning. The test to ensure that the two partial planes are not

collinear is vital because if not, later if the two partial planes are merged into one, the

resultant partial plane would have a ‘hanging’ terminated endpoint.

4.5. Validity of Collinearity Constraint

To access the validity of a constraint relationship, Mahalabonis distance test (or also

known as χ2 test) is applied to the residual vector :

z z P z
Pi i

T
zz i

zz

k k k k
2 11 1 1= + + +−( ) ( | ) ( ) (49)

where z
Pi

zz

2
is the normalised sum of square of all the vector components. If the residual
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vector is assumed to be jointly Gaussian, then the expression will have a χ2 distribution

with degree of freedom determined by the rank of Pzz. A one-sided acceptance interval is

chosen to establish a 90% probability concentration ellipsoid in the distribution. A new

measurement whose z
Pi

zz

2
falls in this acceptance interval is assumed to have satisfied the

collinearity constraint set up with  the existing feature(s). In this work, all residual vectors

have a size of 2×1, so the degree of freedom is 2, and the acceptance interval is < 5.991.

To improve computational efficiency, zi which is considerably different from 0 is

rejected without going through the test, to avoid the series of matrix operations. At this

stage, the issue of features falling into more than one validation gates has been temporarily

put aside. This problem can arise either when the position covariance is too large, or when

two existing map features are very close together but are not yet merged. This difficult

issue will be investigated in the future.

4.6. Distinguishing Phantom Targets

sure phantom
corner  phantom

plane

ambiguous

robot

partial plane

Figure 9 : Example of treatment of phantom targets

Local maps are preserved.  Each feature in the local map has a parameter indicating which

state it has been fused to.  Therefore, the knowledge of where a particular map primitive

was observed, is available.  When the map is sufficiently complete, many phantom targets

caused by specular reflection can be eliminated by checking whether the line of sights
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from the positions they were observed are blocked by some partial planes.  If the phantom

targets are too close to some partial planes they are considered ambiguous and would not

be eliminated.  The strategies stem from the experimental observation that in a crammed

indoor environment, such as a narrow corridor, corners and edges are more likely to cause

phantom targets than planes. This is a result of the property that corners (and edges) return

(some) acoustic energy in the opposite direction to its arrival, while planes reflect energy

away from the arrival direction except for normal incidence.

4.7. Fusion of the Remaining New Features

After localisation, the fusion of the remaining features will make use of the estimated

robot position. Each new feature xi is a function H() of the robot’s position x0 and a

measurement vector Mi. For each new feature, the error covariance can be calculated :

( )$ ( | ) $ ( | ), $ ( )x H x Mi
IEKF

ik k k k k+ + = + + +1 1 1 1 10 (50)

P HP H HCov M Hx x M Mii
IEKF T

i
Tk k k k k

i i
( | ) ( | ) ( ( ))+ + = ∇ + + ∇ + ∇ + ∇1 1 1 1 1

0 000 (51)

( )( )$ ( | ) | , ( $ , $ ), , ( )x H x M P Cov Mi
JU

i ik k k k diag+ + = + +1 1 1 1 0 00Ω (52)

( )( )P H x M P Cov Mii
JU

i ik k k k diag( | ) | , ($ , $ ), , ( )+ + = + +1 1 1 1 0 00Λ (53)

and all the cross-covariance among the new features and the existing features are also

generated. Let j denote the objects already in the map,

P HPxij
IEKF

jk k k k j i( | ) ( | )+ + = ∇ + + ∀ ≠1 1 1 1
0 0 (54)

P H x M x
P P

P P
Cov Mij

JU
i j

j

j jj
ik k k k diag( | ) | , ($ , $ ), $ , , ( )+ + = + +





























1 1 1 1 0

00 0

0

Λ (55)
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As a reminder, if j=0, the composite matrix passed to the JUDKF function should

comprise P00 and Cov(Mi) only.

4.8. Simultaneous Encounter of Collinear Features

There would be occasions when two or more collinear features are encountered at the

same stage. For instance, this situation would occur if the robot reaches a corner and

observes the corner and the walls that form the corner for the first time. When this

situation arises, the planar feature is first incorporated into the global state vector as a new

feature. The corner feature is then regarded as the observation for that new feature.

4.9. Removal of Redundant Primitives

Removal of redundant primitives would occur when

1. Two existing partial planes are actually collinear and adjacent to each other.

2. Two existing corners are the same.

3. Two existing edges are the same.

4. An existing corner appears to be located at the intersection of two existing partial

planes.

In such cases, internal fusion is performed by forming residual vectors in a manner

similar to section 5. In terms of equations, all terms involving Mi are set to nil because no

new measurements are involved. For the last three cases listed above, the map primitive

growth assessment/procedure is similar to that depicted in Figure 8, except that when

invalidity occurs, integration of the new feature need not be carried out.  To merge two

partial planes, the new procedure depicted in Figure 10 is followed.
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Are the partial planes
collinear ?

yes

Project all valid endpoints
to the new line parameter
estimate. Order them.
How many endpoints ?

2 3 4

p0:single ended plane
p1:single ended plane

Are p0 and p1 far from
each other ?

p0:single ended plane
p1:double ended plane

terminated ?

p0:double ended plane
p1:double ended plane

Are any of the two middle
endpoints terminated ?

Is the middle endpoint

yes

Invalid

yes no
Is it close enough to
the nearer of the 
extreme of the
ordered endpoints ?

yes

Is p0 too far 
from p1 ?

yes

no

Invalid

no

yes

ordered endpoints ?
extreme of the
the nearer of the 
Is it close enough to

no

Is the combined distance
the two extremes of 
the ordered endpoints
greater than the combined
length of p0 and p1 ?

yes

Invalid

no

yesno

Fusion.
Form a new partial plane
by taking as endpoints the
extremes of the ordered
endpoints, and their
termination status.

no

Figure 10 : Conditions for merging two existing partial planes in map

As a brief illustration, when two existing features, with states xi(k) and xj(k)

respectively, are to form a collinearity constraint, redundancy can be removed by

enhancing the estimation of xi(k) with xj(k), and discarding xj(k) afterwards. After filtering,

all xj related covariance and cross covariances can be removed. The three-run IEKF

algorithm is applied in a similar fashion so it will not be elaborated further. If a constraint

involves three states, as in the case of fusing a corner to two intersecting partial planes, the

formulation is once again similar.

It is also possible to exploit the orthogonality constraint among partial planes.

However, not all intersecting walls in today’s indoor environments are strictly

perpendicular, so the idea has not been implemented even though it can be

accommodated. If implemented, a χ2 test would also be applied to assess orthogonality.
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5. Experimental Results

Experiments have been carried out in four artificial environments erected with cardboard

boxes but here two are shown from Figure 11(a) to Figure 12(a). The odometry of the

robot has been calibrated to reduce systematic errors, and the parameters required by the

non-systematic error model have been obtained in (Chong and Kleeman 1997) prior to

experiment.

Since the cardboard boxes were being lined up manually taking the gridlines on the

parquetry floor as reference,  the variance associated with the time of flight measurement

and angular measurement were set larger than that achievable by the sonar sensor

(Kleeman and Kuc 1995) in order for the collinearity constraints to hold. The initial value

of speed of sound was set to 342.5 m/s, which is the mean value at the time. In fact, for all

four experiments, the following tentative values were used:

standard deviation of time of flight = 1.6×10-5 s

standard deviation of direction = 2.4°

initial standard deviation of cs = 0.18 m/s

The resultant maps are shown in Figure 11(c)(d) to Figure 12(c)(d). The (b)

subfigures show the raw sonar measurements detected at various positions (before

position correction) being superimposed onto the same diagrams, and the ‘scan lines’

from one of the position indicate the typical number of features the sonar sensor can

capture at any one time. The grid spacing is 1 metre. It has been noticed that the sensor

detects the gaps between the cardboard boxes as edges. They should not be regarded as
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some artificial aids to the mapping process as in a real environment, wall mouldings are

often found to give rise to the same phenomenon.

In the first environment, the robot was programmed to repetitively enter, make a

180° turn, exit an enclosure four times to investigate the long term performance of both

filters. The maps generated with JUDKF and IEKF are very similar but the speed of

JUDKF is significantly slower. Both filters have remained consistent throughout the

navigation. JUDKF produces a map with all features correctly merged. IEKF’s

performance closely matches that of JUDKF, with only one corner not fused to two partial

planes and two edge features not identified as belonged to the same physical edge. Their

fusions are found to be hindered by the χ2 tests. A comparison of the covariance

generated by IEKF and JUDKF for a few features indicates that JUDKF in general tends

to generate larger covariance. As a result, the error ellipses for ‘related’ features are more

likely to overlap and more mergence can be observed. Despite the minor imperfection,

both post-filtering maps show that only one partial plane is generated for each wall, and

most of the corners have been successfully fused to two intersecting partial planes, hence

well defined intersections can be observed. Also, most repetitive observations of the same

edge are successfully merged into one edge map feature. All unterminated endpoints of

partial planes have also been properly projected to the line parameters. Three phantom

corners are retained in the raw data map, but are subsequently eliminated in the post-

filtering maps by the partial planes blocking their lines of sight.

In the second experiment, the robot was programmed to follow a rectangular path

four times. One side of the ‘wall’ was indented by about 0.5 metre. The observations

made about this experiment are virtually the same as those made in the third experiment,

so no repetition is necessary. At first glance, it might seem wasteful not to extend the
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partial planes with the edge artefacts by exploiting another collinearity constraint. This

idea is found to be impractical in real world for two important reasons:

• Most edge reflections are generated by artefacts which are not necessarily collinear with

the wall, such as wall mouldings.

• Even if the edges are really collinear with the partial planes, once they have been

merged into the partial planes, they have to be eliminated, much like merging a corner

to two partial planes. Unlike the corner, the fused edge cannot be regenerated when

required.  Simply put, a corner can be regenerated by solving for the point of

intersection of two partial planes, but no similar approach is available for a fused edge.

Therefore, fusing an edge reduces the number of useful landmarks for localisation.

Figure 13(a)-(b) compare the time taken to fuse all measurements into the map at all

sensing points for the two experiments. The experiments were conducted on a 486DX-

33 MHz computer with 16 MB RAM. The time taken to move the robot and to process

sonar echoes by template matching have been excluded from the comparison. All graphs

show that JUDKF requires about 5 times as much processing time as IEKF. It has been

observed that the speed discrepancy is primarily caused by that fact that, for IEKF, pre-

computed matrices such as ∇F and ∇G can be used in several cross-covariance and state

updates in each mapping cycle. Whereas for JUDKF, a square root of a matrix with

Cholesky Decomposition must be performed for virtually every cross-covariance (except

pairs with transpose relationship) and state update.
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(a) Actual environment

(b) Pre-filtering Perception

(c) IEKF (d) JUDKF

Figure 11 : The first environment, with the robot navigating into and out of the enclosure four times

Entrance
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(a) Actual environment

(b) Pre-filtering Perception

(c) IEKF (d) JUDKF

Figure 12 : The second environment, with the robot repeating a rectangular path four times
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(d) The second experiment

Figure 13 : Cumulative processing time at all sensing positions for the two experiments.
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6. Conclusion

The capability of autonomous navigation by mapping of our mobile robot system in some

simple environments has been demonstrated. IEKF and JUDKF have been employed to

deal with the problem of covariance propagation through nonlinear transformation, and

their strengths and weaknesses with regards to accuracy and speed have been compared

with simulated and real data. It has been shown that the accuracy demonstrated by IEKF

is comparable to that by JUDKF and is in fact sufficient in practice. While eliminating the

tedium of deriving Jacobian matrices, JUDKF is less efficient compared to IEKF. The

algorithm is now being intensively upgraded to enhance its robustness and efficiency.

Current research focal points include the elimination of the storage and update of the

covariance between two features if it is found to be small, in order to improve the speed

and memory requirement of the algorithm. Also under investigation is a map matching

strategy to re-establish robot’s position when its uncertainty is too large or when the

accumulation of position bias becomes significant.
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Appendix: Some Implementation Examples

This appendix evaluates some of the equations given in the main body of this paper. Let B

denote the effective wheelbase, after moving, the robot’s new position can be computed

from the following state update equations:

( )( )
( )( )$ ( | )

$( | ) $( ) sin $( | ) sin $ ( | )
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where

$( )
$( ) $( )
$( ) $( )

r k
B L k R k

L k R k
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+ + +
+ − +









1

2

1 1

1 1
(57)

The Jacobian matrices with respect to $ ( | )x0 k k  and $ ( )U k + 1  can be found in (Chong

and Kleeman 1997) hence will not be reproduced here.

To match a corner feature to two partial planes xi=[ai bi]
T and xj=[aj bj]

T, the residual

vector and various Jacobian matrices are

z = −
+ + + − −
+ + + − −
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i i s i i i s i i i

j i s i j i s i j j
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α α
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2 2
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More constraint equations and Jacobian matrices can be found in (Chong and

Kleeman 1997).
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