Digital Perception Lab.

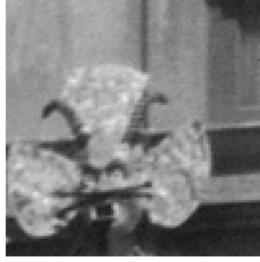
Dept. Electrical and Computer Systems Engineering Monash University

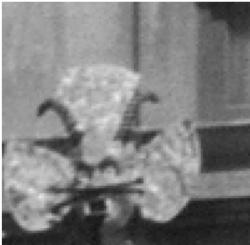
- Research Covers Areas Such as:
 - Computational Mathematics
 - Novel Splines and Fast Approximation of Splines (related to Radial Basis Functions, Support Vector Machines)
 - ★ Finite Element, Wavelets, Multi-pole Methods
 - Image Processing
 - ★ Restoration of Historical Film
 - ★ Biomedical Image Processing
 - Computer Vision/Robotics
 - ⋆ Optic Flow
 - ★ Motion Segmentation
 - ★ Tracking
 - ★ 3-D structure modelling
- A common thread is: Motion/Displacement Estimation from Images
- Common techniques are robust statistics, model selection, model fitting....

Current (and New) Projects

- Robust Model Fitting and Model Selection (with Wang, Bab-Hadiashar, Staudte, Kanatani.....)
- Subspace Methods for SFM and Face recognition (with Chen) (soon to be postdoc with PIMCE)
- Biomedical:Microcalcification in breast X-rays (with Lee, Lithgow), Knee cartilage segmentation (with Cheong and Ciccutini)
- Invariant Matching/Background Modelling (with Gobara)
- Historical Film Restoration and Film Special Effects (with Boukir)
- Wavelet denoising (with Chen)
- (new) Geometric aspects of tracking (ARC 2004-6)
 - Postdoc Wang
- Human motion Modelling and Tracking (with U)
- Visualisation (Monash SMURF vizlab)
- (new) Urban Scanning (Monash NRA soon to be postdoc Schindler)
- (new) 4-D Recorder Room


(+Tat-jun Chin + Tk – soon to start phd students)


Advance on Previous Restoration Work (with Boukir)

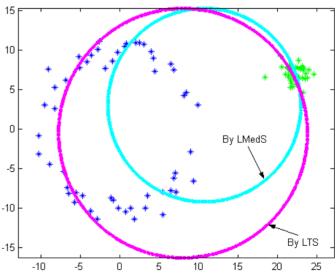


Can't capture distortion – e.g., rotation Can try to use 3-D projective geom. – below

S. Boukir and D. Suter. Application of rigid motion geometry to film restoration. In *Proceedings of ICPR2002*, volume 6, pages 360-364,

Large Grant 1997-99

IREX 2001


Australian Government Australian Research Council

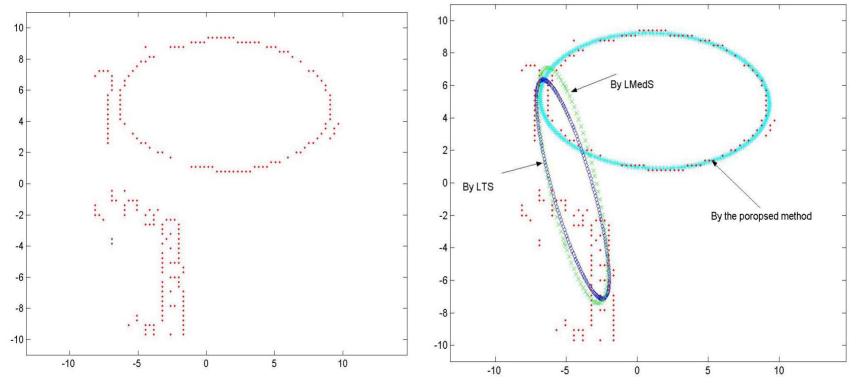
2002.

Symmetry in (Robust Fitting)

Actually, the assumption that median belongs to "clean" data is false sometimes even when outliers < 50%!

H. Wang and D. Suter. Using symmetry in robust model fitting. *Pattern Recognition Letters*, 24(16):2953-2966, 2003.

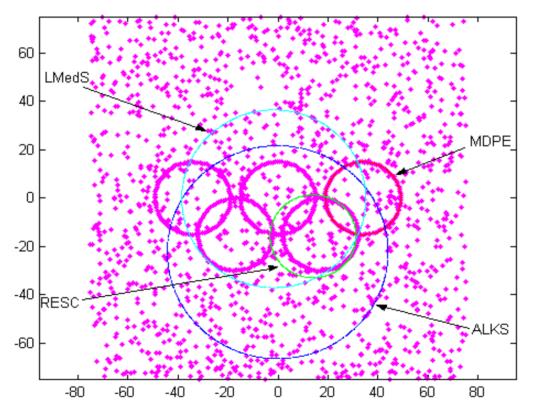
55 inliers – 45 clustered outliers


Large Grant 2000-2

Symmetry in (Robust Fitting)

about 45% clustered outliers

Large Grant 2000-2

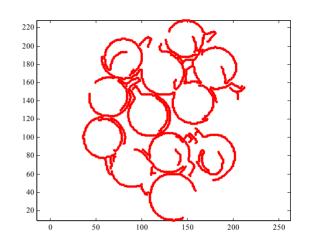

Very Robust Fitting – Mean-shift

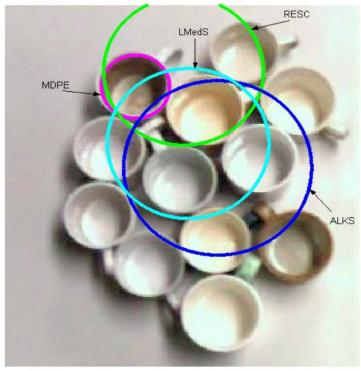
about 95% outliers!

H. Wang and D. Suter.

MDPE: A very robust estimator for model fitting and range image

segmentation. Int. J. of Computer Vision, to appear, 2004.


Large Grant 2000-2

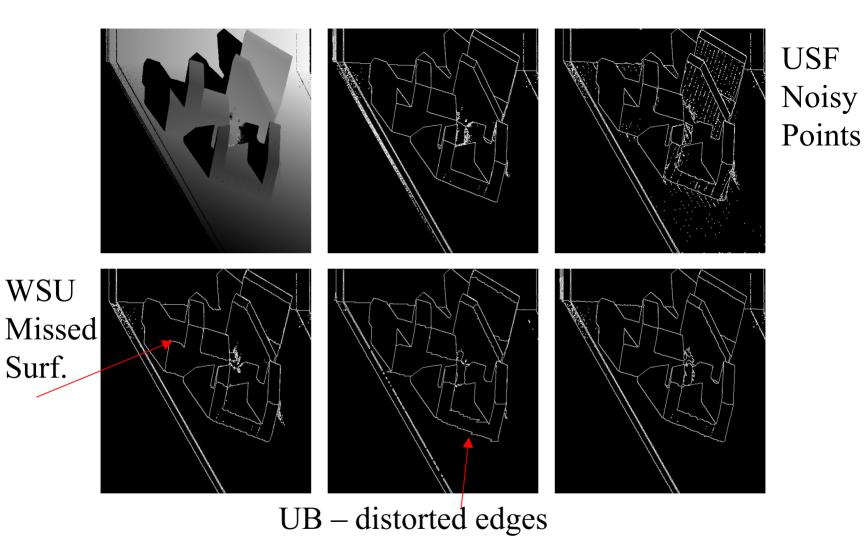


Australian Government

Very Robust Fitting

about 95% outliers!

Large Grant 2000-2


Australian Government Australian Research Council

Very Robust Fitting

How does it work?

Essentially – not just dependent upon a single stat (the median or the number of inliers) but on the pdf about the chosen estimate.

Uses Mean Shift and maximizes a measure roughly (sum of inlier pdf – as defined by mean shift window)/(bias – mean residual centre of mean shift window)

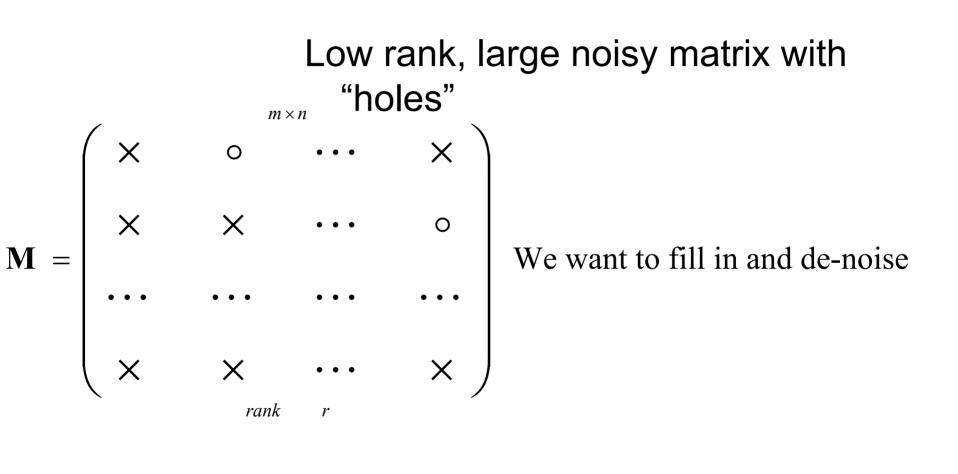
Large Grant 2000-2

Yosemite

Otte

Technique	Avg. error	Std. dev.	Density	Technique	Avg. error	Std. dev.	Density
1	(degree)	(degree)	(%)	Teeninque	(degree)	(degree)	(%)
Black (1994)	3.52	3.25	100	Giachetti and Torre (1996)	5.33		100
Szeliski and Coughlan (1994)	2.45	3.05	100	Bab-Hadiashar and Suter (WLS2, 1998)	3.39	6.55	100
Black and Anandan (1996)	4.46	4.21	100	Bab-Hadiashar and Suter (WLS6, 1998)	3.51	6.48	100
Black and Jepson (1996)	2.29	2.25	100	Bab-Hadiashar and Suter (WTLS2, 1998)	3.74	8.09	100
Ju et. al. (1996)	2.16	2.00	100	Bab-Hadiashar and Suter (WTLS6, 1998)	3.67	7.37	100
Memin and Perez (1998)	2.34	1.45	100	Bab-Hadiashar and Suter (WLS2, corrected)	3.02	5.98	100
Memin and Perez (2002)	1.58	1.21	100	Bab-Hadiashar and Suter (WLS2, corrected)	3.14	5.84	100
Lai and Vemuri(1998)	1.99	1.41	100	Bab-Hadiashar and Suter (WLS0, corrected) Bab-Hadiashar and Suter (WTLS2, corrected)	3.14	7.02	100
Bab-Hadiashar and Suter (WTLS2, 1998)	2.56	2.34	100				
Bab-Hadiashar and Suter (WTLS6, 1998)	1.97	1.96	100	Bab-Hadiashar and Suter (WTLS6, corrected)	3.20	6.59	100
Farneback2 (2000)	1.94	2.31	100	vbQMDPE2 (σ_0 =2.0, 17x17, m=30)	2.64	4.98	100
Farneback6 (2000)	1.40	2.57	100	vbQMDPE6 (σ ₀ =2.0, 17x17, m=30)	2.82	5.03	100
Farneback6 (2001)	1.14	2.14	100	vbQMDPE2 (σ ₀ =2.0, 25x25, m=30)	2.21	4.16	100
vbQMDPE2 (σ_0 =2.0, 17x17, m=30)	2.12	2.08	100	vbQMDPE6 (σ ₀ =2.0, 25x25, m=30)	2.29	4.06	100
vbQMDPE6 (σ ₀ =2.0, 17x17, m=30)	1.54	1.99	100				
vbQMDPE2 (σ_0 =2.0, 25x25, m=30)	2.27	2.07	100				
vbQMDPE6 (σ_0 =2.0, 25x25, m=30)	1.34	1.69	100				

Large Grant 2000-2

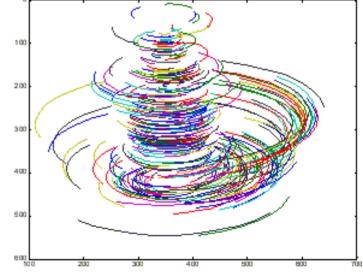


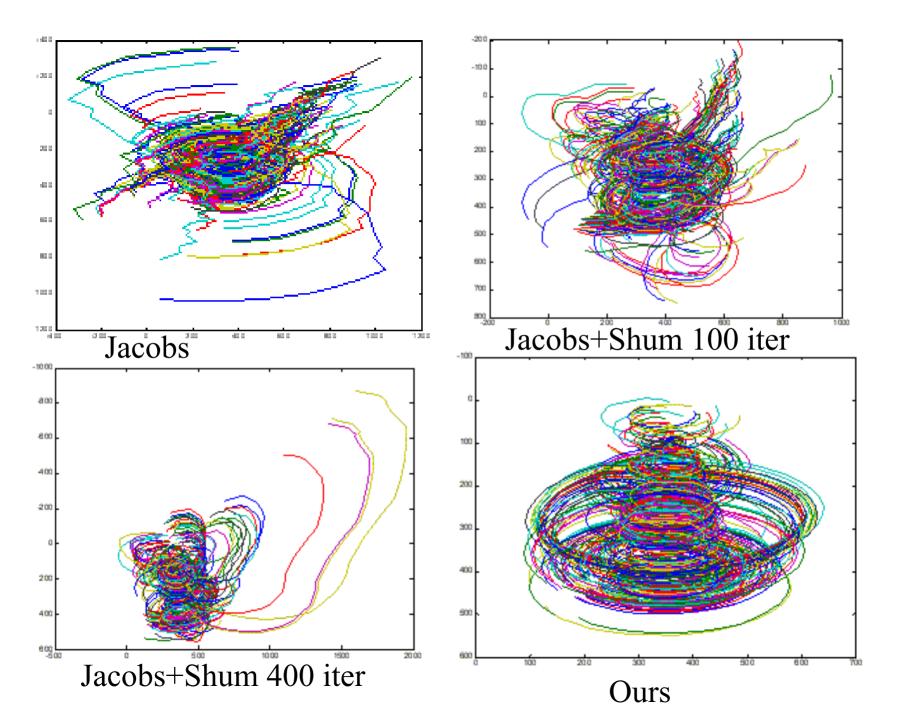
Imputation\Subspace Learning (Hallucination if you prefer)

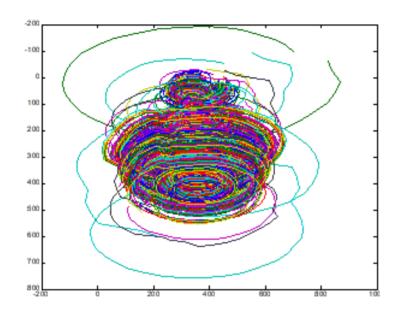
P. Chen and D. Suter. Recovering the missing components in a large noisy low-rank matrix: Application to SFM.

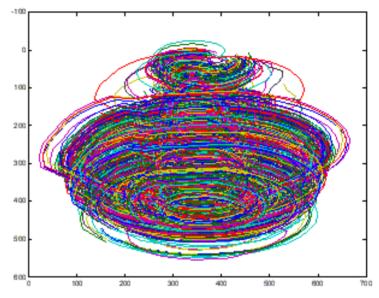
IEEE Trans. Pattern Analysis and Machine Inteliigence, page to appear, 2004.

What you start with:




Why?

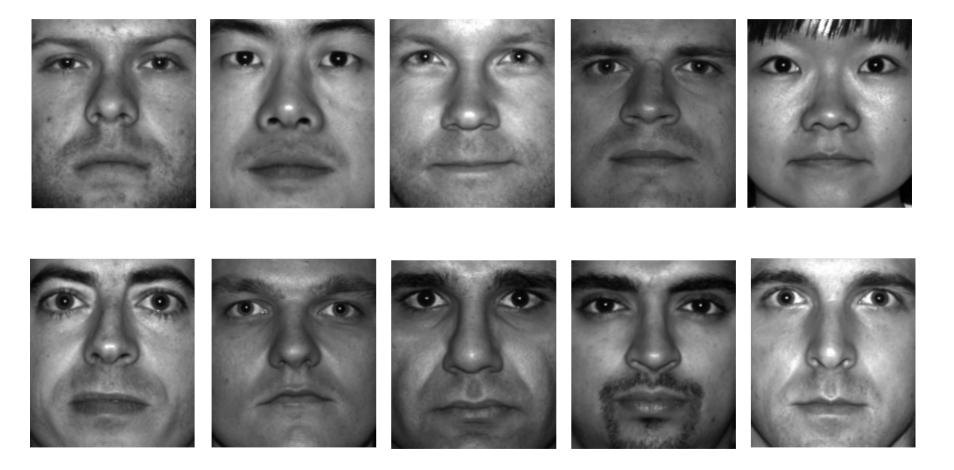

- Data Mining on line recommender systems
- DNA
- Etc.....
- Structure From Motion
- M=RS
- (M-location of features in images
- R camera motion S structure)
- Face Recognition other learning and classification tasks.



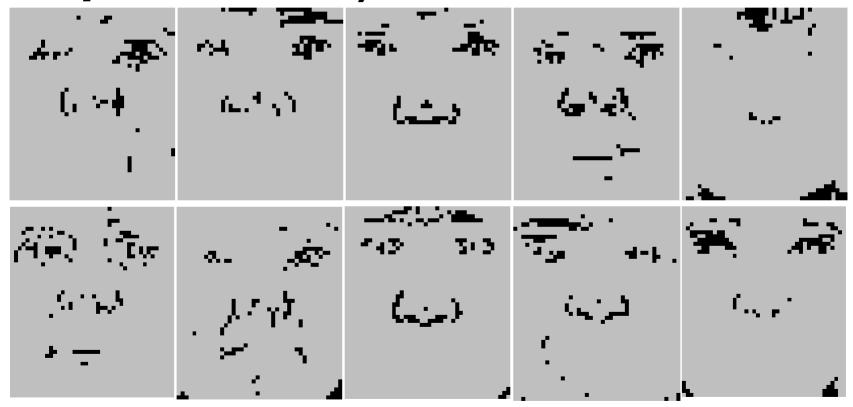
36 frames and 336 feature points – the most reliable by our measure

4983 points over 36 frames

2683 points (those tracked for more than 2 frames)


SUBSPACE-BASED FACE RECOGNITION:

and A NEW DISTANCE CRITERION FOR MATCHING


P. Chen and D. Suter. Subspace-based face recognition: outlier detection and a new distance criterion.

In Proceedings ACCV2004, pages 830-835, 2004.

Yale B face database

Outlier detection (Iterative reweighted least square: IRLS)

7D eigenimages

Subsets 1-5

Comparison of the error classification rate (%) on Yale-B face database

Method	Subset 1-3	Subset 4	Subset 5
Linear subspace [9]	0	15	/
Cones-attached [9]	0	8.6	/
Cones-cast [9]	0	0	/
9PL [14]	0	2.8(5.6)	/
Proposed	0	0	7.9