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A wireless sensor network with randomly deployed nodes can be used to provide an irregular

sampling of a physical field of interest. We assume that a sink node collects the data gathered

by the sensors and uses a linear filter for the reconstruction of a bandlimited scalar field defined

over a d -dimensional domain. Sensors’ locations are assumed to be known at the sink node, up

to a certain position error. We then take the mean square error (MSE) of the reconstructed field

as performance metric, and evaluate the effect of both uniform and quasi-equally spaced sensor

layouts on the quality of the reconstructed field. We define a parameter that provides a measure

of the regularity of the sensors deployment, and, through asymptotic analysis, we derive the MSE

in the case of different sensor spatial distributions. For two of them, an approximate closed form

expression is obtained. We validate our analysis through numerical results, and we show that an

excellent match exists between analysis and simulation even for a small number of sensors.

Categories and Subject Descriptors: C.4 [Performance of Systems]: Performance attributes; G.1.0

[Numerical Analysis]: General; G.1.2 [Numerical Analysis]: Approximation

General Terms: Design, Performance, Theory

Additional Key Words and Phrases: Sensor networks, irregular sampling, signal reconstruction,

performance evaluation

ACM Reference Format:
Nordio, A., Chiasserini, C.-F., and Viterbo, E. 2010. The impact of quasi-equally spaced sensor

topologies on signal reconstruction. ACM Trans. Sensor Netw. 6, 2, Article 11 (February 2010),

31 pages. DOI = 10.1145/1689239.1689241 http://doi.acm.org/10.1145/1689239.1689241

This article is an extended version of the work presented at the Poster Session of IPSN 2007.

This work was supported partially by the Regione Piemonte (Italy) through the VICSUM project

and partially by the European Commission in the framework of the FP7 Network of Excellence in

Wireless COMmunications NEWCOM++ (contract n. 216715).

Authors’ addresses: A. Nordio and C.-F. Chiasserini, Dipartimento di Elettronica, Politec-

nico di Torino, C. Duca degli Abruzzi 24, 10129 Torino, Italy, email: {alessandro.nordio,

carla.chiasserini}@polito.it; E. Viterbo, DEIS—Università della Calabria, Via P. Bucci, Cubo 42C,
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1. INTRODUCTION

Irregular sampling theory is concerned with the problem of recovering a ban-
dlimited signal from a sequence of samples, which may be taken in an irregular
way. In this context, several reconstruction algorithms have been proposed in
the literature (see e.g., Feichtinger et al. [1995]) and have found application in
a variety of fields, such as digital medical imaging [Strohmer 1993; Strohmer
et al. 1996], geophysics [Rauth and Strohmer 1997], weather forecast [Daley
1991], astronomy, and oceanography [Akyildiz et al. 2002].

Irregular sampling finds application also in sensor networks, where nodes
sample a physical field, like air temperature, light intensity, pollution levels or
rain falls. Indeed, in general, sensors are not regularly deployed in the area
of interest and, thus, the physical field is not regularly sampled. Sensors re-
port the data to a common processing unit (or sink node), which is in charge
of reconstructing the sensed field. If the field is bandlimited, then an estimate
of the discrete spectrum can be provided, although high sampling irregulari-
ties typically result in a degradation of the reconstructed signal. The work in
Ganesan et al. [2004] investigates this issue showing how irregular spatio-
temporal sampling affects the performance of sensor networks. Other inter-
esting studies can be found in Zhao et al. [2006] and Early and Long [2001],
just to name a few, which address the perturbations of regular sampling in
shift-invariant spaces [Zhao et al. 2006] and the reconstruction of irregularly
sampled images in presence of measure noise [Early and Long 2001].

In this work, we focus on wireless sensor networks and investigate a re-
construction technique that follows the work by Feichtinger et al. [1995]. We
assume that sensors are randomly deployed on a d -dimensional domain (in the
practice, d = 1, . . . , 4), and that their locations are known at the sink node up
to a certain position error. Note that this is often the case when the sensors po-
sitions are estimated through a localization technique [Moore et al. 2004; Liu
et al. 2006]. We highlight that the random deployment of the sensors and the
imperfect knowledge of their positions at the sink are totally separate issues;
indeed, the latter only depends on the accuracy of the localization estimation
technique. We consider that the field samples are corrupted by additive noise,
due to quantization, round-off errors or poor quality of the sensing devices.
Furthermore, we assume that samples are transferred to the sink without suf-
fering losses, that is, we do not consider the effects of the network dynamics,
such as packet loss, network congestion, or time varying channels, on the mes-
sage transfer.

Our goal is to evaluate the performance of the proposed reconstruction tech-
nique in the presence of quasi-equally spaced sensor layouts, that is, when
the random distribution of the sensors over the d -dimensional domain is such
that the sensors locations are very close to those obtained with an equally
spaced deployment in each dimension. The motivation for considering such
network topologies is that, typically, terrain conditions and deployment practi-
cality make regular sensors placement unfeasible. For the sake of comparison,
we also study the case of sensors randomly distributed in the network area with
a uniform distribution.
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Our main contributions are as follows.

—We model the sampling system represented by the sensor network, when
randomly deployed nodes sense a scalar field defined over a d -dimensional
domain.

—Through asymptotic analysis, we derive the mean square error (MSE) on the
reconstructed signal—a parameter commonly used to measure the accuracy
of estimates. The MSE is obtained as a function of the network characteristics
so as to evaluate the impact of different (quasi-equally spaced) sensor layouts
on the quality of the field estimate.

—We introduce the parameter τ , which provides a measure of the regularity
of the sensor layout (i.e., of the field sampling) and we show the analytic
derivation of τ for the network topologies under study.

—We find an approximate, closed form expression of the MSE for the sensor
distributions under study, which proves to be very tight.

We highlight that our results play a key role in the design of sensor net-
works and that very few works have analytically studied the impact of random
sensor layouts on the field reconstruction. This article and our previous work
[Nordio et al. 2008] have a common background: both consider the reconstruc-
tion of a physical field sampled by a sensor network whose nodes, or sensors,
are randomly deployed. In particular, in Nordio et al. [2008], we studied the
performance of reconstruction techniques, in terms of MSE when various types
of linear filters are employed to reconstruct the field from the irregularly spaced
noisy samples provided by the network. In Nordio et al. [2008], sensors were con-
sidered to be randomly deployed with uniform distribution in the 1-dimensional
domain [−1/2, 1/2) and subject to unpredictable motion.

Here, instead, we evaluate the performance of one reconstruction technique
based on linear filtering (i.e., the LMMSE filter providing the best performance,
according to Nordio et al. [2008]) in the scenario where sensors are stationary
and quasi-equally spaced over a d -dimensional domain. We also highlight that
making different assumptions on the sensors deployment leads to a new math-
ematical derivation of the system performance with respect to Nordio et al.
[2008].

The rest of the article is organized as follows. Section 2 reviews some related
work. Section 3 introduces the system model and our performance metric; it also
recalls some details on the field reconstruction technique. In Section 4, we in-
troduce and describe the network topology distributions under study. Section 5
presents the asymptotic analysis of the system performance, and validates the
analytical results through numerical simulations. Finally, Section 6 concludes
the article.

2. RELATED WORK

Relevant to our work is the literature on spectral analysis where, however,
most of the works deal with regularly sampled signals (see e.g., Stoica and
Moses [2000] and references therein). An excellent guide to irregular sampling
is Marvasti [2001], which covers a large number of techniques, algorithm, and
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applications. Reconstruction techniques for irregularly sampled signals include
linear [Feichtinger et al. 1995] and non-linear [Rauhut 2007] methods, iterative
algorithms [Feichtinger and Gröchenig 1993], and interpolation, just to name a
few. In particular, in Feichtinger and Gröchenig [1993] provide an error analysis
of an iterative reconstruction algorithm taking into account round-off errors,
jitters, truncation errors and aliasing. From the theoretical point of view, some
theoretical works on random sampling of trigonometric polynomials can be
found in Rauhut [2007], while, in the field of learning theory, an interesting
work is presented in Smale and Zhou [2004]. Nevertheless, the reconstruction
of non-equally spaced sampled signals is still far from being fully understood.

In the context of sensor networks, the field reconstruction at the sink node
with spatial and temporal correlation among sensor measures is studied in
Cristescu and Vetterli [2005], Sung et al. [2005], Vuran et al. [2004], and Rachlin
et al. [2005]. In particular, in Rachlin et al. [2005] the observed field is a discrete
vector of target positions and sensor observations are dependent. By modeling
the sensor network as a channel encoder and exploiting some concepts from
coding theory, the network capacity, defined as the maximum ratio of target
positions to number of sensors, is studied as a function of noise, sensing function
and sensor connections. The paper by Dong et al. [2006] considers a dense
sensor network where a MAC protocol is responsible to collect samples from
network nodes. The work analyzes the impact of deterministic and random data
collection strategies on the quality of field reconstruction. As a performance
measure, the maximum of the reconstruction square error over the sensed field
is employed, as opposed to our work where the mean square error is considered.
Also, in Dong et al. [2006], the field is a Gaussian random process, the exact
sensor locations are known and the sink always receives a sufficiently large
number of samples.

The problem of reconstructing a band-limited signal from an irregular set of
samples at unknown locations is addressed in Marziliano and Vetterli [2000].
There, the field is sampled with unknown irregularly spaced sample locations.
Several types of irregular sample sets are considered, always with locations
randomly chosen over a discrete equally-spaced domain. Different methods for
reconstructing the signal and estimating the sample locations are proposed,
and the conditions for which there exist multiple solutions or a unique solu-
tion are discussed. The study in Marziliano and Vetterli [2000] also considers
the case where sample locations are affected by jitter. Note that, differently
from Marziliano and Vetterli [2000], we consider that the field varies over a
finite d -dimensional domain and that the field measurements are affected by
noise. Most importantly, we do not restrict the sample locations to a discrete
domain.

The work in Dogandži’c and Zhang [2005] presents a Bayesian framework
that accounts for sensor localization errors. The algorithms they propose are
robust to these errors and allow to estimate the parameters of a partly linear
signal over a bidimensional area where nodes are uniformly distributed. In
Taylor et al. [2006], instead, a Bayesian filter is used to provide probabilistic
on-line estimate of both sensor locations and target tracking. Finally, we point
out that the problem of uncertain sensor locations is related to the problem
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of jittered sampling in the spectral analysis literature, which has been inves-
tigated in both the cases of regular and irregular sampling (see e.g., Liu and
Stanley [1965]).

To summarize, the main differences between our work and the results that
are available in the spectral analysis literature are the following:

(i) the analysis of the asymptotic MSE on a signal that varies over a con-
tinuous d -dimensional domain and is reconstructed from randomly (but
quasi-equally spaced) samples,

(ii) the application of results from the theory of random matrices to the field
reconstruction problem,

(iii) the focus on a Bayesian model for the (random) sensor locations, as op-
posed to the frequentist model of deterministic unknown locations that
one encounters more commonly in the spectral analysis literature.

Finally, we would like to highlight the differences between this article and
the work in Nordio et al. [2008]. In Nordio et al. [2008], we studied the recon-
struction of a physical field over a unidimensional domain, sampled by a sensor
network with uniformly distributed nodes and using different linear filters.
Note that, although this article and Nordio et al. [2008] share a common back-
ground and employ similar mathematical tools, here we focus on the LMMSE
filter, which was shown in Nordio et al. [2008] to provide the best performance,
and consider different spatial sensor distributions, that is, quasi-equally spaced
deployments over a d -dimensional domain. The different assumptions we make
in this work lead to novel mathematical derivations and results. More specif-
ically, with respect to Nordio et al. [2008], we derive a new expression for the
reconstruction MSE (due to the quasi-equally spaced deployments), a measure
of the sensor deployment regularity and its impact on the MSE performance,
and a tight closed form approximation for the MSE.

3. PRELIMINARIES

Below, we first present our notations, the system model and the assumptions
we make. Then, we introduce the performance metric and the reconstruction
technique adopted in this work.

3.1 Notations

Column vectors are denoted by bold lowercase letters, while matrices are de-
noted by bold upper case letters. The (�, �′) entry of the generic matrix Z is
denoted by (Z)�,�′ . The n × n identity matrix is denoted by In. (·)T is the trans-
pose operator, while (·)† is the conjugate transpose operator. We denote by f x(z)
the probability density function (pdf) of the generic random variable x, and by

E[·] the average operator.

3.2 System Model

Let us consider a field defined over a d -dimensional domain. A physical field is
approximately bandlimited and, when observed over a finite interval, it admits
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an infinite Fourier series expansion. However, one can truncate the Fourier
series so as to consider only the non-negligible coefficients. Let us denote by
M the largest index in the truncated sum; this represents the approximate
one-sided bandwidth of the field.

We therefore represent the field, s(x), by using 2M +1 harmonics per dimen-
sion as

s(x) = 1√
(2M + 1)d

∑
�

aν(�)e
j2π�Tx

where � = [�1, . . . , �d ]T is a vector of integers with �m = −M , . . . , M . The term∑
� represents a d -dimensional sum, and the function

ν(�) =
d∑

m=1

(2M + 1)m−1�m,

maps the vector � onto a scalar index. Notice that −N ≤ ν(�) ≤ +N , and that

N = (2M + 1)d − 1

2

The field is observed within the hypercube H = {x | x ∈ [−1/2, 1/2)d }
and r samples taken by sensors placed at positions {x1, . . . , xr}, with xq =
[x1,q , . . . , xd ,q]T ∈ H and q = 1, . . . , r, are available at the sink node. Notice
that this assumption reflects the case where a set of sensors send to the sink
node a data message every “report period” and, at each report period, the sink
reconstructs the signal from the received samples. Given a report period, we
therefore assume that r measures are delivered to the sink, and we do not
consider the effects of the network dynamics, such as packet loss, network con-
gestion, or time varying channels, on the message transfer.

Let s = [s1, . . . , sr ]T, sq = s(xq), the values of the r field samples received
at the sink. The field discrete spectrum is denoted by the random vector a =
[a−N , . . . , a+N ]T, and we assume E[aa†] = σ 2

a I(2M+1)d . Furthermore, we define β

as the ratio of the double-sided bandwidth of the field to the number of sensors:

β = (2M + 1)d

r

Notice that for equally spaced sensors, the sampling theorem is satisfied for
β ≤ 1. We therefore limit our analysis to the range 0 < β ≤ 1.

We collect the sampling positions in the columns of the d ×r matrix X, given
by X = [x1, . . . , xr ]. Following [Feichtinger et al. 1995], the values of the field
at positions x1, . . . , xr are given by s = G†

Xa where GX is the (2M + 1)d × r
matrix defined as:

(GX)ν(�),q = 1√
(2M + 1)d

e−j2π�Txq (1)

for q = 1, . . . , r. The coefficient 1/
√

(2M + 1)d is a normalization factor. As
indicated by the subscript, the matrix GX is a function of the matrix X.
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When the measures p, provided by the sensors, are affected by noise, we can
write:

p = s + n = G†
Xa + n (2)

where the noise is represented by the size r, zero-mean random vector n, with
covariance matrix E[nn†] = σ 2

n Ir .
We define the signal-to-noise ratio on the measure as:

SNRm
�=σ 2

a

σ 2
n

.

For simplicity, in the following, we use the parameter α, defined as:

α = 1

SNRm

Note that, if not available, SNRm can be obtained through the unbiased
estimator proposed in Kobayashi et al. [2001, eq. (6)] as SNRm =
1
r

∑r
q=1 |pq|2/σ 2

n − 1, where σ 2
n is estimated based on the sensor node in use.

In Section 5.1, we show that the proposed system is very robust to mismatches
in the SNRm estimation and that the degradation in the performance due to
such mismatch is negligible.

Measures p are sent to the sink node, whose task is to provide an accu-
rate field reconstruction, that is, an estimate of the field value for any generic
location in hypercube H. Data transmissions between sensors and sink node
are considered to be error free. We assume that the sink does not have perfect
knowledge of the network topology and that an estimate of the sensor positions
is given by

X̂ = X + Δ,

where the position error is denoted by the d × r matrix Δ = [δ1, . . . , δr ]. The
entries of the matrix Δ, δm,q , are modeled as independent and identically dis-
tributed, zero-mean random variables with variance σ 2

δ and pdf fδ(z), such that
fδ(z) = fδ(−z). The columns of the matrix Δ and the random vectors n and a
are assumed to be mutually independent. Note that our problem differs from
the well known problem of jittered sampling (see e.g., Liu and Stanley [1965]),
since we deal with irregular sample locations.

3.3 Performance Metric and Reconstruction Techniques

The task of the reconstruction algorithm is to compute an estimate ŝ(x) of the
field s(x), or, equivalently, an estimate â of the spectrum a. Given â, the field
estimates ŝ(x) for any location x can be obtained as

ŝ(x) = 1√
(2M + 1)d

∑
�

âν(�)e
j2π�Tx.

Thus, a high-quality field reconstruction corresponds to an accurate estimate
of a. A parameter commonly used to measure the accuracy of estimates is the
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mean square error. In our case, the MSE on the field spectrum estimate is
defined as:

MSEX =
∫
H

∣∣s(x) − ŝ(x)
∣∣2 dx =

E
a,n,Δ

[‖â − a‖2
]

(2M + 1)d
, (3)

where the operator E[·] averages with respect to the subscripted random vec-
tors. The MSE, as in (3), depends on the sensing positions X and provides a
measure of the overall field reconstruction quality.

For models such as (2), various estimation techniques based on linear filter-
ing can be used, and their performances have been widely investigated in the
literature (see e.g., Kay [1993]). In general, the idea is to employ a suitable filter
B such that the estimate of the field spectrum is given by the linear operation

â = B†p, (4)

where B is an r × (2M + 1)d matrix.
Assuming SNRm known at the sink, we focus on the filter providing the best

performance in terms of MSE, that is, the linear minimum MSE (LMMSE)
filter,1 which, in our case, is given by Kay [1993]:

B = βG†
X

(
TX + αβI

)−1
(5)

where the (2M + 1)d × (2M + 1)d matrix TX = βGXG†
X is Block Toeplitz and

Hermitian, with

(
TX

)
ν(�),ν(�′) = 1

r

r∑
q=1

e−j2π (�−�′)Txq

Notice that (5) requires the knowledge of X, which is not available at the sink.
We then replace it by its estimate X̂, obtaining a suboptimal signal reconstruc-
tion. The employed filter is given by:

B = βG†
X̂
(TX̂ + αβI)−1 (6)

Here, the matrix GX̂ is defined as in (1), where xq is replaced by x̂q , and

TX̂ = βGX̂G†
X̂
. Notice that the reconstruction technique we adopt is condition-

ally linear, that is, it is linear once the position estimates are given.
From now on, for the sake of notation simplicity, we remove the subscripts

X and X̂ and we define G �= GX, Ĝ �= GX̂, T �= TX, T̂ �= TX̂.

1Although the following analysis is based on the LMMSE filter, it can be easily generalized to any

linear filter.
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Substituting (2) and (4) in (3), after some algebra, the MSE can be written
as:

MSEX =
E

a,n,Δ
[‖B†(G†a + n) − a‖2]

(2M + 1)d

= σ 2
a

(2M + 1)d
Tr

{
β2

E
Δ

[
GĜ†(T̂ + αβI)−2ĜG†

]
+ αβ E

Δ

[
T̂(T̂ + αβI)−2

]
+ I − 2β �

{
E
Δ

[
GĜ†(T̂ + αβI)−1

]}}
, (7)

where Tr{·} and �{·} are the trace and real-part operators, respectively.
The above expression for the MSE will be used to derive our asymptotic
analysis.

The main parameters introduced in this section are summarized in
Appendix A.

4. RANDOM TOPOLOGY DISTRIBUTION

Equation (7) clearly is a function of a deterministic network topology defined
by X. From now on, we treat the matrix X as random, that is, we assume the
topology to be random, with independent positions xm,q = (X)m,q following the

pdf f xm,q (z), m = 1, . . . , d , q = 1, . . . , r. Also, let us denote by X̄ = E[X] the
average value of X.

In particular, we assume that the sensors, from which the field samples are
received at the sink node, are quasi-equally spaced on a d -dimensional domain,
that is, they have jittered locations around the vertices of a d -dimensional reg-
ular grid topology.2 A more formal definition can be given as follows. Let us

denote by r ′ = r
1
d the number of samples per spatial dimension. We char-

acterize the class of random topologies under study through the following
properties:

— X − X̄ = 1
r ′ X̃, where (X̃)m,q = x̃m,q (m = 1, . . . , d , q = 1, . . . , r) are random

variables;

— each column x̄q of X̄ (q = 1, . . . , r) corresponds to a vertex of a d -dimensional
regular grid in in H;

— the random variables x̃m,q are distributed with pdf f x̃m,q (z), which has zero
mean and does not depend on m or q .

Note that, by defining the vector q′ = [q′
1, . . . , q′

d ], with q′
m = 1, . . . , r ′, and the

mapping function: μ(q′) = ∑d
m=1(r ′)m−1q′

m, we can write the mean value of xm,q

as:

x̄m,q = x̄m,μ(q′) = q′
m − 1/2

r ′ − 1

2

that is, as equally spaced averages on [−1/2, +1/2).

2Recall that here we do not address issues related to the data transfer from the sensors to the sink

node.
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− 1
2 + 1

20 x̄q

x̄q − 1
2r

x̄q + 1
2r

Gaussian, η2

x

Uniform-i

Uniform

Fig. 1. Qualitative representations of the distributions Uniform, Uniform-i and Gaussian in a

unidimensional scenario (d = 1).

As case study, we consider the following topology distributions:

—Uniform-i: Where xm,q = x̄m,q + x̃m,q/r ′ is uniformly distributed in the inter-
val [x̄m,q − 1/2r ′, x̄m,q + 1/2r ′). The variable x̃m,q is uniformly distributed in
[−1/2, 1/2) and has variance 1/12.

—Gaussian: Where xm,q = x̄m,q + x̃m,q/r ′ and x̃m,q is Gaussian distributed with
zero mean and variance η2.

For the sake of comparison, we also consider the Uniform case, which is widely
used in the literature and assumes that each sensor is deployed with uniform
distribution over the entire sampling region, that is,

—Uniform: Where E[X] = 0 and xm,q has zero mean and is uniformly dis-
tributed in [−1/2, 1/2).

A graphical representation of the above distributions is presented in Figure 1,
for d = 1. The figure shows the distributions of the q-th sensor position, for the
three mentioned topologies. The mean of the Gaussian and Uniform-i distribu-
tions is given by x̄q , while the Uniform distribution has zero mean and support
in [−1/2, 1/2). The Uniform-i distribution has support in [x̄q − 1/2r, x̄q − 1/2r).

Note that, one of the reasons for analyzing the Uniform distribution, is that,
among all distributions satisfying the above properties, it is characterized by
the highest variance; thus, as will be clear in Section 5, it represents a worst
case. Instead, in our scenario, Uniform-i and Gaussian reflect the attempt to
deploy sensors at equally-spaced positions X̄, with X̃/r ′ representing the deploy-
ment error, while X̃ is the deployment error normalized to the average sensor
separation (per dimension), 1/r ′. Notice that the support of the Gaussian pdf is
infinite and, thus, with non-zero probability some of the samples x fall outside
the region H. In principle, such values should be discarded. In practice, in our
work, they are considered to be valid sampling points by wrapping them around
the region [−1/2, 1/2)d . Note that, when the variance η2 is small, the effect of
such operation is negligible.
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In the following, the three distributions are compared in terms of the MSE
obtained on the reconstructed field. Clearly, both the noise n and the position
error Δ affect the quality of the reconstructed field. High reconstruction quality
is expected when the standard deviation σδ is small compared to the average
sample separation. We therefore introduce the parameter

ρ = σδ

1/r ′

as a measure of the sampling uncertainty on the network topology at the sink.
When ρ = 0 (i.e., σδ = 0), we have perfect knowledge on the network topology.

Notice that the error Δ in the knowledge of the node positions appears when
node localization techniques are employed to estimate the sensors positions.
As an example, an iterative localization technique is proposed in Liu et al.
[2006], where network topologies very similar to those studied in this article
are considered and some values for the error variance σδ are provided.

5. ASYMPTOTIC ANALYSIS OF THE MSE OF THE PROPOSED
RECONSTRUCTION TECHNIQUE

A simple and effective tool for evaluating the performance of large finite systems
is asymptotic analysis [de Bruijn 1958]. In our case, we let the number of field
harmonics and the number r of sensors grow to infinity, while the ratio β =
(2M + 1)d/r is kept constant. The numerical results provided in this section
show the validity of our asymptotic analysis, even for small values of M and r.

As performance metric, we consider the asymptotic MSE, defined as:

MSE∞ = lim
M ,r→+∞

β

E
X

[MSEX]

σ 2
a

Also, for simplicity of notation, we introduce the linear functional [Tulino and
Verdú 2004]

φ(Y) = lim
n→+∞

1

n
Tr

{
E[Y]

}
, (8)

where the argument Y is an n × n random square matrix and the operator

E[·] averages over the random variables in Y. The functional φ(·) has some
interesting properties; here, we report only those we use in our analysis:

φ(I) = 1, φ(g (Y)) = E[g ( yi)]; φ(a1Y1 + a2Y2) = a1φ(Y1) + a2φ(Y2), (9)

where yi is the random variable distributed as the asymptotic eigenvalues of Y,
g ( y) is an analytic function, defined in y > 0, and a1, a2 are scalars (see Tulino
and Verdú [2004] for further details). From (7) and using the above definitions,
we obtain:

MSE∞ = β2φ
(
GĜ†(T̂ + αβI

)−2ĜG†) + αβφ
(
T̂(T̂ + αβI

)−2
)

+ 1 − 2β � φ
(
GĜ†(T̂ + αβI

)−1)
. (10)

Looking at (10), we observe that the asymptotic MSE depends on the ratio
β of the number of field harmonics to the number of samples, on the sensor
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measures quality (SNRm) and on the sensor locations (through the matrices G
and T). Next, we analyze the cases where x follows the Uniform, Uniform-i and
Gaussian distributions.

5.1 The Uniform Topology Distribution

Here, we derive the expression of the asymptotic MSE when sensors are uni-
formly distributed on the d -dimensional domain. We start from (10) and apply
some results obtained on the matrices G and T. The final expression of the
MSE∞ allows us to make some important observations on the quality of the
reconstructed field, as a function of β, the SNRm and the uncertainty on the
sensor locations (ρ).

Let us first present the results on G and T that hold under the assumption
of Uniform distribution:

φ(T̂p) = φ(Tp) (11)

φ(GĜ†T̂p) = φ(ĜG†Tp) (12)

φ(GĜ†T̂pĜG†) = φ(ĜG†TpGĜ†), (13)

where p is a positive integer. The proofs are given in Appendix B. Moreover, in
Appendix C it is shown that:

E
Δ

[
Ĝ

]
= CG (14)

E
Δ

[Ĝ†Ĝ] = G†C†CG + θI, (15)

where θ = 1 − Tr{C†C}/(2M + 1)d and the (2M + 1)d × (2M + 1)d diagonal
matrix C has entries given by: (C)ν(�),ν(�) = ∏d

m=1 Cδ(−j2π�m) with Cδ(s) =∫ +∞
−∞ exp(sz) fδ(z) dz being the characteristic function of the random variable δ.

From (11), it follows that, if the function g (T̂) admits a power series in the
variable T̂ with expansion coefficients ci (i.e., g (T̂) = ∑∞

i=0 ciT̂i), then, thanks

to the linearity of the functional φ(·), we have: φ(g (T̂)) = φ(g (T)). There-
fore, by defining g (T̂) = T̂(T̂ + αI)−2, the second term in (10) simplifies to
αφ(T(T + αI)−2). Similarly, for the first and fourth term in (10), we obtain:
φ(GĜ† g (T̂)ĜG†) = φ(ĜG† g (T)GĜ†) and φ(GĜ† g (T̂)) = φ(ĜG† g (T)), respec-
tively. Hence, the asymptotic MSE reduces to

MSE∞ = β2φ(ĜG†(T + αβI)−2GĜ†) + αβφ(T(T + αβI)−2)

+1 − 2β � φ(ĜG†(T + αβI)−1). (16)

As shown in Appendix D, by applying to the first term in (16) the definition of
φ(·), the properties of the trace operator, and (15), we obtain:

β2φ
(
ĜG†(T + αβI)−2GĜ†

)
= φ

(
C†CT(T + αβI)−2T

)
+βφ

(
θT(T + αβI)−2

)
. (17)
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Similarly, using (14), the fourth term of (16) can be rewritten as:

−2β �φ
(
ĜG†(T + αβI)−1

)
= −2β �φ

(
E
Δ

[Ĝ]G†(T + αβI)−1

)
= −2β �φ

(
CGG†(T + αβI)−1

)
= −2�φ

(
CT(T + αβI)−1

)
.

Considering all terms together, we have:

MSE∞ = φ
(
C†CT(T + αβI)−2T

)
+ βφ

(
(θ + α)T(T + αβI)−2

)
+1 − 2� φ

(
CT(T + αβI)−1

)
.

Next, let us assume that C and T are asymptotically free matrices [Tulino
and Verdú 2004] (later in the paper, we will show the validity of such an as-
sumption by comparing analytical and simulation results). Then, φ(Cp1Tp2 ) =
φ(Cp1 )φ(Tp2 ) for any positive integers p1, p2. By using the properties of the
functional φ(·), the final expression of the asymptotic MSE becomes:

MSE∞ = φ
(
C†C

)
φ

(
T(T + αβI)−2T

)
+ βφ(θ + α)φ

(
T(T + αβI)−2

)
+1 − 2�

{
φ(C)φ

(
T(T + αβI)−1

)}
= φ(C†C) E

[
λ2

(λ + αβ)2

]
+ β

(
α + 1 − φ(C†C)

)
E

[
λ

(λ + αβ)2

]
+1 − 2φ(�{C}) E

[
λ

λ + αβ

]
, (18)

where φ(θ ) = 1 − φ(C†C) and λ > 0 is a random variable with pdf fλ(z, β, d ),
distributed as the asymptotic eigenvalues3 of the matrix T.

Notice that the relationship between T and λ is expressed through the func-
tional φ(·), as in (8); thus, the pdf of λ is strictly related to the statistical be-
havior of T. In (18) we applied the relation φ(g (T)) = E[g (λ)] (see (9)), for
g (x) = x2/(x + αβ)2, g (x) = x/(x + αβ)2, and g (x) = x/(x + αβ), respectively.

Moreover, looking at (18), we make the following remarks.

(i) Equation (18) shows how the distribution of the random variable λ, the
noise level α and the imperfect knowledge on the network topology at the
sink (the latter represented by the matrix C) affect the MSE. The distribu-
tion of λ, which is closely related to the matrix T through the functional φ(·),
depends on the parameter β and on the dimension d of the field domain.

(ii) For the computation of the averages in (18), a closed form expression of
fλ(z, β, d ) would be required. To the best of our knowledge such expression

3Given an n×n Hermitian matrix, the empirical cumulative distribution function of its eigenvalues

is defined as F (n)
λ (z) = 1

n
∑n

i=1 1{λi ≤ z} where λ1, . . . , λn are the eigenvalues and 1{·} is the indicator

function. If F (n)
λ (z) converges as n → ∞, then the the limit is denoted by Fλ(z). The corresponding

asymptotic pdf is denoted by fλ(z).
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Fig. 2. Histograms of fλ(z, β, 2) for different values of β, M = 6 and bin width = 0.1.

is still unknown, although [Nordio et al. 2006] provides an algorithm to
evaluate the moments of λ in closed form. We compute the averages in (18)
numerically.

(iii) If ρ = 0, then (18) reduces to E

[
αβ/(λ + αβ)

]
.

In the rest of this section, we present some results based on the evaluation
of (18) for d = 2. Indeed, as noted above, the asymptotic MSE in (18) is a
function of the parameter d , in fλ(z, β, d ). Similar results can be obtained for
different values of d .

Figure 2 shows the histograms of fλ(z, β, d ) for the Uniform topology distri-
bution, d = 2, and different values of β. Note that, as β increases, the number of
very small eigenvalues increases. This behavior is due to the fact that, with fixed
r, the number of rows of G increases with β and, by consequence, the probabil-
ity of independent rows decreases. It follows that for large β the probability of
zero or close to zero eigenvalues increases [Nordio et al. 2006]. The histograms
have been obtained by computing the eigenvalues of 200 realizations of the
matrix T, with M = 6. Although M = 6 is not a very large value, we verified
that it is already sufficient to accurately estimate the asymptotic eigenvalue
distribution. Observe that, for β = 0 (i.e., r → ∞, while keeping M constant),
the matrix T tends to the identity matrix and, thus, fλ(z, 0, d ) = δD(z − 1) with
δD(·) being the Dirac’s delta.

As for the matrix C, we observe that, when the error δ is Gaussian distributed
with zero mean and variance σ 2

δ , its characteristic function, Cδ(s), is given
by:

Cδ(s) = exp
(
σ 2

δ s2/2
)
.
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Fig. 3. Uniform distribution: MSE∞ and MSE as functions of SNRm [dB] and parameterized by

ρ, with β = 0.2 and d = 2.

In this case, the matrix C is real and, for a constant ρ = σδr ′ and for any integer
p, we have:

φ(Cp) =
⎛⎝ 1√

2πβ
2
d ρ2 p

erf

(
πβ

1
d ρ

√
p
2

)⎞⎠d

. (19)

The derivation of (19) is reported in Appendix D. In particular, for ρ → +∞
(i.e., no knowledge on the network topology) φ(Cp) = 0, while for ρ = 0 (i.e.,
perfect knowledge on the topology) φ(Cp) = 1. Also, we have: limβ→0 φ(Cp) = 1.

Figure 3 shows the MSE obtained when the network has a Uniform topology
distribution and the LMMSE filter in (6) is employed. A Gaussian distribution
of the position error δ is assumed. The solid curves show the asymptotic mean
square error (MSE∞) and have been obtained by computing (18), averaging
over the eigenvalues of 200 realizations of the matrix T, with β = 0.2, d = 2,
and M = 6.

In the plot, the markers represent the empirical average MSE obtained by
generating 200 realizations of the measures p in (2), by computing (4), and by
averaging the square error ‖a− â‖2/(2M +1)d , with β = 0.2, d = 2, and M = 6.
The curves are parameterized by ρ. The plot also shows the asymptotic result
for the case ρ = 0.

Looking at the plot in Figure 3, we notice that, as expected, a better knowl-
edge on the network topology results in a lower MSE. Furthermore, the tight
match between asymptotic results and finite system simulation, even for small
values of M and r, confirms the validity of the asymptotic analysis as well as
of the assumption on asymptotic freeness. As a last remark, we mention that
very similar results have been obtained for any value of β.
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Fig. 4. MSE∞ for d = 2, β = 0.2, and ρ = 1/64, with mismatch in the SNRm estimation.

In Figure 3, we assumed a perfect knowledge of SNRm = 1/α. However, when
SNRm is unknown and has to be estimated, a mismatch between the estimated
and the true value of SNRm can degrade the system performance in terms
of MSE. By writing the estimated α as α̂ = εα, with ε being the mismatch

coefficient, the LMMSE filter B in (5) becomes, B = βG†
X

(
TX + εαβI

)−1
and

the expression of MSE∞ will change accordingly. In Figure 4, we show the
impact of the mismatch ε on the system performance, for d = 2, β = 0.2, and
ρ = 1/64. An overestimate of the SNRm (i.e., ε < 1) results in a degradation
of the performance for low values of SNRm. An underestimate of the SNRm

(i.e., ε > 1) results in a degradation of the MSE for low and moderate values
of SNRm. It should be noted, however, that even large mismatches (namely, of
one order of magnitude) do not severely affect the performance. We therefore
conclude that the system is extremely robust to estimation errors on SNRm.

5.2 The Uniform-i and Gaussian Topology Distributions

In the case of distributions other than Uniform, the expression of the asymptotic
MSE presented in (18) is no longer valid. Indeed, the results on the matrices
G and T (namely, equalities (11), (12), and (13)) do not apply. However, below
we show that, under certain conditions on ρ and β, the MSE in the case of
Uniform-i and Gaussian layouts can be approximated by (18).

As a first step, let us compute the closed form expression of φ(T̂2). When x
follows the Uniform distribution, from (11) we have φ(T̂2) = φ(T2) and Nordio
et al. [2006] φ(T̂2) = φ(T2) = 1 + β. In general, instead, when we deal with
quasi-equally spaced sensor layouts (as described in Section 4), we have:

φ(T2) = 1 + β − β

(∫
A

|Cx̃(j2πβ
1
d (z1 − z2))|2 dz1 dz2

)d

(20)

φ(T̂2) = 1 + β − β

(∫
A

|Cx̃(j2πβ
1
d (z1 − z2))|2|Cδ̃(j2πβ

1
d (z1 − z2))|2 dz1 dz2)

)d

,

, (21)
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where the set A is defined as A = {(z1, z2) ∈ R
2|z1, z2 ∈ [− 1

2
, 1

2
), z1 �= z2} and

δ̃ = δr ′ ∼ N (0, ρ2). The proof can be found in Appendix E.
Specifically, when x follows the Uniform-i distribution, the characteristic

functions Cx̃ , Cδ̃ are given by Cx̃(j2πβ
1
d z) = sinc(β

1
d z), and Cδ̃(j2πβ

1
d z) =

e−2π2β
2
d ρ2z2

. By using these expressions in (20) and (21), we obtain:

φ(T2) = 1 + β − β

(∫
A

sinc2
(
β

1
d (z1 − z2)

)
dz1 dz2

)d

φ(T̂2) = 1 + β − β

(∫
A

sinc2
(
β

1
d (z1 − z2)

)
e−4π2ρ2β

2
d (z1−z2)2

dz1 dz2

)d

.

Instead, when the entries of x follow the Gaussian distribution, the charac-

teristic function of x̃ becomes: Cx̃(j2πβ
1
d z) = e−2π2β

2
d η2z2

thus,

φ(T2) = 1 + β − β

(∫
A

e−4π2η2β
2
d (z1−z2)2

dz1 dz2

)d

φ(T̂2) = 1 + β − β

(∫
A

e−4π2β
2
d (η2+ρ2)(z1−z2)2

dz1 dz2

)d

.

As is evident by comparing (20) with (21), the approximation φ(T̂2) ≈
φ(T2) is tight when |Cδ̃(j2πβ

1
d (z1 − z2))|2 ≈ 1. More specifically, in the

case where δ is Gaussian distributed, the approximation is tight when

exp
(
−4π2β

2
d ρ2(z1 − z2)2

)
≈ 1, that is, for

ρ � 1/(2πβ
1
d ). (22)

We observe that, under this condition, also the other results derived for the
uniform sensor deployment can be applied, that is, the approximations φ(T̂p) ≈
φ(Tp), φ(GĜ†T̂p) ≈ φ(ĜG†Tp) and φ(GĜ†T̂pĜG†) ≈ φ(ĜG†TpGĜ†) are tight.

We therefore conclude that under the condition in (22) the asymptotic MSE in
the case of Uniform-i and Gaussian sensor layouts can be approximated by (18),
with the appropriate distribution of λ.

Figure 5 shows histograms of fλ(z, β, 2) for β = 0.2, 0.3, and 0.4, when the
entries of x follow the Uniform-i (solid lines) and Gaussian (dashed lines) dis-
tributions. The results have been obtained by computing the eigenvalues of
realizations of T, with M = 6; the bin width is 0.1. For the Gaussian distri-
bution, we set η2 = 1

12
so as to obtain the same variance as in the Uniform-i

case. The histogram of the two distributions of λ look very similar. They are
concentrated around z = 1 for low values of β. As β increases, the distribution
becomes more spread and the probability of small eigenvalues increases. How-
ever, while for β = 0.4 these distributions do not show a significant amount of
small eigenvalues, as depicted in Figure 2, the Uniform distribution shows a
significant fraction of eigenvalues close to zero already for β = 0.35. The rea-
son for such different behavior is that distributions Uniform-i and Gaussian
guarantee a more regular sensor deployment; recall that a perfectly regular
(equally spaced) node deployment results in T = I and fλ(z, β, d ) = δD(z − 1).
For example, a realization of X such that xm,q < 0, (m = 1, . . . , d , q = 1, . . . , r)
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Fig. 6. Uniform-i distribution: MSE∞ and MSE as functions of SNRm and for different values of

ρ, β = 0.2, and d = 2.

is likely to happen for the Uniform distribution, while it is impossible for the
Uniform-i distribution, and very unlikely in the case of Gaussian distribution.
Unfortunately, also for these simple network topologies a closed form expression
of fλ(z, β, d ) is unknown, and therefore (18) must be computed numerically.

Figure 6 shows the MSE obtained when the network topology follows the
Uniform-i distribution, in the case of perfect SNRm knowledge. We used the
same parameter setting as in Figure 3. Here, MSE∞ has been attained through
(18), which is an approximation of the true asymptotic MSE. As for Figure 3, the
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Fig. 7. MSE∞ achieved by the Uniform and Uniform-i distributions for β = 0.2, 0.4, 0.6, 0.8, ρ =
1/64, and d = 2.

markers represent the empirical MSE obtained by generating 200 realizations
of the measures p as in (2), by computing (4), and by averaging the square error
‖a − â‖2/(2M + 1)d .

Recall that the condition that guarantees a tight approximation is ρ �
1/(2πβ

1
d ), i.e., in our case: ρ � 0.36. Indeed, we observe that the match be-

tween the numerical evaluation of the MSE as in (3) and the results computed
through (18) is perfect for ρ = 1/64, 1/16, while the results are quite close for
higher ρ’s.

Figure 7 compares the MSE∞ achieved under the Uniform and Uniform-i
distributions, with a perfect SNRm knowledge, for ρ = 1/64 and various values
of β. The curves have been computed using (18) for both distributions, since

the condition ρ = 1/64 � 1/(2πβ
1
d ) is satisfied. In general, for any given β,

the Uniform-i distribution provides a lower MSE∞, especially for high values
of SNRm.

Figure 8 shows the MSE∞ achieved by the Gaussian topology distribution,
perfect SNRm knowledge, for β = 0.4, ρ = 1/64 [Liu et al. 2006], and η2 =
0, 1/12, 1, 10. For the same values of β and ρ, the Uniform-i distribution gives
very similar results to those obtained with the Gaussian distribution when
η2 = 1/12. As expected, lower values of η2 result in a more equally spaced
deployment and, thus, in a lower MSE∞. Note that η2 = 0 results in a perfectly
equally spaced deployment of the sensors. The floor shown by the MSE curve for
high SNRm is due to the imperfect knowledge of x, that is, to the variance of the
position error δ. Also, we observe that the difference between the performance
of an equally spaced deployment (η2 = 0) and the performance of a Gaussian
deployment with η2 = 1/12 is negligible. The above considerations hold for any
value of β.
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Below, we provide an example that shows how the results we obtained can
be used for the design of sensor networks.

Example . A network characterized by β = 0.4, ρ = 1/64, and SNRm =
30 dB is deployed by an airplane throwing sensors at equally spaced time
instants. The unpredictable effects of winds result in a non-perfectly equally-
spaced deployment on the ground. The distribution of the deployment error is
assumed to be Gaussian with parameter η2. We want to determine how accu-
rate the sensor deployment needs to be, that is, the maximum η2 for which the
network provides an MSE not larger than 2 · 10−3.

By looking at Figure 8, we observe that, for SNRm = 30 dB, η2 < 1/12 is
enough to provide the required MSE. It is interesting to notice that a perfectly
equally-spaced (and very expensive) deployment, that is, η2 = 0, does not pro-
vide an MSE lower than 10−3.

5.3 A Measure of Sensor Layout Regularity

Here, we introduce a new parameter, τ (0 ≤ τ ≤ 1), which provides a measure
of the regularity of the sensors deployment.

In general, we observe that a more equally spaced distribution results in a
lower variance of the eigenvalues of T, given by σ 2

λ = E[λ2] − E[λ]2 = φ(T2) −
φ(T)2. Since φ(T) = 1 for any distribution of x [Nordio et al. 2006], using (20)
we can write:

σ 2
λ = β − β

(∫
A

|Cx̃(j2πβ
1
d (z1 − z2))|2 dz1 dz2

)d

(23)

By defining τ = (
∫
A |Cx̃(j2πβ

1
d (z1 − z2))|2 dz1 dz2)d we have σ 2

λ = β(1 − τ ). Note
that a perfectly equally-spaced deployment is characterized by f x̃ = δD(z), that
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is, Cx̃(s) = 1, and, by consequence, τ = 1 and σ 2
λ = 0. For the Uniform distri-

bution, instead, we have τ = 0 and σ 2
λ = β [Nordio et al. 2006]. We therefore

expect that, given β and d , the more equally-spaced the sensor layout is, the
higher the value of τ . In our case study of Uniform-i layout, the parameter τ is
given by:

τ =
(
2 cos2(πβ

1
d ) − 2 + Ci(2πβ

1
d ) − ln(2πβ

1
d ) − γ + 2Si(2πβ

1
d )πβ

1
d

)d

π2dβ2

while for the Gaussian distribution we have:

τ =
(

erf(2πβ
1
d η)

2
√

πβ
1
d η

− 1 − exp(−4π2β
2
d η2)

4π2β
2
d η2

)d

The functions Ci(·) and Si(·), and the constant γ are the cosine integral, the sine
integral and the Euler-Mascheroni constant [Weisstein 2008], respectively. As
an example, for d = 2, β = 0.4 and η2 = 1/12 (i.e., Uniform-i and Gaussian
distributions with the same variance), we have τ = 0.673 for the Uniform-i and
τ = 0.684 for the Gaussian.

5.4 Closed Form Approximation for d = 2

In this section, we focus on the case d = 2, which is of great practical in-
terest, and derive a closed form approximation of (18) that holds for the Uni-
form distribution, as well as for the Uniform-i and Gaussian layouts under the
condition in (22). To obtain such an approximation, a closed form approximation
of fλ(z, β, d ) is required.

Figure 5 shows that, for the Uniform-i and Gaussian network topologies, the
shape of the empirical pdf of λ can be approximated by a parabolic pdf f p(z, β),
with mean μp and variance σ 2

p . To match the distribution of the eigenvalues

shown in Figure 5 with the parabolic pdf, we set σ 2
p = σ 2

λ and μp = E[λ] = 1.
Thus, we define f p(z, β) as

f p(z, β) = − 3
√

5

100 σ 3
λ

(
z2 − 2z + 1 − 5σ 2

λ

)
(24)

for 1 −
√

5σ 2
λ < z < 1 +

√
5σ 2

λ and 0 elsewhere. Moreover, we require that

1 −
√

5σ 2
λ > 0, that is, σ 2

λ < 1/5, in order to avoid that the support of f p(z, β)

lies on the negative z axis. Notice that the dependence of f p(z, β) on β is evident
from the expression of σ 2

λ in (23).
Figure 9 shows the histograms of fλ(z, β, 2) for the Uniform-i distribution

(solid lines) and its approximation given by the parabolic pdf (dashed lines), for
β = 0.2, 0.3 and 0.4. The bin width is 0.1.

Note, however, that our goal here is to find a closed form approximation of
the asymptotic MSE, we are therefore interested in assessing the approxima-
tion accuracy for the MSE rather than for the pdf. To compute the approximate
expression of the MSE∞, we use the parabolic pdf in (18), thus obtaining inte-
grals of the type

∫ zn

(z+αβ)m dz for m = 1, 2 and n = 1, 2, 3, 4. Such integrals have
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Fig. 9. Histogram of fλ(z, β, 2) and parabolic approximation, in the case of Uniform-i and β =
0.2, 0.3, 0.4.

a closed form expression, since they are computed over a finite domain and their
arguments are rational functions without poles in the integration domain. The
resulting expression of MSE∞ is quite complicate and is omitted here. However,
we point out that MSE∞ is an increasing function in α, and β, and a decreasing
function in the parameter τ . When the Gaussian topology is considered, MSE∞
also depends on the standard deviation η, through the expression of τ given in
Section 5.3.

For the Uniform-i distribution, Figure 10 compares the asymptotic MSE
given by the parabolic approximation, that is, λ distributed as in (24) (dashed
lines), and the MSE∞ given by (18) (points) with perfect SNRm knowledge, for
d = 2, ρ = 1/64, and different values of β. We observe an excellent match, for
all considered values of β and SNRm.

Similarly, Figure 11 compares the asymptotic MSE and its closed form
approximation for the case of Gaussian distribution. Here, we set: d = 2,
η2 = 1/12, β = 0.3, and ρ = 1/64. Again, we obtain an excellent match.

6. CONCLUSIONS

We considered a sensor network whose nodes sample a bandlimited scalar
field defined over a multidimensional domain. The field is then reconstructed
at a central controller by using a processing technique based on linear fil-
tering. We assumed that the transmission of the samples from the sensors
to the central controller is always successful and that the sensors locations
are randomly distributed over the observed area; in particular, we focused
on quasi-equally spaced layouts of the sensors. Furthermore, we assumed
the reconstruction algorithm to have imperfect knowledge on the network
topology.
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Fig. 10. Uniform-i distribution: MSE∞ given by (18) and its parabolic approximation, for d = 2,

ρ = 1/64 and β = 0.2, 0.3, 0.4, 0.5.
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Fig. 11. Gaussian distribution: MSE∞ given by (18) and its parabolic approximation, for d = 2,

β = 0.3, η2 = 1/12, and different values of ρ.

We showed via both analysis and simulation how the performance of the
reconstruction technique depends on the distribution of the sensors in the area
of interest. As case study, we considered three network topology distributions,
and we compared their performance in terms of the MSE on the reconstructed
field. We identified a parameter, τ , that provides a measure of the regularity of
the sensor deployment. Also, in the case of a bidimensional domain, we derived
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a simple analytical approximation of the MSE, which showed to be very tight
when compared to simulation results.

APPENDIXES

A. LIST OF PARAMETERS

r Number of samples delivered to the sink (or, number of sensors in the network)

M Approximate one-sided bandwidth per dimension of the field

d Dimension of the field domain

r ′ Number of samples per dimension

β Ratio of the double-sided bandwidth of the field to the number of sensors

α Inverse of the signal-to-noise ration on the sensor measures

Δ Matrix representing the estimation error on the sensor locations

ρ Measure of the uncertainty on the network topology

X Matrix collecting the sampling positions

a The field discrete spectrum

p Vector collecting the sensor measures

n Vector denoting the noise affecting the sensor measures

G (2M + 1)d × r matrix with Gν(�),q = 1√
(2M+1)d

e−j2π�Txq

T T = βGG†

Cx(s) Characteristic function of x

B. PROOFS OF (11), (12), AND (13)

Here, we provide the proof of claims (11), (12), and (13). With regards to equa-
tion (11), from the definition of φ(·), we have:

φ(T̂p) = lim
M ,r→+∞

β

1

(2M + 1)d E[Tr
{
T̂p

}
].

By expanding the matrix power, we obtain:

E

[
Tr

{
Tp}] = E

[∑
�1

(Tp)ν(�1),ν(�1)

]

= E

[∑
L

(T)ν(�1),ν(�2)(T)ν(�2),ν(�3) · · · (T)ν(�p−1),ν(�p)(T)ν(�p),ν(�1)

]
.

where L = [�1, . . . , �p] is d × p matrix of integers with entries ranging in
−M , . . . , +M . Since T = βGG†, the {ν(�), ν(�′)}-th entry of T is given by:
(T)ν(�),ν(�′) = 1

r

∑r
q=1 e−j2π (�−�′)Txq . Therefore,

E

[
Tr

{
Tp}] = 1

r p

∑
L

∑
q

E[e−j2π (�1−�2)Txq1
−···−j2π (�p−�1)Txqp ].
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where q = [q1, . . . , qp] is a vector of integers with qi = 1, . . . , r. Similarly,

E

[
Tr

{
T̂p

}]
= 1

r p

∑
L

∑
q

E[e−j2π (�1−�2)Tx̂q1
−···−j2π (�p−�1)Tx̂qp ]

= 1

r p

∑
L

∑
q

E
X

[e−j2π (�1−�2)Txq1
−···−j2π (�p−�1)Txqp ]

· E
Δ

[e−j2π (�1−�2)Tδq1
−···−j2π (�p−�1)Tδqp ]

= 1

r p

∑
L

∑
q

E
X

[
d∏

m=1

e−j2π (�m,1−�m,2)xm,q1
−···−j2π (�m, p−�m,1)xm,qp

]

· E
Δ

[
d∏

m=1

e−j2π (�m,1−�m,2)δm,q1
−···−j2π (�m, p−�m,1)δm,qp

]
.

(25)

In practice,for any integer �, (25) is obtained by summing products of av-
erages of the type E

x

[
e−j2π�x

]
E
δ

[
e−j2π�δ

]
. Notice that: E

x

[
e−j2π�x

]
E
δ

[
e−j2π�δ

] =
Cx(−j2π�)Cδ(−j2π�), where Cx(s) and Cδ(s) are the characteristic functions of
the random variables x and δ, respectively. Since x is uniformly distributed in

[−1/2, +1/2), then Cx(s) = ∫ +1/2

−1/2
esx dx = (es/2 − e−s/2)/s. Thus, Cx(−j2π�) = 1

for � = 0 and Cx(−j2π�) = 0 for � �= 0. Taking into account that Cδ(0) = 1 by
definition of the characteristic function, it follows that:

Cx(−j2π�)Cδ(−j2π�) = Cx(−j2π�)Cδ(0) = Cx(−j2π�).

It turns out that: E
x
[e−j2π�x] E

δ
[e−j2π�δ] = E[e−j2π�x] and, by consequence,

E[Tr{T̂p}] = E[Tr{Tp}]. We finally obtain that φ(T̂p) = φ(Tp).
The proof of (12) can be given in a similar way. Since the {ν(�′), ν(�)}-th ele-

ment of GĜ† can be written as (GĜ†)ν(�′),ν(�) = (2M + 1)−d ∑r
q′=1 e−j2π (�′Txq′ −�Tx̂q′ )

using the above notation, we obtain:

E[Tr{GĜ†T̂p}] = E

[∑
�′

∑
�

(GĜ†)ν(�′),ν(�)(T̂p)ν(�),ν(�′)

]

= 1

(2M + 1)dr p

∑
�′,q′,L,q

E[e−j2π (�′Txq′ −�T
1 x̂q′ )e−j2π (�1−�2)Tx̂q1

−... −j2π (�p−�′)Tx̂qp ].

Notice that: �′Txq′ − �T
1 x̂q′ = �′T(x̂q′ − δq′ ) − �T

1 x̂q′ = (�′ − �1)Tx̂q′ − �′Tδq′ thus,

E[Tr{GĜ†T̂p}] =
∑

�′,q′,L,q

E[ej2π (�′Tδq′ −(�′−�1)Tx̂q′ −(�1−�2)Tx̂q1
−... −(�p−�′)Tx̂qp ]

(2M + 1)dr p
,

whose computation involves sums of products of averages where each factor is
of the type E

x
[e−j2π�x] E

δ
[e−j2π�δ] E

δ
[ej2π�′δ] or of the type E

x
[e−j2π�x] E

δ
[e−j2π (�−�′)δ], for

any integers �, �′. In both cases, because of the above mentioned properties of
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Cx(−j2π�), the result is: E
x
[e−j2π�x] E

δ
[ej2π�′δ] and

E[Tr{GĜ†T̂p}] =
∑

�′,q′,L,q

E[ej2π (�′Tδq′ −(�′−�1)Txq′ −(�1−�2)Txq1
−... −(�p−�′)Txqp )]

(2M + 1)dr p
.

(26)

Being the (ĜG†)ν(�′),ν(�) = (2M + 1)−d ∑r
q′=1 e−j2π (�′Tx̂q′ −�Txq′ ) then

E[Tr{ĜG†T̂p}] =
∑

�′,q′,L,q

E[ej2π (−�′Tδq′ −(�′−�1)Txq′ −(�1−�2)Txq1
−... −(�p−�′)Txqp ]

(2M + 1)dr p

equals (26) since fδ(z) = fδ(−z). Hence, φ(GĜ†T̂p) = φ(ĜG†Tp).
Equation (13) can be proved in a similar way using the procedure described

above.

C. PROOF OF (14) AND (15)

From the definition (1), we have

E
Δ

[
(Ĝ)ν(�),q

]
=

E
δq

[e−j2π�Tx̂q ]

√
(2M + 1)d

=
e−j2π�Txq

E
δq

[e−j2π�Tδq ]

√
(2M + 1)d

=
e−j2π�Txq

∏d
m=1 E

δm,q

[e−j2π�mδm,q ]

√
(2M + 1)d

= (C)ν(�),ν(�)(G)ν(�),q ,

where Cδ(s) = ∫ +∞
−∞ exp(sz) fδ(z) dz is the characteristic function of δ and C

is a diagonal matrix with entries given by (C)ν(�),ν(�) = ∏d
m=1 Cδ(−j2π�m). We

conclude that E
Δ

[Ĝ] = CG. Similarly the (q, q′)-th element of E
Δ

[Ĝ†Ĝ], is given

by

E
Δ

[(Ĝ†Ĝ)q,q′ ] = 1

(2M + 1)d

∑
�

E
Δ

[ej2π�Tx̂q e−j2π�Tx̂q′ ]

= 1

(2M + 1)d

∑
�

ej2π�T(xq−xq′ )
E
Δ

[ej2π�T(δq−δq′ )].

When q �= q′, we have

E
Δ

[
(Ĝ†Ĝ)q,q′

]
= 1

(2M + 1)d

∑
�

ej2π�T(xq−xq′ )
E
δq

[
ej2π�Tδq

]
E
δq′

[
e−j2π�δq′

]
= 1

(2M + 1)d

∑
�

ej2π�T(xq−xq′ )
d∏

m=1

Cδ(j2π�m)
d∏

m=1

Cδ(−j2π�m)

= (
G†C†CG

)
q,q′ .

Else, if q = q′, we have:

E
Δ

[
(Ĝ†Ĝ)q,q

]
= 1

(2M + 1)d

∑
�

ej2π�T(x̂q−x̂q ) = 1

(2M + 1)d

∑
�

1 = 1.
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Since C is diagonal and (G†C†CG)q,q = Tr{C†C}/(2M + 1)d , we conclude that

E
Δ

[Ĝ†Ĝ] = G†C†CG + (1 − Tr{C†C}
(2M+1)d )I.

D. DERIVATION OF (17) AND (19)

The result in (17) is obtained as follows. We apply to the first term in (16) the
definition of φ(·), the properties of the trace operator, and (15). Then, we have:

β2φ(ĜG†(T + αβI)−2GĜ†) = β2φ(GĜ†ĜG†(T + αβI)−2)

= β2φ(G E
Δ

[Ĝ†Ĝ]G†(T + αβI)−2)

= φ(C†CT(T + αβI)−2T) + βφ(θT(T + αβI)−2).

Similarly, using (15), the fourth term of (16) can be rewritten as:

β �φ(ĜG†(T + αβI)−1) = β �φ(E
Δ

[Ĝ]G†(T + αβI)−1)

= �φ(CT(T + αβI)−1).

As for the result in (19), this is obtained as follows:

φ(Cp) = lim
M ,r→+∞

β

Tr{Cp}
(2M + 1)d

= lim
M ,r→+∞

β

∑
�

∏d
m=1 Cδ(−j2π�m)p

(2M + 1)d

= lim
M ,r→+∞

β

∑
�

∏d
m=1 e−2π2 pσ 2

δ �2
m

(2M + 1)d
= lim

M ,r→+∞
β

∑
� e−2π2 pρ2�T�/r ′2

(2M + 1)d

= lim
M→+∞

∑
� e

−2π2 pρ2β
2
d �T�

(2M+1)2

(2M + 1)d
=

∫
H

exp
(
−2π2 pρ2β

2
d zTz

)
dz

=
⎛⎝ 1√

2πβ
2
d ρ2 p

erf

(
πβ

1
d ρ

√
p
2

)⎞⎠d

.

E. PROOF OF (20) AND (21)

By using the definitions, we provided for φ(·) and T, we can write:

φ(T2) = lim
M ,r→+∞

β

1

(2M + 1)d E

[
Tr{T2

x}
]

= lim
M ,r→+∞

β

1

(2M + 1)d E

[∑
�1

(T2
x)ν(�1),ν(�1)

]

= lim
M ,r→+∞

β

1

(2M + 1)d E

[∑
�1,�2

(T)ν(�1),ν(�2)(T)ν(�2),ν(�1)

]

= lim
M ,r→+∞

β

1

(2M + 1)dr2

∑
�1,�2

r∑
q1=1

r∑
q2=1

E

[
e−j2π (�1−�2)Txq1 e−j2π (�2−�1)Txq2

]
= L1 + L2,
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where L1 is the contribution to φ(T2) when q1 = q2, and L2 is the contribution
to φ(T2) when q1 �= q2. We have

L1 = lim
M ,r→+∞

β

1

(2M + 1)dr2

∑
�1,�2

r∑
q1=1

E

[
e−j2π (�1−�2)Txq1

−j2π (�2−�1)Txq1

]

= lim
M ,r→+∞

β

1

(2M + 1)dr2

∑
�1,�2

r∑
q1=1

E[1] = lim
M ,r→+∞

β

(2M + 1)2dr
(2M + 1)dr2

= β.

As for L2, we have

L2 = lim
M ,r→+∞

β

∑
�1,�2

r∑
q1=1

r∑
q2=1
q2 �=q1

E

[
e−j2π (�1−�2)Txq1

]
E

[
e−j2π (�2−�1)Txq2

]
(2M + 1)dr2

= L3 + L4,

where L3 is the contribution to L2 when �1 = �2 and L4 is the contribution to
L2 when �1 �= �2. It turns out that:

L3 = lim
M ,r→+∞

β

1

(2M + 1)dr2

∑
�1

r∑
q1=1

r∑
q2=1
q2 �=q1

E[1] = lim
M ,r→+∞

β

r(r − 1)(2M + 1)d

(2M + 1)dr2
= 1.

As for L4, we assume that the random variables x have average E[x] = x̄ and
can be written as x = x̄ + x̃/r ′, with independent and identically distributed x̃.
Hence,

E

[
e−j2π�Tx

]
=

d∏
m=1

E

[
e−j2π�mxm

]
=

d∏
m=1

∫
e−j2π�mzr ′ f x̃(r ′z − r ′ x̄m) dz

=
d∏

m=1

e−j2π�mx̄m

∫
e−j2π�mz ′/r ′

f x̃(z ′) dz ′

= e−j2π�Tx̄
d∏

m=1

Cx̃

(
− j2π�m

r ′

)
= e−j2π�Tx̄

d∏
m=1

Cx̃

(
− j2πβ

1
d �m

2M + 1

)
.
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Note that we exploited the fact that: f x(z) = r ′ f x̃
(
r ′z − r ′ x̄

)
. Thus, we can write:

L4 = lim
M ,r→+∞

β

∑
�1

∑
�2 �=�1

r∑
q1=1

r∑
q2=1
q2 �=q1

E

[
e−j2π (�1−�2)Txq1

]
(2M + 1)dr2 E

[
e−j2π (�2−�1)Txq2

]

= lim
M ,r→+∞

β

1

(2M + 1)dr2

∑
�1

∑
�2 �=�1

r∑
q1=1

r∑
q2=1
q2 �=q1

d∏
m=1

Cx̃

(
−j2πβ

1
d
�1,m − �2,m

2M + 1

)
d∏

m=1

Cx̃

(
−j2πβ

1
d
�2,m − �1,m

2M + 1

)
e−j2π (�1−�2)Tx̄q1 e−j2π (�2−�1)Tx̄q2

= lim
M ,r→+∞

β

β

(2M + 1)2d

∑
�1

∑
�2 �=�1

d∏
m=1

∣∣∣∣Cx̃

(
−j2πβ

1
d
�1,m − �2,m

2M + 1

)∣∣∣∣2

·
r∑

q1=1

r∑
q2=1
q2 �=q1

e−j2π (�1−�2)T(x̄q1
−x̄q2

), (27)

since by definition C(s∗) = C∗(s). Furthermore, if the averages x̄q are vertices
of a d -dimensional regular grid in H, we can replace the sums over the scalar
indices q1 and q2 in (27), q1, q2 = 1, . . . , r with two d -dimensional sums over
the vector indices q′

1 = [q′
11, . . . , q′

1d ], q′
1m = 1, . . . , r ′ and q′

2 = [q′
21, . . . , q′

2d ],
q′

2m = 1, . . . , r ′. Therefore,

r∑
q1=1

r∑
q2=1
q2 �=q1

e−j2π (�1−�2)T(x̄q1
−x̄q2

) =
∑
q′

1

∑
q′

2 �=q′
1

e
−j2π (�1−�2)T(x̄μ(q′

1
)−x̄μ(q′

2
)).

Notice that, if � �= 0,

∑
q′

e−j2π�Tx̄μ(q′ ) =
∑
q′

d∏
m=1

e−j2π�mx̄m,μ(q′ ) =
d∏

m=1

r ′∑
q′

m=1

e−j2π�mx̄m,μ(q′ )

=
d∏

m=1

r ′∑
q′

m=1

e−j2π�m((q′
m−1/2)/r ′−1/2) = 0.

It follows that for �1 �= �2 (i.e., (�1 − �2) �= 0), we get

∑
q′

1

q′
2 �=q′

1

e
−j2π(�1−�2)T(x̄μ(q′

1
)−x̄μ(q′

2
)) =

∑
q′

1

e
−j2π (�1−�2)Tx̄μ(q′

1
)

∑
q′

2 �=q′
1

e
−j2π (�2−�1)Tx̄μ(q′

2
)

= −
∑
q′

1

e
−j2π (�1−�2)Tx̄μ(q′

1
)e

−j2π (�2−�1)Tx̄μ(q′
1

) = −
∑
q′

1

1 = −r.
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In conclusion,

L4 = − lim
M ,r→+∞

β

β

(2M + 1)2d

∑
�1

∑
�2 �=�1

d∏
m=1

∣∣∣∣Cx̃

(
−j2πβ

1
d
�1,m − �2,m

2M + 1

)∣∣∣∣2

= −β

(∫
A

∣∣∣Cx̃

(
−j2πβ

1
d (z1 − z2)

)∣∣∣2 dz1 dz2

)d

,

and φ(T2) = L1 + L3 + L4 = 1 +β −β(
∫
A |Cx̃(−j2πβ

1
d (z1 − z2))|2 dz1 dz2)d where

A = {(z1, z2) ∈ R
2 | z1 ∈ [− 1

2
, 1

2
), z2 ∈ [− 1

2
, 1

2
), z1 �= z2}. Also, for the position er-

rors we have: x̂ = x̄ + x̃+δ̃
r ′ . By using the properties of the characteristic function,

we can write: Cx̃+δ̃(s) = Cx̃(s)Cδ̃(s) and

φ(T̂2) = 1 + β − β

(∫
A

∣∣∣Cx̃

(
−j2πβ

1
d (z1 − z2)

)∣∣∣2 ∣∣∣Cδ̃

(
−j2πβ

1
d (z1 − z2)

)∣∣∣2dz1 dz2

)d

.
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