A Fast-Decodable, Quasi-Orthogonal Space–Time Block Code for 4×2 MIMO

Ezio Biglieri Universitat Pompeu Fabra Barcelona, Spain e.biglieri@ieee.org Yi Hong DEIS - Università della Calabria via P. Bucci 42C, Rende (CS), Italy hong@deis.unical.it Emanuele Viterbo Nokia Research Center FIN-00045 Nokia Research Group, Finland emanuele.viterbo@nokia.com

Abstract— In this paper we present a new family of fullrate space-time block codes for 4×2 MIMO. We show how, by combining algebraic and quasi-orthogonal properties of the code, reduced-complexity maximum-likelihood decoding is made possible. In particular, the sphere decoder search can be reduced from a 16- to a 12-dimensional space. Within this family, we found a code that outperforms all previously proposed codes for 4×2 MIMO.¹

I. INTRODUCTION

In a recent paper, Paredes *et al.* [1] have shown how to construct a family of fast-decodable, full-rate, full-rank spacetime block codes (STBCs) for 2×2 MIMO. The maximumlikelihood (ML) decoder can be simplified to a 4-dimensional sphere decoder followed by an Alamouti detector [2]. The best code within this family coincides with a code originally found by Hottinen and Tirkkonen [3], and recently independently rediscovered in [4].

Motivated by the above, we extend the concept of fastdecodable STBC code design to 4×2 MIMO. In particular, we present a new family of full-rate STBC that combines algebraic and quasi-orthogonal structures and enables a complexity reduction of its ML decoder. Note that in the 4×2 case, the full-rank assumption is dropped. At the receiver, only a 12-dimensional real sphere decoder (SD) is needed to conduct the ML search, rather than the standard 16-dimensional SD. Finally, within this family, we found a code that outperforms all previously proposed 4×2 STBCs for 4-QAM signal constellation.

The balance of this paper is organized as follows. Section II introduces system model and code design criteria. In Section III, we give a brief review of the known fast-decodable STBCs for 2×2 MIMO. In Section IV, we present the new fast-decodable STBC for 4×2 MIMO. In Section V, the corresponding fast decoding algorithm is exhibited. Finally, conclusions are drawn in Section VI.

A. Notations

The following notations will be adopted: Boldface letters are used for column vectors, and capital boldface letters for matrices. Superscripts T , † , and * denote transposition, Hermitian transposition, and complex conjugation, respectively. \mathbb{Z} , \mathbb{C} , and $\mathbb{Z}[j]$ denote the ring of rational integers, the field of complex numbers, and the ring of Gaussian integers, respectively, where $j^{2} = -1$. Also, \mathbf{I}_{n} denotes the $n \times n$ identity matrix, and $\mathbf{0}_{m \times n}$ denotes the $m \times n$ matrix all of whose elements are 0.

Given a complex number x, we define the (\cdot) operator from $\mathbb C$ to $\mathbb R^2$ as

$$\tilde{x} \triangleq [\Re(x), \Im(x)]$$

where $\Re(\cdot)$ and $\Im(\cdot)$ denote the real and imaginary parts of a complex number. The $(\tilde{\cdot})$ operator can be extended to complex vectors $\mathbf{x} = [x_1, \dots, x_n] \in \mathbb{C}^n$ as

$$\tilde{\mathbf{x}} \triangleq [\tilde{x}_1, \dots \tilde{x}_n]^T$$

where $(\cdot)^T$ denotes vector transposition. The $\check{(\cdot)}$ operator from $\mathbb C$ to $\mathbb R^{2\times 2}$ is defined as

$$\check{x} \triangleq \left[\begin{array}{cc} \Re(x) & -\Im(x) \\ \Im(x) & \Re(x) \end{array} \right]$$

The (\cdot) operator can be similarly extended to matrices so that a complex matrix times a complex vector can be equivalently written as

$$\widetilde{\mathbf{A}\mathbf{x}} = \check{\mathbf{A}}\tilde{\mathbf{x}}$$

The $\operatorname{vec}(\cdot)$ operator stacks the *m* column vectors of a $n \times m$ complex matrix into a *mn* complex column vector. The $\|\cdot\|$ operation denotes the Euclidean norm of a vector, and the Frobenius norm of a matrix. Finally, the Hermitian inner product of two complex column vectors **a** and **b** is denoted by

$$\langle \mathbf{a}, \mathbf{b} \rangle \triangleq \mathbf{a}^T \mathbf{b}^*$$

II. SYSTEM MODEL AND CODE DESIGN CRITERIA

We consider a $n_t \times n_r$ MIMO system over block fading channels. At discrete time t, the received signal matrix $\mathbf{Y} \in \mathbb{C}^{n_r \times T}$ is given by

$$\mathbf{Y} = \mathbf{H}\mathbf{X} + \mathbf{N},\tag{1}$$

where $\mathbf{X} \in \mathbb{C}^{n_t \times T}$ is the codeword matrix, transmitted over T channel uses. Moreover, $\mathbf{N} \in \mathbb{C}^{n_r \times T}$ is a complex white Gaussian noise with i.i.d. entries $\sim \mathcal{N}_{\mathbb{C}}(0, N_0)$, and $\mathbf{H} =$

¹E. Viterbo is temporary on leave from DEIS-Università della Calabria. This work was supported by Nokia Research Center, Finland, and by the STREP project No. IST-026905 (MASCOT) within the Sixth Framework Programme of the European Commission. E. Biglieri's work was also supported by Sequans Communications, Paris, France.

 $[h_{i\ell}] \in \mathbb{C}^{n_r \times n_t}$ is the channel matrix, assumed to remain constant during the transmission of a codeword, and to take on independent values from codeword to codeword. The elements of **H** are assumed to be i.i.d. circularly symmetric Gaussian random variables $\sim \mathcal{N}_{\mathbb{C}}(0, 1)$. The realization of **H** is assumed to be known at the receiver, but not at the transmitter.

The following definitions are relevant here:

Definition 1: (*Code rate*) The code rate of a STBC is defined as the number κ of independent information symbols per codeword, drawn from a complex constellation S. If $\kappa = n_r T$, the STBC is said to have *full rate*.

Consider now ML decoding. This consists of finding the code matrix **X** that achieves the minimum of the squared norm $m(\mathbf{X}) \triangleq \|\mathbf{Y} - \mathbf{HX}\|^2$.

Definition 2: (*Decoding Complexity*) The ML decoding complexity can be measured by counting the minimum number of values of $m(\mathbf{X})$ that should be computed in ML decoding. This number cannot exceed M^{κ} , with M = |S|, the worst-case decoding complexity achieved by an exhaustive-search ML decoder.

Definition 3: (*Simplified decoding*) We say that a STBC admits simplified decoding if ML decoding can be achieved with less than M^{κ} computations of $m(\mathbf{X})$.

Assuming that the codeword **X** is transmitted, it may occur that $\|\mathbf{Y} - \mathbf{H}\mathbf{X}\|^2 > \|\mathbf{Y} - \mathbf{H}\hat{\mathbf{X}}\|^2$, with $\hat{\mathbf{X}} \neq \mathbf{X}$, resulting in a *pairwise error*. Let *r* denote the rank of the *codeworddifference matrix* $\mathbf{X} - \hat{\mathbf{X}}$, with $\hat{\mathbf{X}} \neq \mathbf{X}$, and let $\mathbf{E} \triangleq (\mathbf{X} - \hat{\mathbf{X}})(\mathbf{X} - \hat{\mathbf{X}})^{\dagger}$ be the *codeword-distance matrix*. Let δ denote the product of non-zero eigenvalues of the codeword distance matrix **E**. The error probability of a STBC is upper-bounded by the following union bound:

$$P(e) \leq \frac{1}{M^{\kappa}} \sum_{\mathbf{X}} \sum_{\mathbf{X} \neq \hat{\mathbf{X}}} P(\mathbf{X} \to \hat{\mathbf{X}})$$
$$= \frac{1}{M^{\kappa}} \sum_{r} \sum_{\delta} A(r, \delta) P(r, \delta)$$
(2)

where $P(\mathbf{X} \to \hat{\mathbf{X}})$ denotes the pairwise error probability (PEP) among all distinct $(\mathbf{X}, \hat{\mathbf{X}})$. The term $P(r, \delta)$ represents the PEP of the codewords with rank r and eigenvalue product δ , while $A(r, \delta)$ denotes the associated multiplicity.

Definition 4: (*Full-diversity STBC*) A full-diversity STBC is one with $r = n_t$ over all possible codeword-difference matrices.

For a full-diversity STBC, the worst-case PEP depends asymptotically, for high signal-to-noise ratios, on both the rank $r = n_t$ and the *minimum determinant* of the codeword distance matrix

$$\delta_{\min} \triangleq \min_{\mathbf{X} \neq \widehat{\mathbf{X}}} \det \left(\mathbf{E} \right)$$

The "rank-and-determinant criterion" (RDC) of code design requires the maximization of both r and δ_{\min} . This criterion yields *diversity gain* $n_r n_t$ and *coding gain* $(\delta_{\min})^{1/n_t}$ [5]. For a non full-diversity STBC, the minimum determinant equals to zero. In such a case, we have to minimize the associated multiplicity of the *dominant pairwise terms* of rank $r \leq n_t$ independently of their product distance.

III. FAST-DECODABLE CODES FOR 2×2 MIMO

Consider now 2×2 STBCs. These are full-rate and fulldiversity if $\kappa = 4$ symbols/codeword, and $r = n_t$.

Definition 5: (*Fast-decodable STBCs for* 2×2 *MIMO*) A 2×2 STBC allows fast ML decoding if its complexity does not exceed $2M^3$.

Here we examine 2×2 fast-decodable STBCs endowed with the following structure [3]:

$$\mathbf{X} = \mathbf{X}_a(x_1, x_2) + \mathbf{T}\mathbf{X}_b(z_1, z_2)$$
(3)

where

$$\mathbf{T} = \begin{bmatrix} 1 & 0\\ 0 & -1 \end{bmatrix} \text{ and } \mathbf{X}_a(x_1, x_2) = \begin{bmatrix} x_1 & -x_2^*\\ x_2 & x_1^* \end{bmatrix}$$
(4)

is an Alamouti 2×2 space-time block codeword [2], and $x_1, x_2 \in \mathbb{Z}[j]$. Moreover, we have

$$\mathbf{X}_{b}(z_{1}, z_{2}) = \begin{bmatrix} z_{1} & -z_{2}^{*} \\ z_{2} & z_{1}^{*} \end{bmatrix} \text{ and } \begin{bmatrix} z_{1} \\ z_{2} \end{bmatrix} = \mathbf{U} \begin{bmatrix} x_{3} \\ x_{4} \end{bmatrix}$$
(5)

where $z_1, z_2 \in \mathbb{C}$, $x_3, x_4 \in \mathbb{Z}[j]$, and $\mathbf{U} \in \mathbb{C}^{2 \times 2}$ is the unitary matrix

$$\mathbf{U} = \left[\begin{array}{cc} \varphi_1 & -\varphi_2^* \\ \varphi_2 & \varphi_1^* \end{array} \right]$$

with $|\varphi_1|^2 + |\varphi_2|^2 = 1$. Vectorizing, and separating real and imaginary parts, the matrices **X** yield

$$\widetilde{\operatorname{vec}}(\mathbf{X}) = \mathbb{G}_1[\tilde{x}_1, \tilde{x}_2]^T + \mathbb{G}_2[\tilde{x}_3, \tilde{x}_4]^T$$

where $\mathbb{G}_1, \mathbb{G}_2 \in \mathbb{R}^{8 \times 4}$ are the generator matrices of \mathbf{X}_a and $\mathbf{T}\mathbf{X}_b$, respectively. Note that the matrix \mathbf{T} is chosen in order to guarantee that the subspace spanned by the columns of \mathbf{R}_2 is orthogonal to the one spanned by the columns of \mathbf{R}_1 . This implies that the code has *cubic shaping* (or that is *information lossless*).

The matrix U is chosen in order to achieve full rank and maximize the minimum determinant. The best code of the form (3) was first proposed in [3] under the name *twisted space-time transmit diversity* code, and recently rediscovered independently in [1]. It is characterized by the following choice of the unitary matrix U:

$$\mathbf{U} = \frac{1}{\sqrt{7}} \begin{bmatrix} 1+j & -1+2j \\ 1+2j & 1-j \end{bmatrix}$$

This code was also found in [4] by numerical optimization, and classified under the rubric of *multi-strata* space–time codes. This code has minimum determinant $\delta_{\min} = 16/7$ for 4-QAM signalling, which is smaller than the Golden code $(\delta_{\min} = 16/5)$ [6].

At the receiver, due to the linearity of the code, a sphere decoder can be employed. It was pointed out both in [1] and in [4] that the code in (3) admits a low-complexity decoder thanks to orthogonality properties of the two component codes in (3).

IV. New STBC for 4×2 MIMO Systems

Here we design a fast-decodable 4×2 STBC based on the concepts elaborated upon in the previous sections. We first introduce the relevant definitions.

Definition 6: (*Quasi-orthogonal structure*) [11] A code such that

$$\mathbf{X} = \begin{bmatrix} x_1 & -x_2^* & -x_3^* & x_4 \\ x_2 & x_1^* & -x_4^* & -x_3 \\ x_3 & -x_4^* & x_1^* & -x_2 \\ x_4 & x_3^* & x_2^* & x_1 \end{bmatrix}$$

where $x_i \in \mathbb{C}$, i = 1, ..., 4, is said to have a quasi-orthogonal structure. Note that quasi-orthogonal STBCs are not full rank, and r = 2.

Definition 7: (*Full-rate, fast-decodable STBC for* 4×2 *MIMO*) A full-rate, fast-decodable STBC for 4×2 MIMO, denoted G', has $\kappa = 8$ symbols/codeword, and can be decoded by a 12-dimensional real SD algorithm (rather than the standard 16-dimensional SD).

The 4×4 codeword matrix $\mathbf{X} \in \mathcal{G}'$ encodes eight QAM symbols $\mathbf{x} = [x_1, \ldots, x_8] \in \mathbb{Z}[j]$, and is transmitted by using the channel four times, i.e., T = 4. Following the idea of the previous section, we choose the following codeword structure:

$$\mathbf{X} = \mathbf{X}_a(x_1, x_2, x_3, x_4) + \mathbf{T}\mathbf{X}_b(z_1, z_2, z_3, z_4)$$
(6)

where

$$\mathbf{T} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1 \end{bmatrix}$$
(7)

is used to preserve the orthogonality between the two components of the code (similarly to the codes of previous section), and

$$\mathbf{X}_{a}(x_{1}, x_{2}, x_{3}, x_{4}) = \begin{bmatrix} x_{1} & -x_{2}^{*} & -x_{3}^{*} & x_{4} \\ x_{2} & x_{1}^{*} & -x_{4}^{*} & -x_{3} \\ x_{3} & -x_{4}^{*} & x_{1}^{*} & -x_{2} \\ x_{4} & x_{3}^{*} & x_{2}^{*} & x_{1} \end{bmatrix}$$
(8)

follows the quasi-orthogonal STBC structure of [11], where $x_1, x_2, x_3, x_4 \in \mathbb{Z}[j]$. The remaining matrix in (6) is defined as

$$\mathbf{X}_{b}(z_{1}, z_{2}, z_{3}, z_{4}) = \begin{bmatrix} z_{1} & -z_{2}^{*} & -z_{3}^{*} & z_{4} \\ z_{2} & z_{1}^{*} & -z_{4}^{*} & -z_{3} \\ z_{3} & -z_{4}^{*} & z_{1}^{*} & -z_{2} \\ z_{4} & z_{3}^{*} & z_{2}^{*} & z_{1} \end{bmatrix}$$
(9)

with

$$\begin{bmatrix} z_1 \\ z_2 \\ z_3 \\ z_4 \end{bmatrix} = \mathbf{U} \begin{bmatrix} x_5 \\ x_6 \\ x_7 \\ x_8 \end{bmatrix}$$
(10)

where $z_i \in \mathbb{C}$, $x_k \in \mathbb{Z}[j]$, $i = 1, \ldots, 4$, $k = 5, \ldots, 8$ and

$$\mathbf{U} = [\boldsymbol{\varphi}_{1} | \boldsymbol{\varphi}_{2} | \boldsymbol{\varphi}_{3} | \boldsymbol{\varphi}_{4}] = \begin{bmatrix} \varphi_{11} & \varphi_{12} & \varphi_{13} & \varphi_{14} \\ \varphi_{21} & \varphi_{22} & \varphi_{23} & \varphi_{24} \\ \varphi_{31} & \varphi_{32} & \varphi_{33} & \varphi_{34} \\ \varphi_{41} & \varphi_{42} & \varphi_{43} & \varphi_{44} \end{bmatrix}$$
(11)

is a 4×4 unitary matrix. Note that 1) The matrix **T** guarantees cubic shaping, and 2) Since the matrix **X**_a has a quasiorthogonal structure, the code is not full rank: in fact, it has r = 2. As a consequence, we conduct a search over the matrices **U** leading to the minimum of $\sum_{\delta} A(2, \delta)$. The term $A(2, \delta)$ represents the total number of codeword difference matrices of rank 2 and product distance δ . Since an exhaustive search through all 4×4 unitary matrices is too complex, we focus on those with the form

$$\mathbf{U} = \mathbf{DF} \tag{12}$$

where $\mathbf{F} \triangleq [\exp(j2\pi\ell n/4)]_{\ell,n=1,\ldots,4}$ is a 4×4 discrete-Fourier-transform matrix, and $\mathbf{D} \triangleq \operatorname{diag}(\exp(j2\pi n_{\ell}/N))$ for some integers N, ℓ , with $0 \le n_{\ell} < N$ and $\ell = 1, \ldots, 4$.

For 4-QAM signaling, taking N=7 and $n_\ell=1,2,5,6,$ we have obtained

$$\mathbf{U} = \begin{bmatrix} 0.31 + 0.39i & 0.31 + 0.39i & 0.31 + 0.39i & 0.31 + 0.39i \\ -0.11 + 0.49i & -0.49 - 0.11i & 0.11 - 0.49i & 0.49 + 0.11i \\ -0.11 - 0.49i & 0.11 + 0.49i & -0.11 - 0.49i & 0.11 + 0.49i \\ 0.31 - 0.39i & -0.39 - 0.31i & -0.31 + 0.39i & 0.39 + 0.31i \end{bmatrix}$$

which yields the minimum $\sum_{\delta} A(2, \delta)$.

Under 4-QAM signaling, we compare the minimum determinants δ_{min} and their associated multiplicities $A(r, \delta_{min})$, as well as the codeword-error rates (CERs) of the above STBC to the following 4×2 codes:

- 1) Code with the structure (6), with U the 4×4 "perfect" rotation matrix [12].
- 2) The best DjABBA code of [3].
- 3) The "perfect" two-layer code of [13].

Determinant and multiplicity values are shown in Table I. It can be seen that the proposed 4×2 STBC has the minimum $\sum_{\delta} A(2, \delta)$, when compared to the rank-2 code with perfect rotation matrix U in [12]. The CERs are shown in Fig. 1. The proposed code achieves the best CER up to 10^{-5} . Due to diversity loss, the performance curve of the new code and the one of DjABBA cross over at CER= 10^{-5} .

Codes	δ_{\min}	Multiplicity
New STBC	0	$\sum_{\delta} A(2,\delta) = 160$
Perfect Code U matrix	0	$\sum_{\delta} A(2,\delta) = 560$
DjABBA	0.8304	A(4, 0.8304) = 770
Two-Layers Perfect Code	0.0016	A(4, 0.0016) = 128

TABLE I

Minimum determinants of $4\times 2~\mathrm{STBCs}$ with 4-QAM signaling

Fig. 1. Comparison of the CER of different 4×2 STBCs with 4-QAM signaling.

V. Low-Complexity Decoding for 4×2 MIMO

In this section, we first analyze the sphere decoding process, next we discuss the complexity reduction.

A. Sphere Decoding for 4×2 MIMO

Let $\mathbf{Y} = [y_{\ell n}] \in \mathbb{C}^{2 \times 4}$, $\mathbf{H} = [h_{\ell n}] \in \mathbb{C}^{2 \times 4}$, and $\mathbf{N} = [n_{\ell n}] \in \mathbb{C}^{2 \times 4}$. After vectorization, we obtain

$$\mathbf{y} = \mathcal{H}\mathbf{x} + \mathbf{n} \tag{13}$$

where

$$\mathbf{y} \triangleq [y_{11}, y_{12}^*, y_{13}^*, y_{14}, y_{21}, y_{22}^*, y_{23}^*, y_{24}]^T$$
$$\mathbf{n} \triangleq [n_{11}, n_{12}^*, n_{13}^*, n_{14}, n_{21}, n_{22}^*, n_{23}^*, n_{24}]^T$$
$$\mathbf{x} \triangleq [x_{11}, x_{22}, x_{32}, x_{43}, x_{53}, x_{63}, x_{73}, x_{8}]^T$$

and

$$\mathcal{H} \triangleq [\mathbf{F}_1 | \mathbf{F}_2] \tag{14}$$

where

$$\mathbf{F}_{1} = [\mathbf{f}_{1}|\mathbf{f}_{2}|\mathbf{f}_{3}|\mathbf{f}_{4}] = \begin{vmatrix} h_{11} & h_{12} & h_{13} & h_{14} \\ h_{12}^{*} & -h_{11}^{*} & h_{14}^{*} & -h_{13}^{*} \\ h_{13}^{*} & h_{14}^{*} & -h_{11}^{*} & -h_{12}^{*} \\ h_{14} & -h_{13} & -h_{12} & h_{11} \\ h_{21} & h_{22} & h_{23} & h_{24} \\ h_{22}^{*} & -h_{21}^{*} & h_{24}^{*} & -h_{23}^{*} \\ h_{23}^{*} & h_{24}^{*} & -h_{21}^{*} & -h_{22}^{*} \\ h_{24} & -h_{23} & -h_{22} & h_{21} \end{vmatrix}$$

and $\mathbf{F}_2 = [\mathbf{f}_5|\mathbf{f}_6|\mathbf{f}_7|\mathbf{f}_8]$ with

$$\mathbf{f}_5 = \mathbf{M} oldsymbol{arphi}_1 \quad \mathbf{f}_6 = \mathbf{M} oldsymbol{arphi}_2 \quad \mathbf{f}_7 = \mathbf{M} oldsymbol{arphi}_3 \quad \mathbf{f}_8 = \mathbf{M} oldsymbol{arphi}_4$$

where

$$\mathbf{M} = \begin{bmatrix} h_{11} & h_{12} & -h_{13} & -h_{14} \\ h_{12}^* & -h_{11}^* & -h_{14}^* & h_{13}^* \\ -h_{13}^* & -h_{14}^* & -h_{11}^* & -h_{12}^* \\ -h_{14} & h_{13} & -h_{12} & h_{11} \\ h_{21} & h_{22} & -h_{23} & -h_{24} \\ h_{22}^* & -h_{21}^* & -h_{24}^* & h_{23}^* \\ -h_{23}^* & -h_{24}^* & -h_{21}^* & -h_{22}^* \\ -h_{24} & h_{23} & -h_{22} & h_{21} \end{bmatrix}$$

We conduct the QR decomposition of \mathcal{H} , i.e., $\mathcal{H} = \mathbf{QR}$, where $\mathbf{Q} \in \mathbb{C}^{8 \times 8}$ is an unitary matrix and $\mathbf{R} \in \mathbb{C}^{8 \times 8}$ is an upper-triangular matrix. Here \mathbf{Q} and \mathbf{R} are given by

$$\mathbf{Q} = [\mathbf{e}_1 | \mathbf{e}_2 | \mathbf{e}_3 | \mathbf{e}_4 | \mathbf{e}_5 | \mathbf{e}_6 | \mathbf{e}_7 | \mathbf{e}_8]$$
$$\mathbf{R} = \begin{bmatrix} \|\mathbf{d}_1\| & \langle \mathbf{f}_2, \mathbf{e}_1 \rangle & \langle \mathbf{f}_3, \mathbf{e}_1 \rangle & \cdots & \langle \mathbf{f}_8, \mathbf{e}_1 \rangle \\ 0 & \|\mathbf{d}_2\| & \langle \mathbf{f}_3, \mathbf{e}_2 \rangle & \cdots & \langle \mathbf{f}_8, \mathbf{e}_2 \rangle \\ 0 & 0 & \|\mathbf{d}_3\| & \cdots & \langle \mathbf{f}_8, \mathbf{e}_3 \rangle \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & \|\mathbf{d}_8\| \end{bmatrix}$$

The QR decomposition is related to the Gram-Schmidt

orthogonalization algorithm through the following equations:

$$\mathbf{u}_{1} = \mathbf{f}_{1}, \quad \mathbf{e}_{1} = \frac{\mathbf{u}_{1}}{\|\mathbf{u}_{1}\|}$$
$$\mathbf{u}_{i} = \mathbf{f}_{i} - \sum_{j=1}^{i-1} \operatorname{Proj}_{\mathbf{e}_{j}} \mathbf{f}_{i}, \quad \mathbf{e}_{i} = \frac{\mathbf{u}_{i}}{\|\mathbf{u}_{i}\|}, \quad i = 2, \cdots, 8$$

where $\operatorname{Proj}_{\mathbf{u}} \mathbf{v} \triangleq \frac{\langle \mathbf{v}, \mathbf{u} \rangle}{\langle \mathbf{u}, \mathbf{u} \rangle} \mathbf{u}$. Direct computation shows that \mathbf{R} has the following properties:

1)
$$\langle \mathbf{f}_{2}, \mathbf{e}_{1} \rangle = 0$$

2) $\mu \triangleq \|\mathbf{d}_{i}\|^{2} = \sum_{i=1}^{2} \sum_{j=1}^{4} |h_{ij}|^{2}$
3) $\langle \mathbf{f}_{4}, \mathbf{e}_{1} \rangle = -\langle \mathbf{f}_{3}, \mathbf{e}_{2} \rangle = \Phi_{1}/\sqrt{\mu} \text{ where } \Phi_{1} \triangleq 2\Re(h_{11}^{*}h_{14} + h_{21}h_{24}^{*} - h_{12}h_{13}^{*} - h_{22}h_{23}^{*})$
4) $\gamma \triangleq \|\mathbf{d}_{i}\|^{2} = \mu - \Phi_{1}^{2}/\mu \text{ with } i = 3, 4$
5) $\mathbf{R} = \begin{bmatrix} \mathbf{S}_{1} & \mathbf{S}_{2} \\ \mathbf{S}_{1} & \mathbf{S}_{2} \end{bmatrix}$ (15)

 $\mathbf{R} = \begin{bmatrix} \mathbf{S}_1 & \mathbf{S}_2 \\ \mathbf{0}_{4 \times 4} & \mathbf{S}_3 \end{bmatrix}$

$$\mathbf{S}_{1} = \begin{bmatrix} \sqrt{\mu} & 0 & 0 & \Phi_{1} \\ 0 & \sqrt{\mu} & -\Phi_{1} & 0 \\ 0 & 0 & \sqrt{\gamma} & 0 \\ 0 & 0 & 0 & \sqrt{\gamma} \end{bmatrix}$$
(16)

$$\mathbf{S}_{2} = \begin{bmatrix} \langle \mathbf{f}_{5}, \mathbf{e}_{1} \rangle & \langle \mathbf{f}_{6}, \mathbf{e}_{1} \rangle & \langle \mathbf{f}_{7}, \mathbf{e}_{1} \rangle & \langle \mathbf{f}_{8}, \mathbf{e}_{1} \rangle \\ \langle \mathbf{f}_{5}, \mathbf{e}_{2} \rangle & \langle \mathbf{f}_{6}, \mathbf{e}_{2} \rangle & \langle \mathbf{f}_{7}, \mathbf{e}_{2} \rangle & \langle \mathbf{f}_{8}, \mathbf{e}_{2} \rangle \\ \langle \mathbf{f}_{5}, \mathbf{e}_{3} \rangle & \langle \mathbf{f}_{6}, \mathbf{e}_{3} \rangle & \langle \mathbf{f}_{7}, \mathbf{e}_{3} \rangle & \langle \mathbf{f}_{8}, \mathbf{e}_{3} \rangle \\ \langle \mathbf{f}_{5}, \mathbf{e}_{4} \rangle & \langle \mathbf{f}_{6}, \mathbf{e}_{4} \rangle & \langle \mathbf{f}_{7}, \mathbf{e}_{4} \rangle & \langle \mathbf{f}_{8}, \mathbf{e}_{4} \rangle \end{bmatrix}$$
(17)

and

$$\mathbf{S}_{3} = \begin{bmatrix} \|\mathbf{d}_{5}\| & \langle \mathbf{f}_{6}, \mathbf{e}_{5} \rangle & \langle \mathbf{f}_{7}, \mathbf{e}_{5} \rangle & \langle \mathbf{f}_{8}, \mathbf{e}_{5} \rangle \\ 0 & \|\mathbf{d}_{6}\| & \langle \mathbf{f}_{7}, \mathbf{e}_{6} \rangle & \langle \mathbf{f}_{8}, \mathbf{e}_{6} \rangle \\ 0 & 0 & \|\mathbf{d}_{7}\| & \langle \mathbf{f}_{8}, \mathbf{e}_{7} \rangle \\ 0 & 0 & 0 & \|\mathbf{d}_{8}\| \end{bmatrix}$$
(18)

The QR decomposition allows us to rewrite (13) as

 $\mathbf{y} = \mathcal{H}\mathbf{x} + \mathbf{n} = \mathbf{Q}\mathbf{R}\mathbf{x} + \mathbf{n} \tag{19}$

Premultiplication of (19) by \mathbf{Q}^{\dagger} yields

$$\mathbf{r} = \mathbf{Q}^{\dagger} \mathbf{y} = \mathbf{R} \mathbf{x} + \mathbf{w}$$
(20)

Let $\mathbf{r} = [r_1, \dots, r_8]^T$, and $\mathbf{w} = \mathbf{Q}^{\dagger} \mathbf{n} = [w_1, \dots, w_8]^T$. Separating real and imaginary parts in (20), we obtain

$$\tilde{\mathbf{r}} = \check{\mathbf{R}}\tilde{\mathbf{x}} + \tilde{\mathbf{w}} \Longrightarrow \mathbf{v} = \Theta \mathbf{u} + \tilde{\mathbf{w}}$$
 (21)

where $\mathbf{v} \triangleq [v_1, \ldots, v_{16}]^T = \tilde{\mathbf{r}}, \mathbf{u} \triangleq [u_1, \ldots, u_{16}]^T = \tilde{\mathbf{x}}, \\ \tilde{\mathbf{w}} \triangleq [\tilde{w}_1, \ldots, \tilde{w}_8]^T$, and $\Theta \triangleq (\theta_{ij}) \triangleq \check{\mathbf{R}}, i, j = 1, \ldots, 16.$

We now apply SD after restricting S to square QAM constellations, i.e., assuming $u_i \in \mathcal{X}$, where \mathcal{X} is a PAM constellation, so that $S = \mathcal{X}^2$. The sphere detector finds

$$\hat{\mathbf{u}} = \arg\min_{\mathbf{u}\in\mathcal{X}} \|\mathbf{v} - \Theta \mathbf{u}\|^2$$
(22)

where $\hat{\mathbf{u}} = {\{\hat{u}_i\}}$, with $i = 1, \dots, 16$ and $\hat{u}_i \in \mathcal{X}$. It was pointed out in [10] that the search procedure of a SD can be visualized as a bounded tree search. If *standard* real SD is

used for 4×2 STBCs, the decoding tree has 16 levels. With our code, the structure of the codeword matrix allows us to use only a 12-level tree search, as shown in the following.

Let us define $\mathbf{u}_i^k \triangleq [u_i, \dots, u_k]^T$, i < k, as the partial symbol vector labeling the path connecting level *i* to level *k*. In our case, SD is only used to search the branches corresponding to \mathbf{u}_5^{16} , while the symbols in \mathbf{u}_1^4 are decoded as in an Alamouti code. We summarize this complexity reduction saying that a 12-dimensional real SD can be used *in lieu* of a 16-dimensional real SD.

Consider again a Schnorr-Euchner (SE) enumeration [9] to decode \mathbf{u}_5^8 . This starts at level *i*:

$$S_i(u_i) = \lfloor (v_i - \xi_i) / \theta_{ii} \rceil \in \mathfrak{X} \quad i = 16, \dots, 9$$
(23)

where $\lfloor \cdot \rceil$ denotes the closest integer, $\xi_{16} = 0$, $S_i(u_i)$ is the ZF-DFE component, and ξ_i is the *interference term* on level *i* from upper level *j*.

We define the *interference term* on level i from upper levels as

$$\xi_i \triangleq \sum_{j=i+1}^{16} \theta_{ij} u_j, \quad i = 16, \dots, 9$$
 (24)

Since S_3 is not the null matrix, we have nonzero interference terms. The SE algorithm visits the neighbors of the mid-point in a zig-zag order. Let us define

$$\Delta_i \triangleq \operatorname{sign}(v_i - \xi_i - \theta_{ii}u_i)$$

where sign(a) = +1 for $a \ge 0$; otherwise, sign(a) = -1. SE enumeration is used to search

$$u_i = \{S_i(u_i), S_i(u_i) + \Delta_i, S_i(u_i) - \Delta_i, \ldots\} \subset \mathcal{X}$$

In this tree search, a branch at level $i \in [9, 16]$ contributes to the ML metric by the amount

$$d_i(\mathbf{u}_9^{16}) \triangleq |v_i - \xi_i - \theta_{ii} u_i|^2 \qquad 9 \le i \le 16$$
 (25)

The corresponding path metric is given by

$$T_{i-1} \triangleq \sum_{j=i}^{16} d_j(\mathbf{u}_j^{16})$$
 (26)

When the SD reaches the decoding-tree levels $i \le 8$, a first complexity reduction is available. Given the vector \mathbf{u}_9^{16} , ξ_i can be computed for all the remaining levels $i = 1, \ldots, 8$:

$$\xi_i \triangleq \sum_{j=9}^{16} \theta_{ij} u_j$$

which saves a few multiplications in the computation of ξ_i in (24). Next, we proceed with the standard SD searching

procedure to find \mathbf{u}_5^8 . We obtain the remaining symbols as

$$S_{1}(u_{1}) = \left[\frac{(v_{1} - \xi_{1} - \frac{\Phi_{1}}{\sqrt{\mu}}u_{7})}{\mu}\right] \in \mathfrak{X}$$

$$S_{2}(u_{2}) = \left[\frac{(v_{2} - \xi_{2} - \frac{\Phi_{1}}{\sqrt{\mu}}u_{8})}{\mu}\right] \in \mathfrak{X}$$

$$S_{3}(u_{3}) = \left[\frac{(v_{3} - \xi_{3} + \frac{\Phi_{1}}{\sqrt{\mu}}u_{5})}{\mu}\right] \in \mathfrak{X}$$

$$S_{4}(u_{4}) = \left[\frac{(v_{4} - \xi_{4} + \frac{\Phi_{1}}{\sqrt{\mu}}u_{6})}{\mu}\right] \in \mathfrak{X}$$
(27)

We say that the remaining four-level tree search in SD is not necessary, or, equivalently, that a 12-dimensional real SD replaces the standard 16-dimensional one.

At this point, we have a valid vector $\mathbf{u} = [\mathbf{u}_1^8, \mathbf{u}_9^{16}]$. We then compute the corresponding branch and path metrics in (25) and (26), respectively. This completes the search of one path in the 12-dimensional bounded tree. The detailed decoding algorithm is given below.

- 1) (Input) Input Φ_1 and α .
- 2) (Initialization) Set i = 16, $T_{16} = 0$, $\xi_{16} = 0$, and $d_c = C_0$ (current squared radius of the sphere).
- 3) Set $u_i = \lfloor (v_i \xi_i) / \theta_{ii} \rfloor$ and $\Delta_i = \operatorname{sign}(v_i \xi_i \theta_{ii}u_i)$.
- 4) (Main step of SD) If d_c < T_i + |v_i − ξ_i − θ_{ii}u_i|², then go to Step 5 (outside of the sphere). Else if u_i is not in X go to Step 7 (inside of the sphere, outside of the signal set).

Else (inside of the sphere, inside of the signal set)

- If $i \ge 9$ then { $T_{i-1} = T_i + |r_i u \xi_i \theta_{ii} u_i|^2, \xi_{i-1} = \sum_{j=i+1}^{16} \theta_{ij} u_j, i = i-1$ go to Step 3 }.
- Else if $(i \ge 5)$ then { $T_{i-1} = T_i + |v_i u \xi_i \theta_{ii} u_i|^2, \xi_{i-1} = \sum_{j=9}^{16} \theta_{ij} u_j, i = i-1$ go to Step 3}.
- Else (i = 4) {Compute u_k using (27) and $T_{k-1} = T_k + |v_k \sum_{j=k}^m \theta_{kj} u_j|^2, k = i, ..., 1$, then go to Step 6}.
- 5) If i = 16 then terminate; else set i = i + 1 and go to Step 7.
- 6) (A valid vector is found) Let $d_c = T_0$, save $\hat{\mathbf{u}} = \mathbf{u}$. Then i = i + 1 go to Step 7.
- 7) (SE enumeration of level *i*) Let $u_i = u_i + \Delta_i$, $\Delta_i = -\Delta_i \operatorname{sign}(\Delta_i)$, go to Step 4.

B. Complexity Reduction

Summarizing, we observe the following reductions of decoding complexity:

• We use a 12-dimensional real SD to find \mathbf{u}_5^{16} . Then, we subtract the interference terms from \mathbf{u}_5^{16} (see (27)). Finally, the partial symbol vector \mathbf{u}_1^4 can be computed directly. We see that the standard 16-dimensional real SD is not necessary.

• The interference term ξ_i at level i, i = 1, ..., 8, admits simple calculation.

In other terms, we observe that the worst-case decoding complexity of fast-decodable STBCs is $2M^7$, as compared to a standard SD complexity M^8 . This is due to the fact that:

- A 12-dimensional real SD (6-dimensional complex SD) requires M^6 branch metric computations,
- In each branch of the 6-dimensional tree, part of decoding can be treated as Alamouti decoding, resulting in 2*M* branch-metric computations.

Moreover, if two hard-decision, symbol-by-symbol decoding steps in each branch of the 6-dimensional real SD are taken, the decoding complexity does not exceed $2M^6$.

VI. CONCLUSION

Motivated by the fast-decodable 2×2 STBC in [1,3], we present a new family of full-rate STBC for 4×2 MIMO. First, using a combination of both algebraic and quasi-orthogonal STBC structures, we exhibit a new STBC in this family which outperforms any known code for 4×2 MIMO. Second, for the proposed STBC, we propose a reduced-complexity sphere decoding algorithm, which enables using only a 12-dimensional real SD, rather than the standard 16-dimensional SD.

REFERENCES

- J. Paredes, A. B. Gershman, and M. G. Alkhanari, "A 2 × 2 space-time code with non-vanishing determinants and fast maximum likelihood decoding," in *Proc. ICASSP*, Honolulu, Hawaii, USA, April 2007.
- [2] S. M. Alamouti, "A simple transmit diversity technique for wireless communications," *IEEE J. Select. Areas Commun.*, vol. 16, no. 8, pp. 1451–1458, October 1998.
- [3] A. Hottinen and O. Tirkkonen, "Precoder designs for high rate spacetime block codes," Proc. CISS 2004, Princeton, March 17-19, 2004.
- [4] M. Samuel and M. P. Fitz, "Reducing the detection complexity by using 2 × 2 multi-strata space-time codes," *Proc. IEEE ISIT 2007*, pp. 1946– 1950, Nice, France, June 2007.
- [5] V. Tarokh, N. Seshadri and A. R. Calderbank, "Space-time codes for high data rate wireless communications: Performance criterion and code construction," *IEEE Trans. Inform. Theory*, vol. 44, no. 2, pp. 744–765, March 1998.
- [6] J.-C. Belfiore, G. Rekaya, and E. Viterbo, "The Golden Code: A 2 × 2 full-rate space-time code with non-vanishing determinants," *IEEE Trans. Inform. Theory*, vol. 51, no. 4, pp. 1432–1436, Apr. 2005.
- [7] E. Viterbo and E. Biglieri, "A universal lattice decoder," in GRETSI 14-enne Colloque, Juan-les-Pins, France, Sept. 1993.
- [8] E. Viterbo and J. Boutros, "A universal lattice code decoder for fading chanel," *IEEE Trans. Inform. Theory*, vol. 45, pp. 1639–1642, July 1999.
- [9] C.-P. Schnorr and M. Euchner, "Lattice basis reduction: Improved practical algorithms and solving subset sum problems," *Mathematical Programming*, vol. 66, pp. 181–199, 1994.
- [10] M. O. Damen, H. El Gamal, and G. Caire, "On maximum-likelihood detection and the search for the closest lattice point," *IEEE Trans. Inform. Theory*, vol. 49, no. 10, pp. 2389–2402, October 2003.
- [11] H. Jafarkhani, "A quasi-orthogonal space-time block code," in *IEEE Trans. Commun.*, vol. 49, no. 1, pp. 1–4, January 2001.
- [12] F. Oggier, G. Rekaya, J.-C. Belfiore, and E. Viterbo, "Perfect spacetime block codes," *IEEE Trans. Inform. Theory*, vol. 52, no. 9, pp. 3885–3902, September 2006.
- [13] Y. Hong, E. Viterbo, and J.-C. Belfiore, "A space-time block coded multiuser MIMO downlink transmission scheme," *Proc. IEEE ISIT*, pp. 257–261, Seattle, WA, June–July 2006.