A Fast-Decodable, Quasi-Orthogonal Space-Time Block Code for 4×2 MIMO

Ezio Biglieri
Universitat Pompeu Fabra
Barcelona, Spain
e.biglieri@ieee.org

Yi Hong
DEIS - Università della Calabria
via P. Bucci 42C, Rende (CS), Italy
hong@deis.unical.it

Emanuele Viterbo
Nokia Research Center
FIN-00045 Nokia Research Group, Finland
emanuele.viterbo@nokia.com

Abstract

In this paper we present a new family of fullrate space-time block codes for 4×2 MIMO. We show how, by combining algebraic and quasi-orthogonal properties of the code, reduced-complexity maximum-likelihood decoding is made possible. In particular, the sphere decoder search can be reduced from a 16 - to a 12 -dimensional space. Within this family, we found a code that outperforms all previously proposed codes for 4×2 MIMO. ${ }^{1}$

I. Introduction

In a recent paper, Paredes et al. [1] have shown how to construct a family of fast-decodable, full-rate, full-rank spacetime block codes (STBCs) for 2×2 MIMO. The maximumlikelihood (ML) decoder can be simplified to a 4-dimensional sphere decoder followed by an Alamouti detector [2]. The best code within this family coincides with a code originally found by Hottinen and Tirkkonen [3], and recently independently rediscovered in [4].

Motivated by the above, we extend the concept of fastdecodable STBC code design to 4×2 MIMO. In particular, we present a new family of full-rate STBC that combines algebraic and quasi-orthogonal structures and enables a complexity reduction of its ML decoder. Note that in the 4×2 case, the full-rank assumption is dropped. At the receiver, only a 12 -dimensional real sphere decoder (SD) is needed to conduct the ML search, rather than the standard 16 -dimensional SD. Finally, within this family, we found a code that outperforms all previously proposed $4 \times 2 \mathrm{STBCs}$ for 4 -QAM signal constellation.

The balance of this paper is organized as follows. Section II introduces system model and code design criteria. In Section III, we give a brief review of the known fast-decodable STBCs for 2×2 MIMO. In Section IV, we present the new fast-decodable STBC for 4×2 MIMO. In Section V, the corresponding fast decoding algorithm is exhibited. Finally, conclusions are drawn in Section VI.

A. Notations

The following notations will be adopted: Boldface letters are used for column vectors, and capital boldface letters for

[^0]matrices. Superscripts ${ }^{T},^{\dagger}$, and ${ }^{*}$ denote transposition, Hermitian transposition, and complex conjugation, respectively. \mathbb{Z}, \mathbb{C}, and $\mathbb{Z}[j]$ denote the ring of rational integers, the field of complex numbers, and the ring of Gaussian integers, respectively, where $j^{2}=-1$. Also, \mathbf{I}_{n} denotes the $n \times n$ identity matrix, and $\mathbf{0}_{m \times n}$ denotes the $m \times n$ matrix all of whose elements are 0 .

Given a complex number x, we define the (\cdot) operator from \mathbb{C} to \mathbb{R}^{2} as

$$
\tilde{x} \triangleq[\Re(x), \Im(x)]
$$

where $\Re(\cdot)$ and $\Im(\cdot)$ denote the real and imaginary parts of a complex number. The (\cdot) operator can be extended to complex vectors $\mathbf{x}=\left[x_{1}, \ldots x_{n}\right] \in \mathbb{C}^{n}$ as

$$
\tilde{\mathbf{x}} \triangleq\left[\tilde{x}_{1}, \ldots \tilde{x}_{n}\right]^{T}
$$

where $(\cdot)^{T}$ denotes vector transposition. The (\cdot) operator from \mathbb{C} to $\mathbb{R}^{2 \times 2}$ is defined as

$$
\check{x} \triangleq\left[\begin{array}{cc}
\Re(x) & -\Im(x) \\
\Im(x) & \Re(x)
\end{array}\right]
$$

The (.) operator can be similarly extended to matrices so that a complex matrix times a complex vector can be equivalently written as

$$
\widetilde{\mathbf{A x}}=\check{\mathbf{A}} \tilde{\mathbf{x}}
$$

The $\operatorname{vec}(\cdot)$ operator stacks the m column vectors of a $n \times$ m complex matrix into a $m n$ complex column vector. The $\|\cdot\|$ operation denotes the Euclidean norm of a vector, and the Frobenius norm of a matrix. Finally, the Hermitian inner product of two complex column vectors \mathbf{a} and \mathbf{b} is denoted by

$$
\langle\mathbf{a}, \mathbf{b}\rangle \triangleq \mathbf{a}^{T} \mathbf{b}^{*}
$$

II. System Model and Code Design Criteria

We consider a $n_{t} \times n_{r}$ MIMO system over block fading channels. At discrete time t, the received signal matrix $\mathbf{Y} \in$ $\mathbb{C}^{n_{r} \times T}$ is given by

$$
\begin{equation*}
\mathbf{Y}=\mathbf{H X}+\mathbf{N} \tag{1}
\end{equation*}
$$

where $\mathbf{X} \in \mathbb{C}^{n_{t} \times T}$ is the codeword matrix, transmitted over T channel uses. Moreover, $\mathbf{N} \in \mathbb{C}^{n_{r} \times T}$ is a complex white Gaussian noise with i.i.d. entries $\sim \mathcal{N}_{\mathbb{C}}\left(0, N_{0}\right)$, and $\mathbf{H}=$
$\left[h_{i \ell}\right] \in \mathbb{C}^{n_{r} \times n_{t}}$ is the channel matrix, assumed to remain constant during the transmission of a codeword, and to take on independent values from codeword to codeword. The elements of \mathbf{H} are assumed to be i.i.d. circularly symmetric Gaussian random variables $\sim \mathcal{N}_{\mathbb{C}}(0,1)$. The realization of \mathbf{H} is assumed to be known at the receiver, but not at the transmitter.

The following definitions are relevant here:
Definition 1: (Code rate) The code rate of a STBC is defined as the number κ of independent information symbols per codeword, drawn from a complex constellation \mathcal{S}. If $\kappa=n_{r} T$, the STBC is said to have full rate.

Consider now ML decoding. This consists of finding the code matrix \mathbf{X} that achieves the minimum of the squared norm $m(\mathbf{X}) \triangleq\|\mathbf{Y}-\mathbf{H X}\|^{2}$.

Definition 2: (Decoding Complexity) The ML decoding complexity can be measured by counting the minimum number of values of $m(\mathbf{X})$ that should be computed in ML decoding. This number cannot exceed M^{κ}, with $M=|\mathcal{S}|$, the worst-case decoding complexity achieved by an exhaustivesearch ML decoder.

Definition 3: (Simplified decoding) We say that a STBC admits simplified decoding if ML decoding can be achieved with less than M^{κ} computations of $m(\mathbf{X})$.

Assuming that the codeword \mathbf{X} is transmitted, it may occur that $\|\mathbf{Y}-\mathbf{H X}\|^{2}>\|\mathbf{Y}-\mathbf{H} \widehat{\mathbf{X}}\|^{2}$, with $\widehat{\mathbf{X}} \neq \mathbf{X}$, resulting in a pairwise error. Let r denote the rank of the codeworddifference matrix $\mathbf{X}-\widehat{\mathbf{X}}$, with $\widehat{\mathbf{X}} \neq \mathbf{X}$, and let $\mathbf{E} \triangleq(\mathbf{X}-$ $\widehat{\mathbf{X}})(\mathbf{X}-\widehat{\mathbf{X}})^{\dagger}$ be the codeword-distance matrix. Let δ denote the product of non-zero eigenvalues of the codeword distance matrix \mathbf{E}. The error probability of a STBC is upper-bounded by the following union bound:

$$
\begin{align*}
P(e) & \leq \frac{1}{M^{\kappa}} \sum_{\mathbf{X}} \sum_{\mathbf{X} \neq \hat{\mathbf{X}}} P(\mathbf{X} \rightarrow \hat{\mathbf{X}}) \\
& =\frac{1}{M^{\kappa}} \sum_{r} \sum_{\delta} A(r, \delta) P(r, \delta) \tag{2}
\end{align*}
$$

where $P(\mathbf{X} \rightarrow \hat{\mathbf{X}})$ denotes the pairwise error probability (PEP) among all distinct $(\mathbf{X}, \hat{\mathbf{X}})$. The term $P(r, \delta)$ represents the PEP of the codewords with rank r and eigenvalue product δ, while $A(r, \delta)$ denotes the associated multiplicity.

Definition 4: (Full-diversity STBC) A full-diversity STBC is one with $r=n_{t}$ over all possible codeword-difference matrices.

For a full-diversity STBC, the worst-case PEP depends asymptotically, for high signal-to-noise ratios, on both the rank $r=n_{t}$ and the minimum determinant of the codeword distance matrix

$$
\delta_{\min } \triangleq \min _{\mathbf{X} \neq \widehat{\mathbf{X}}} \operatorname{det}(\mathbf{E})
$$

The "rank-and-determinant criterion" (RDC) of code design requires the maximization of both r and $\delta_{\min }$. This criterion yields diversity gain $n_{r} n_{t}$ and coding gain $\left(\delta_{\min }\right)^{1 / n_{t}}$ [5].

For a non full-diversity STBC, the minimum determinant equals to zero. In such a case, we have to minimize the associated multiplicity of the dominant pairwise terms of rank $r \leq n_{t}$ independently of their product distance.

III. FAST-DECODABLE CODES FOR 2×2 MIMO

Consider now 2×2 STBCs. These are full-rate and fulldiversity if $\kappa=4$ symbols/codeword, and $r=n_{t}$.

Definition 5: (Fast-decodable STBCs for 2×2 MIMO) A 2×2 STBC allows fast ML decoding if its complexity does not exceed $2 M^{3}$.

Here we examine 2×2 fast-decodable STBCs endowed with the following structure [3]:

$$
\begin{equation*}
\mathbf{X}=\mathbf{X}_{a}\left(x_{1}, x_{2}\right)+\mathbf{T} \mathbf{X}_{b}\left(z_{1}, z_{2}\right) \tag{3}
\end{equation*}
$$

where

$$
\mathbf{T}=\left[\begin{array}{cc}
1 & 0 \tag{4}\\
0 & -1
\end{array}\right] \quad \text { and } \quad \mathbf{X}_{a}\left(x_{1}, x_{2}\right)=\left[\begin{array}{cc}
x_{1} & -x_{2}^{*} \\
x_{2} & x_{1}^{*}
\end{array}\right]
$$

is an Alamouti 2×2 space-time block codeword [2], and $x_{1}, x_{2} \in \mathbb{Z}[j]$. Moreover, we have

$$
\mathbf{X}_{b}\left(z_{1}, z_{2}\right)=\left[\begin{array}{cc}
z_{1} & -z_{2}^{*} \tag{5}\\
z_{2} & z_{1}^{*}
\end{array}\right] \text { and }\left[\begin{array}{l}
z_{1} \\
z_{2}
\end{array}\right]=\mathbf{U}\left[\begin{array}{l}
x_{3} \\
x_{4}
\end{array}\right]
$$

where $z_{1}, z_{2} \in \mathbb{C}, \quad x_{3}, x_{4} \in \mathbb{Z}[j]$, and $\mathbf{U} \in \mathbb{C}^{2 \times 2}$ is the unitary matrix

$$
\mathbf{U}=\left[\begin{array}{cc}
\varphi_{1} & -\varphi_{2}^{*} \\
\varphi_{2} & \varphi_{1}^{*}
\end{array}\right]
$$

with $\left|\varphi_{1}\right|^{2}+\left|\varphi_{2}\right|^{2}=1$. Vectorizing, and separating real and imaginary parts, the matrices \mathbf{X} yield

$$
\widetilde{\operatorname{vec}(\mathbf{X})}=\mathbb{G}_{1}\left[\tilde{x}_{1}, \tilde{x}_{2}\right]^{T}+\mathbb{G}_{2}\left[\tilde{x}_{3}, \tilde{x}_{4}\right]^{T}
$$

where $\mathbb{G}_{1}, \mathbb{G}_{2} \in \mathbb{R}^{8 \times 4}$ are the generator matrices of \mathbf{X}_{a} and $\mathbf{T X}_{b}$, respectively. Note that the matrix \mathbf{T} is chosen in order to guarantee that the subspace spanned by the columns of \mathbf{R}_{2} is orthogonal to the one spanned by the columns of \mathbf{R}_{1}. This implies that the code has cubic shaping (or that is information lossless).

The matrix \mathbf{U} is chosen in order to achieve full rank and maximize the minimum determinant. The best code of the form (3) was first proposed in [3] under the name twisted space-time transmit diversity code, and recently rediscovered independently in [1]. It is characterized by the following choice of the unitary matrix \mathbf{U} :

$$
\mathbf{U}=\frac{1}{\sqrt{7}}\left[\begin{array}{cc}
1+j & -1+2 j \\
1+2 j & 1-j
\end{array}\right]
$$

This code was also found in [4] by numerical optimization, and classified under the rubric of multi-strata space-time codes. This code has minimum determinant $\delta_{\min }=16 / 7$ for 4-QAM signalling, which is smaller than the Golden code $\left(\delta_{\min }=16 / 5\right)$ [6].

At the receiver, due to the linearity of the code, a sphere decoder can be employed. It was pointed out both in [1] and in [4] that the code in (3) admits a low-complexity decoder thanks to orthogonality properties of the two component codes in (3).

IV. New STBC FOR 4×2 MIMO Systems

Here we design a fast-decodable 4×2 STBC based on the concepts elaborated upon in the previous sections. We first introduce the relevant definitions.

Definition 6: (Quasi-orthogonal structure) [11] A code such that

$$
\mathbf{X}=\left[\begin{array}{rrrr}
x_{1} & -x_{2}^{*} & -x_{3}^{*} & x_{4} \\
x_{2} & x_{1}^{*} & -x_{4}^{*} & -x_{3} \\
x_{3} & -x_{4}^{*} & x_{1}^{*} & -x_{2} \\
x_{4} & x_{3}^{*} & x_{2}^{*} & x_{1}
\end{array}\right]
$$

where $x_{i} \in \mathbb{C}, i=1, \ldots, 4$, is said to have a quasi-orthogonal structure. Note that quasi-orthogonal STBCs are not full rank, and $r=2$.

Definition 7: (Full-rate, fast-decodable STBC for 4×2 MIMO) A full-rate, fast-decodable STBC for $4 \times 2 \mathrm{MIMO}$, denoted \mathcal{G}^{\prime}, has $\kappa=8$ symbols/codeword, and can be decoded by a 12 -dimensional real SD algorithm (rather than the standard 16-dimensional SD).

The 4×4 codeword matrix $\mathbf{X} \in \mathcal{G}^{\prime}$ encodes eight QAM symbols $\mathbf{x}=\left[x_{1}, \ldots, x_{8}\right] \in \mathbb{Z}[j]$, and is transmitted by using the channel four times, i.e., $T=4$. Following the idea of the previous section, we choose the following codeword structure:

$$
\begin{equation*}
\mathbf{X}=\mathbf{X}_{a}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)+\mathbf{T} \mathbf{X}_{b}\left(z_{1}, z_{2}, z_{3}, z_{4}\right) \tag{6}
\end{equation*}
$$

where

$$
\mathbf{T}=\left[\begin{array}{rrrr}
1 & 0 & 0 & 0 \tag{7}\\
0 & 1 & 0 & 0 \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & -1
\end{array}\right]
$$

is used to preserve the orthogonality between the two components of the code (similarly to the codes of previous section), and

$$
\mathbf{X}_{a}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=\left[\begin{array}{rrrr}
x_{1} & -x_{2}^{*} & -x_{3}^{*} & x_{4} \tag{8}\\
x_{2} & x_{1}^{*} & -x_{4}^{*} & -x_{3} \\
x_{3} & -x_{4}^{*} & x_{1}^{*} & -x_{2} \\
x_{4} & x_{3}^{*} & x_{2}^{*} & x_{1}
\end{array}\right]
$$

follows the quasi-orthogonal STBC structure of [11], where $x_{1}, x_{2}, x_{3}, x_{4} \in \mathbb{Z}[j]$. The remaining matrix in (6) is defined as

$$
\mathbf{X}_{b}\left(z_{1}, z_{2}, z_{3}, z_{4}\right)=\left[\begin{array}{rrrr}
z_{1} & -z_{2}^{*} & -z_{3}^{*} & z_{4} \tag{9}\\
z_{2} & z_{1}^{*} & -z_{4}^{*} & -z_{3} \\
z_{3} & -z_{4}^{*} & z_{1}^{*} & -z_{2} \\
z_{4} & z_{3}^{*} & z_{2}^{*} & z_{1}
\end{array}\right]
$$

with

$$
\left[\begin{array}{l}
z_{1} \tag{10}\\
z_{2} \\
z_{3} \\
z_{4}
\end{array}\right]=\mathbf{U}\left[\begin{array}{l}
x_{5} \\
x_{6} \\
x_{7} \\
x_{8}
\end{array}\right]
$$

where $z_{i} \in \mathbb{C}, \quad x_{k} \in \mathbb{Z}[j], i=1, \ldots, 4, k=5, \ldots, 8$ and

$$
\mathbf{U}=\left[\boldsymbol{\varphi}_{1}\left|\boldsymbol{\varphi}_{2}\right| \boldsymbol{\varphi}_{3} \mid \boldsymbol{\varphi}_{4}\right]=\left[\begin{array}{llll}
\varphi_{11} & \varphi_{12} & \varphi_{13} & \varphi_{14} \\
\varphi_{21} & \varphi_{22} & \varphi_{23} & \varphi_{24} \\
\varphi_{31} & \varphi_{32} & \varphi_{33} & \varphi_{34} \\
\varphi_{41} & \varphi_{42} & \varphi_{43} & \varphi_{44}
\end{array}\right]
$$

is a 4×4 unitary matrix. Note that 1) The matrix \mathbf{T} guarantees cubic shaping, and 2) Since the matrix \mathbf{X}_{a} has a quasiorthogonal structure, the code is not full rank: in fact, it has $r=2$. As a consequence, we conduct a search over the matrices \mathbf{U} leading to the minimum of $\sum_{\delta} A(2, \delta)$. The term $A(2, \delta)$ represents the total number of codeword difference matrices of rank 2 and product distance δ. Since an exhaustive search through all 4×4 unitary matrices is too complex, we focus on those with the form

$$
\begin{equation*}
\mathbf{U}=\mathbf{D F} \tag{12}
\end{equation*}
$$

where $\mathbf{F} \triangleq[\exp (j 2 \pi \ell n / 4)]_{\ell, n=1, \ldots, 4}$ is a 4×4 discrete-Fourier-transform matrix, and $\mathbf{D} \triangleq \operatorname{diag}\left(\exp \left(j 2 \pi n_{\ell} / N\right)\right.$ for some integers N, ℓ, with $0 \leq n_{\ell}<N$ and $\ell=1, \ldots, 4$.

For 4-QAM signaling, taking $N=7$ and $n_{\ell}=1,2,5,6$, we have obtained
$\mathbf{U}=\left[\begin{array}{rrrr}0.31+0.39 i & 0.31+0.39 i & 0.31+0.39 i & 0.31+0.39 i \\ -0.11+0.49 i & -0.49-0.11 i & 0.11-0.49 i & 0.49+0.11 i \\ -0.11-0.49 i & 0.11+0.49 i & -0.11-0.49 i & 0.11+0.49 i \\ 0.31-0.39 i & -0.39-0.31 i & -0.31+0.39 i & 0.39+0.31 i\end{array}\right]$
which yields the minimum $\sum_{\delta} A(2, \delta)$.
Under 4-QAM signaling, we compare the minimum determinants $\delta_{\text {min }}$ and their associated multiplicities $A\left(r, \delta_{\min }\right)$, as well as the codeword-error rates (CERs) of the above STBC to the following 4×2 codes:

1) Code with the structure (6), with \mathbf{U} the 4×4 "perfect" rotation matrix [12].
2) The best DjABBA code of [3].
3) The "perfect" two-layer code of [13].

Determinant and multiplicity values are shown in Table I. It can be seen that the proposed 4×2 STBC has the minimum $\sum_{\delta} A(2, \delta)$, when compared to the rank-2 code with perfect rotation matrix \mathbf{U} in [12]. The CERs are shown in Fig. 1. The proposed code achieves the best CER up to 10^{-5}. Due to diversity loss, the performance curve of the new code and the one of DjABBA cross over at $\mathrm{CER}=10^{-5}$.

Codes	$\delta_{\min }$	Multiplicity
New STBC	0	$\sum_{\delta} A(2, \delta)=160$
Perfect Code U matrix	0	$\sum_{\delta} A(2, \delta)=560$
DjABBA	0.8304	$A(4,0.8304)=770$
Two-Layers Perfect Code	0.0016	$A(4,0.0016)=128$

TABLE I
Minimum determinants of 4×2 StBCs with 4 -QAM signaling

Fig. 1. Comparison of the CER of different 4×2 STBCs with 4 -QAM signaling.

V. Low-Complexity Decoding for 4×2 MIMO

In this section, we first analyze the sphere decoding process, next we discuss the complexity reduction.
A. Sphere Decoding for 4×2 MIMO

Let $\mathbf{Y}=\left[y_{\ell n}\right] \in \mathbb{C}^{2 \times 4}, \mathbf{H}=\left[h_{\ell_{n}}\right] \in \mathbb{C}^{2 \times 4}$, and $\mathbf{N}=$ $\left[n_{\ell n}\right] \in \mathbb{C}^{2 \times 4}$. After vectorization, we obtain

$$
\begin{equation*}
\mathbf{y}=\mathcal{H} \mathbf{x}+\mathbf{n} \tag{13}
\end{equation*}
$$

where

$$
\begin{aligned}
& \mathbf{y} \triangleq\left[y_{11}, y_{12}^{*}, y_{13}^{*}, y_{14}, y_{21}, y_{22}^{*}, y_{23}^{*}, y_{24}\right]^{T} \\
& \mathbf{n} \triangleq\left[n_{11}, n_{12}^{*}, n_{13}^{*}, n_{14}, n_{21}, n_{22}^{*}, n_{23}^{*}, n_{24}\right]^{T} \\
& \mathbf{x} \triangleq\left[x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}, x_{7}, x_{8}\right]^{T}
\end{aligned}
$$

and

$$
\begin{equation*}
\mathcal{H} \triangleq\left[\mathbf{F}_{1} \mid \mathbf{F}_{2}\right] \tag{14}
\end{equation*}
$$

where

$$
\mathbf{F}_{1}=\left[\mathbf{f}_{1}\left|\mathbf{f}_{2}\right| \mathbf{f}_{3} \mid \mathbf{f}_{4}\right]=\left[\begin{array}{cccc}
h_{11} & h_{12} & h_{13} & h_{14} \\
h_{12}^{*} & -h_{11}^{*} & h_{14}^{*} & -h_{13}^{*} \\
h_{13}^{*} & h_{14}^{*} & -h_{11}^{*} & -h_{12}^{*} \\
h_{14} & -h_{13} & -h_{12} & h_{11} \\
h_{21} & h_{22} & h_{23} & h_{24} \\
h_{22}^{*} & -h_{21}^{*} & h_{24}^{*} & -h_{23}^{*} \\
h_{23}^{*} & h_{24}^{*} & -h_{21}^{*} & -h_{22}^{*} \\
h_{24} & -h_{23} & -h_{22} & h_{21}
\end{array}\right]
$$

and $\mathbf{F}_{2}=\left[\mathbf{f}_{5}\left|\mathbf{f}_{6}\right| \mathbf{f}_{7} \mid \mathbf{f}_{8}\right]$ with

$$
\mathbf{f}_{5}=\mathbf{M} \boldsymbol{\varphi}_{1} \quad \mathbf{f}_{6}=\mathbf{M} \boldsymbol{\varphi}_{2} \quad \mathbf{f}_{7}=\mathbf{M} \boldsymbol{\varphi}_{3} \quad \mathbf{f}_{8}=\mathbf{M} \boldsymbol{\varphi}_{4}
$$

where

$$
\mathbf{M}=\left[\begin{array}{cccc}
h_{11} & h_{12} & -h_{13} & -h_{14} \\
h_{12}^{*} & -h_{11}^{*} & -h_{14}^{*} & h_{13}^{*} \\
-h_{13}^{*} & -h_{14}^{*} & -h_{11}^{*} & -h_{12}^{*} \\
-h_{14} & h_{13} & -h_{12} & h_{11} \\
h_{21} & h_{22} & -h_{23} & -h_{24} \\
h_{22}^{*} & -h_{21}^{*} & -h_{24}^{*} & h_{23}^{*} \\
-h_{23}^{*} & -h_{24}^{*} & -h_{21}^{*} & -h_{22}^{*} \\
-h_{24} & h_{23} & -h_{22} & h_{21}
\end{array}\right]
$$

We conduct the $Q R$ decomposition of \mathcal{H}, i.e., $\mathcal{H}=\mathbf{Q R}$, where $\mathbf{Q} \in \mathbb{C}^{8 \times 8}$ is an unitary matrix and $\mathbf{R} \in \mathbb{C}^{8 \times 8}$ is an upper-triangular matrix. Here \mathbf{Q} and \mathbf{R} are given by

$$
\begin{aligned}
\mathbf{Q} & =\left[\mathbf{e}_{1}\left|\mathbf{e}_{2}\right| \mathbf{e}_{3}\left|\mathbf{e}_{4}\right| \mathbf{e}_{5}\left|\mathbf{e}_{6}\right| \mathbf{e}_{7} \mid \mathbf{e}_{8}\right] \\
\mathbf{R} & =\left[\begin{array}{ccccc}
\left\|\mathbf{d}_{1}\right\| & \left\langle\mathbf{f}_{2}, \mathbf{e}_{1}\right\rangle & \left\langle\mathbf{f}_{3}, \mathbf{e}_{1}\right\rangle & \cdots & \left\langle\mathbf{f}_{8}, \mathbf{e}_{1}\right\rangle \\
0 & \left\|\mathbf{d}_{2}\right\| & \left\langle\mathbf{f}_{3}, \mathbf{e}_{2}\right\rangle & \cdots & \left\langle\mathbf{f}_{8}, \mathbf{e}_{2}\right\rangle \\
0 & 0 & \left\|\mathbf{d}_{3}\right\| & \cdots & \left\langle\mathbf{f}_{8}, \mathbf{e}_{3}\right\rangle \\
\vdots & \ddots & \ddots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & \left\|\mathbf{d}_{8}\right\|
\end{array}\right]
\end{aligned}
$$

The QR decomposition is related to the Gram-Schmidt
orthogonalization algorithm through the following equations:

$$
\begin{aligned}
& \mathbf{u}_{1}=\mathbf{f}_{1}, \quad \mathbf{e}_{1}=\frac{\mathbf{u}_{1}}{\left\|\mathbf{u}_{1}\right\|} \\
& \mathbf{u}_{i}=\mathbf{f}_{i}-\sum_{j=1}^{i-1} \operatorname{Proj}_{\mathbf{e}_{j}} \mathbf{f}_{i}, \quad \mathbf{e}_{i}=\frac{\mathbf{u}_{i}}{\left\|\mathbf{u}_{i}\right\|}, \quad i=2, \cdots, 8
\end{aligned}
$$

where $\operatorname{Proj}_{\mathbf{u}} \mathbf{v} \triangleq \frac{\langle\mathbf{v}, \mathbf{u}\rangle}{\langle\mathbf{u}, \mathbf{u}\rangle} \mathbf{u}$. Direct computation shows that \mathbf{R} has the following properties:

1) $\left\langle\mathbf{f}_{2}, \mathbf{e}_{1}\right\rangle=0$
2) $\mu \triangleq\left\|\mathbf{d}_{i}\right\|^{2}=\sum_{i=1}^{2} \sum_{j=1}^{4}\left|h_{i j}\right|^{2}$
3) $\left\langle\mathbf{f}_{4}, \mathbf{e}_{1}\right\rangle=-\left\langle\mathbf{f}_{3}, \mathbf{e}_{2}\right\rangle=\Phi_{1} / \sqrt{\mu}$ where $\Phi_{1} \triangleq$ $2 \Re\left(h_{11}^{*} h_{14}+h_{21} h_{24}^{*}-h_{12} h_{13}^{*}-h_{22} h_{23}^{*}\right)$
4) $\gamma \triangleq\left\|\mathbf{d}_{i}\right\|^{2}=\mu-\Phi_{1}^{2} / \mu$ with $i=3,4$
5)

$$
\mathbf{R}=\left[\begin{array}{cc}
\mathbf{S}_{1} & \mathbf{S}_{2} \tag{15}\\
\mathbf{0}_{4 \times 4} & \mathbf{S}_{3}
\end{array}\right]
$$

where

$$
\begin{gather*}
\mathbf{S}_{1}=\left[\begin{array}{cccc}
\sqrt{\mu} & 0 & 0 & \Phi_{1} \\
0 & \sqrt{\mu} & -\Phi_{1} & 0 \\
0 & 0 & \sqrt{\gamma} & 0 \\
0 & 0 & 0 & \sqrt{\gamma}
\end{array}\right] \tag{16}\\
\mathbf{S}_{2}=\left[\begin{array}{cccc}
\left\langle\mathbf{f}_{5}, \mathbf{e}_{1}\right\rangle & \left\langle\mathbf{f}_{6}, \mathbf{e}_{1}\right\rangle & \left\langle\mathbf{f}_{7}, \mathbf{e}_{1}\right\rangle & \left\langle\mathbf{f}_{8}, \mathbf{e}_{1}\right\rangle \\
\left\langle\mathbf{f}_{5}, \mathbf{e}_{2}\right\rangle & \left\langle\mathbf{f}_{6}, \mathbf{e}_{2}\right\rangle & \left\langle\mathbf{f}_{7}, \mathbf{e}_{2}\right\rangle & \left\langle\mathbf{f}_{8}, \mathbf{e}_{2}\right\rangle \\
\left\langle\mathbf{f}_{5}, \mathbf{e}_{3}\right\rangle & \left\langle\mathbf{f}_{6}, \mathbf{e}_{3}\right\rangle & \left\langle\mathbf{f}_{7}, e_{3}\right\rangle & \left\langle\mathbf{f}_{8}, \mathbf{e}_{3}\right\rangle \\
\left\langle\mathbf{f}_{5}, \mathbf{e}_{4}\right\rangle & \left\langle\mathbf{f}_{6}, \mathbf{e}_{4}\right\rangle & \left\langle\mathbf{f}_{7}, \mathbf{e}_{4}\right\rangle & \left\langle\mathbf{f}_{8}, \mathbf{e}_{4}\right\rangle
\end{array}\right] \tag{17}
\end{gather*}
$$

and

$$
\mathbf{S}_{3}=\left[\begin{array}{cccc}
\left\|\mathbf{d}_{5}\right\| & \left\langle\mathbf{f}_{6}, \mathbf{e}_{5}\right\rangle & \left\langle\mathbf{f}_{7}, \mathbf{e}_{5}\right\rangle & \left\langle\mathbf{f}_{8}, \mathbf{e}_{5}\right\rangle \tag{18}\\
0 & \left\|\mathbf{d}_{6}\right\| & \left\langle\mathbf{f}_{7}, \mathbf{e}_{6}\right\rangle & \left\langle\mathbf{f}_{8}, \mathbf{e}_{6}\right\rangle \\
0 & 0 & \left\|\mathbf{d}_{7}\right\| & \left\langle\mathbf{f}_{8}, \mathbf{e}_{7}\right\rangle \\
0 & 0 & 0 & \left\|\mathbf{d}_{8}\right\|
\end{array}\right]
$$

The QR decomposition allows us to rewrite (13) as

$$
\begin{equation*}
\mathbf{y}=\mathcal{H} \mathbf{x}+\mathbf{n}=\mathbf{Q R x}+\mathbf{n} \tag{19}
\end{equation*}
$$

Premultiplication of (19) by \mathbf{Q}^{\dagger} yields

$$
\begin{equation*}
\mathbf{r}=\mathbf{Q}^{\dagger} \mathbf{y}=\mathbf{R x}+\mathbf{w} \tag{20}
\end{equation*}
$$

Let $\mathbf{r}=\left[r_{1}, \ldots, r_{8}\right]^{T}$, and $\mathbf{w}=\mathbf{Q}^{\dagger} \mathbf{n}=\left[w_{1}, \ldots, w_{8}\right]^{T}$. Separating real and imaginary parts in (20), we obtain

$$
\begin{equation*}
\tilde{\mathbf{r}}=\check{\mathbf{R}} \tilde{\mathbf{x}}+\tilde{\mathbf{w}} \Longrightarrow \mathbf{v}=\Theta \mathbf{u}+\tilde{\mathbf{w}} \tag{21}
\end{equation*}
$$

where $\mathbf{v} \triangleq\left[v_{1}, \ldots, v_{16}\right]^{T}=\tilde{\mathbf{r}}, \mathbf{u} \triangleq\left[u_{1}, \ldots, u_{16}\right]^{T}=\tilde{\mathbf{x}}$, $\tilde{\mathbf{w}} \triangleq\left[\tilde{w}_{1}, \ldots, \tilde{w}_{8}\right]^{T}$, and $\Theta \triangleq\left(\theta_{i j}\right) \triangleq \check{\mathbf{R}}, i, j=1, \ldots, 16$.

We now apply SD after restricting \mathcal{S} to square QAM constellations, i.e., assuming $u_{i} \in X$, where X is a PAM constellation, so that $\mathcal{S}=\mathcal{X}^{2}$. The sphere detector finds

$$
\begin{equation*}
\hat{\mathbf{u}}=\arg \min _{\mathbf{u} \in X}\|\mathbf{v}-\Theta \mathbf{u}\|^{2} \tag{22}
\end{equation*}
$$

where $\hat{\mathbf{u}}=\left\{\hat{u}_{i}\right\}$, with $i=1, \ldots, 16$ and $\hat{u}_{i} \in X$. It was pointed out in [10] that the search procedure of a SD can be visualized as a bounded tree search. If standard real SD is
used for 4×2 STBCs, the decoding tree has 16 levels. With our code, the structure of the codeword matrix allows us to use only a 12 -level tree search, as shown in the following.

Let us define $\mathbf{u}_{i}^{k} \triangleq\left[u_{i}, \ldots, u_{k}\right]^{T}, i<k$, as the partial symbol vector labeling the path connecting level i to level k. In our case, SD is only used to search the branches corresponding to \mathbf{u}_{5}^{16}, while the symbols in \mathbf{u}_{1}^{4} are decoded as in an Alamouti code. We summarize this complexity reduction saying that a 12 -dimensional real SD can be used in lieu of a 16-dimensional real SD.

Consider again a Schnorr-Euchner (SE) enumeration [9] to decode \mathbf{u}_{5}^{8}. This starts at level i :

$$
\begin{equation*}
S_{i}\left(u_{i}\right)=\left\lfloor\left(v_{i}-\xi_{i}\right) / \theta_{i i}\right\rceil \in \mathcal{X} \quad i=16, \ldots, 9 \tag{23}
\end{equation*}
$$

where $\lfloor\cdot\rceil$ denotes the closest integer, $\xi_{16}=0, S_{i}\left(u_{i}\right)$ is the ZF-DFE component, and ξ_{i} is the interference term on level i from upper level j.

We define the interference term on level i from upper levels as

$$
\begin{equation*}
\xi_{i} \triangleq \sum_{j=i+1}^{16} \theta_{i j} u_{j}, \quad i=16, \ldots, 9 \tag{24}
\end{equation*}
$$

Since \mathbf{S}_{3} is not the null matrix, we have nonzero interference terms. The SE algorithm visits the neighbors of the mid-point in a zig-zag order. Let us define

$$
\Delta_{i} \triangleq \operatorname{sign}\left(v_{i}-\xi_{i}-\theta_{i i} u_{i}\right)
$$

where $\operatorname{sign}(a)=+1$ for $a \geq 0$; otherwise, $\operatorname{sign}(a)=-1$.
SE enumeration is used to search

$$
u_{i}=\left\{S_{i}\left(u_{i}\right), S_{i}\left(u_{i}\right)+\Delta_{i}, S_{i}\left(u_{i}\right)-\Delta_{i}, \ldots\right\} \subset \mathcal{X}
$$

In this tree search, a branch at level $i \in[9,16]$ contributes to the ML metric by the amount

$$
\begin{equation*}
d_{i}\left(\mathbf{u}_{9}^{16}\right) \triangleq\left|v_{i}-\xi_{i}-\theta_{i i} u_{i}\right|^{2} \quad 9 \leq i \leq 16 \tag{25}
\end{equation*}
$$

The corresponding path metric is given by

$$
\begin{equation*}
T_{i-1} \triangleq \sum_{j=i}^{16} d_{j}\left(\mathbf{u}_{j}^{16}\right) \tag{26}
\end{equation*}
$$

When the SD reaches the decoding-tree levels $i \leq 8$, a first complexity reduction is available. Given the vector $\mathbf{u}_{9}^{16}, \xi_{i}$ can be computed for all the remaining levels $i=1, \ldots, 8$:

$$
\xi_{i} \triangleq \sum_{j=9}^{16} \theta_{i j} u_{j}
$$

which saves a few multiplications in the computation of ξ_{i} in (24). Next, we proceed with the standard SD searching
procedure to find \mathbf{u}_{5}^{8}. We obtain the remaining symbols as

$$
\begin{align*}
& S_{1}\left(u_{1}\right)=\left\lfloor\frac{\left(v_{1}-\xi_{1}-\frac{\Phi_{1}}{\sqrt{\mu}} u_{7}\right)}{\mu}\right\rceil \in X \\
& S_{2}\left(u_{2}\right)=\left\lceil\frac{\left(v_{2}-\xi_{2}-\frac{\Phi_{1}}{\sqrt{\mu}} u_{8}\right)}{\mu}\right\rceil \in X \\
& S_{3}\left(u_{3}\right)=\left\lfloor\frac{\left(v_{3}-\xi_{3}+\frac{\Phi_{1}}{\sqrt{\mu}} u_{5}\right)}{\mu}\right\rceil \in X \\
& S_{4}\left(u_{4}\right)=\left\lfloor\frac{\left(v_{4}-\xi_{4}+\frac{\Phi_{1}}{\sqrt{\mu}} u_{6}\right)}{\mu}\right\rceil \in X \tag{27}
\end{align*}
$$

We say that the remaining four-level tree search in SD is not necessary, or, equivalently, that a 12 -dimensional real SD replaces the standard 16 -dimensional one.

At this point, we have a valid vector $\mathbf{u}=\left[\mathbf{u}_{1}^{8}, \mathbf{u}_{9}^{16}\right]$. We then compute the corresponding branch and path metrics in (25) and (26), respectively. This completes the search of one path in the 12 -dimensional bounded tree. The detailed decoding algorithm is given below.

1) (Input) Input Φ_{1} and α.
2) (Initialization) Set $i=16, T_{16}=0, \xi_{16}=0$, and $d_{c}=$ C_{0} (current squared radius of the sphere).
3) Set $u_{i}=\left\lfloor\left(v_{i}-\xi_{i}\right) / \theta_{i i}\right\rceil$ and $\Delta_{i}=\operatorname{sign}\left(v_{i}-\xi_{i}-\theta_{i i} u_{i}\right)$.
4) (Main step of SD) If $d_{c}<T_{i}+\left|v_{i}-\xi_{i}-\theta_{i i} u_{i}\right|^{2}$, then go to Step 5 (outside of the sphere).
Else if u_{i} is not in X go to Step 7 (inside of the sphere, outside of the signal set).
Else (inside of the sphere, inside of the signal set)

- If $i \geq 9$ then $\left\{T_{i-1}=T_{i}+\mid r_{i} u-\xi_{i}-\right.$ $\left.\theta_{i i} u_{i}\right|^{2}, \xi_{i-1}=\sum_{j=i+1}^{16} \theta_{i j} u_{j}, i=i-1$ go to Step 3 \}.
- Else if $(i \geq 5)$ then $\left\{T_{i-1}=T_{i}+\mid v_{i} u-\xi_{i}-\right.$ $\left.\theta_{i i} u_{i}\right|^{2}, \xi_{i-1}=\sum_{j=9}^{16} \theta_{i j} u_{j}, i=i-1$ go to Step $3\}$.
- Else $(i=4)$ \{Compute u_{k} using (27) and $T_{k-1}=$ $T_{k}+\left|v_{k}-\sum_{j=k}^{m} \theta_{k j} u_{j}\right|^{2}, k=i, \ldots, 1$, then go to Step 6\}.

5) If $i=16$ then terminate; else set $i=i+1$ and go to Step 7.
6) (A valid vector is found) Let $d_{c}=T_{0}$, save $\hat{\mathbf{u}}=\mathbf{u}$. Then $i=i+1$ go to Step 7.
7) (SE enumeration of level i) Let $u_{i}=u_{i}+\Delta_{i}, \Delta_{i}=$ $-\Delta_{i}-\operatorname{sign}\left(\Delta_{\mathrm{i}}\right)$, go to Step 4.

B. Complexity Reduction

Summarizing, we observe the following reductions of decoding complexity:

- We use a 12 -dimensional real SD to find \mathbf{u}_{5}^{16}. Then, we subtract the interference terms from \mathbf{u}_{5}^{16} (see (27)). Finally, the partial symbol vector \mathbf{u}_{1}^{4} can be computed directly. We see that the standard 16 -dimensional real SD is not necessary.
- The interference term ξ_{i} at level $i, i=1, \ldots, 8$, admits simple calculation.
In other terms, we observe that the worst-case decoding complexity of fast-decodable STBCs is $2 M^{7}$, as compared to a standard SD complexity M^{8}. This is due to the fact that:
- A 12-dimensional real SD (6-dimensional complex SD) requires M^{6} branch metric computations,
- In each branch of the 6 -dimensional tree, part of decoding can be treated as Alamouti decoding, resulting in $2 M$ branch-metric computations.
Moreover, if two hard-decision, symbol-by-symbol decoding steps in each branch of the 6 -dimensional real SD are taken, the decoding complexity does not exceed $2 M^{6}$.

VI. Conclusion

Motivated by the fast-decodable $2 \times 2 \mathrm{STBC}$ in [1,3], we present a new family of full-rate STBC for 4×2 MIMO. First, using a combination of both algebraic and quasi-orthogonal STBC structures, we exhibit a new STBC in this family which outperforms any known code for 4×2 MIMO. Second, for the proposed STBC, we propose a reduced-complexity sphere decoding algorithm, which enables using only a 12 dimensional real SD, rather than the standard 16-dimensional SD.

REFERENCES

[1] J. Paredes, A. B. Gershman, and M. G. Alkhanari, "A 2×2 space-time code with non-vanishing determinants and fast maximum likelihood decoding," in Proc. ICASSP, Honolulu, Hawaii, USA, April 2007.
[2] S. M. Alamouti, "A simple transmit diversity technique for wireless communications," IEEE J. Select. Areas Commun., vol. 16, no. 8, pp. 1451-1458, October 1998.
[3] A. Hottinen and O. Tirkkonen, "Precoder designs for high rate spacetime block codes," Proc. CISS 2004, Princeton, March 17-19, 2004.
[4] M. Samuel and M. P. Fitz, "Reducing the detection complexity by using 2×2 multi-strata space-time codes," Proc. IEEE ISIT 2007, pp. 19461950, Nice, France, June 2007.
[5] V. Tarokh, N. Seshadri and A. R. Calderbank, "Space-time codes for high data rate wireless communications: Performance criterion and code construction," IEEE Trans. Inform. Theory, vol. 44, no. 2, pp. 744-765, March 1998.
[6] J.-C. Belfiore, G. Rekaya, and E. Viterbo, "The Golden Code: A $2 \times$ 2 full-rate space-time code with non-vanishing determinants," IEEE Trans. Inform. Theory, vol. 51, no. 4, pp. 1432-1436, Apr. 2005.
[7] E. Viterbo and E. Biglieri, "A universal lattice decoder," in GRETSI 14-em̀e Colloque, Juan-les-Pins, France, Sept. 1993.
[8] E. Viterbo and J. Boutros, "A universal lattice code decoder for fading chanel," IEEE Trans. Inform. Theory, vol. 45, pp. 1639-1642, July 1999.
[9] C.-P. Schnorr and M. Euchner, "Lattice basis reduction: Improved practical algorithms and solving subset sum problems," Mathematical Programming, vol. 66, pp. 181-199, 1994.
[10] M. O. Damen, H. El Gamal, and G. Caire, "On maximum-likelihood detection and the search for the closest lattice point," IEEE Trans. Inform. Theory, vol. 49, no. 10, pp. 2389-2402, October 2003.
[11] H. Jafarkhani, "A quasi-orthogonal space-time block code," in IEEE Trans. Commun., vol. 49, no. 1, pp. 1-4, January 2001.
[12] F. Oggier, G. Rekaya, J.-C. Belfiore, and E. Viterbo, "Perfect spacetime block codes," IEEE Trans. Inform. Theory, vol. 52, no. 9, pp. 3885-3902, September 2006.
[13] Y. Hong, E. Viterbo, and J.-C. Belfiore, "A space-time block coded multiuser MIMO downlink transmission scheme," Proc. IEEE ISIT, pp. 257-261, Seattle, WA, June-July 2006.

[^0]: ${ }^{1}$ E. Viterbo is temporary on leave from DEIS-Università della Calabria. This work was supported by Nokia Research Center, Finland, and by the STREP project No. IST-026905 (MASCOT) within the Sixth Framework Programme of the European Commission. E. Biglieri's work was also supported by Sequans Communications, Paris, France.

