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Abstract— In this paper, we propose efficient maximum-
likelihood (ML) decoding for binary Kronecker product-based
(KPB) codes. This class of codes, have a matrix defined by
the n-fold iterated Kronecker product Gn = F⊗n of a binary
upper-triangular kernel matrix F, where some columns are
suppressed given a specific puncturing pattern. Polar and Reed-
Muller codes are well known examples of such KPB codes.

The triangular structure of Gn enables to perform ML
decoding as a binary tree search for the closest codeword to the
received point. We take advantage of the highly regular fractal
structure of Gn and the “tree folding” technique to design an
efficient ML decoder, enabling to decode relatively longer block
lengths than with a standard binary tree search. The tree κ-
folding operation transforms the binary tree with N levels into
a non-binary tree with N/2κ levels, where the search can be
significantly accelerated by a suitable ordering of the branch
metrics. For a given κ we can find (

n
κ
) different folding which

lead to decoders with different complexity, for a given code.
Using the proposed folded tree decoder, we provide exact

ML performances of some Reed-Muller and polar codes over
a binary AWGN channel for the block length up to 256.

Keywords: Polar codes, Reed-Muller codes, tree search,
ML decoding, Sierpinski triangle, Kronecker product-
based (KPB) codes, Folded tree ML decoder.

I. INTRODUCTION

Shannon’s noisy channel coding theorem proves the exis-
tence of capacity-achieving codes [1]. However, there had
been no explicit code construction on a binary-discrete
memoryless channel (B-DMC) until the channel polarization
was recently introduced by Arıkan in his celebrated paper
[2]. Polar coding is known as the first provable class of
linear block codes that are achieving capacity by the use
of low complexity encoding and decoding methods. These
codes have been intensively studied within the coding theory
community and leveraged by the simplicity simple successive
cancelation (SC) decoding.

Exact maximum-likelihood (ML) decoding has been ruled
out as inefficient for long polar codes. A few exact ML de-
coding methods have been proposed for short block lengths.
In [6], ML performance is investigated for short block
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lengths using Viterbi algorithm. In [7], the code based binary
tree search algorithm is introduced as an ML decoder for
short polar codes and shown to be effective for a code
length up to 64. As a result of this, it was also shown
that Reed-Muller (RM) codes outperform polar codes under
ML decoding for short block lengths thanks to their larger
Hamming distance [5]. List decoding is proposed as an
advanced SC decoder for polar codes in [8].

Polar codes achieve capacity for very long block lengths
under successive cancelation decoding. It is an open ques-
tion whether they are able to approach capacity under ML
decoding for shorter block lengths.

In this study, we focus on developing an efficient decoding
technique that is capable of performing ML decoding for
longer codes of length up to 256. We propose a tree folding
technique to enable efficient ML decoding for a general class
of Kronecker product-based (KPB) codes, which include
polar and RM codes.

The general definition of Kronecker product-based (KPB)
codes of length N , and dimension K is given as follows.

Definition 1: Let n = log2N and consider the matrix
Gn = F⊗n obtained from the n-fold Kronecker product of
the 2×2 binary kernel matrix F =

[
1 1
0 1

]
. An (N,K,F)

KPB code of rate R = K/N is uniquely defined by a set of
indices F of size N −K and its N ×K generator matrix
GF,n is obtained by suppressing the corresponding columns
of Gn.

Polar codes are KPB codes where the set F corresponds
to the set of frozen bits, selected according to the channel
polarization properties and n is the number of polarization
steps [2]. For RM codes, the set F may be chosen to
remove all the columns F⊗n with Hamming weight below
a certain threshold [3],[4]. In the following we will refer
to F as the set of frozen bits of the KPB code. The set
F uniquely identifies the KPB code and is shared between
encoder and decoder rather than the generator matrix. The
triangular structure of Gn and the frozen bits set F enable to
perform ML decoding as a binary tree search for the closest
codeword to a received point [7]. In particular, we consider
folded tree decoding based on a non-binary tree search of a
tree with fewer levels.

Briefly, the paper contributions can be summarized as
follows:

• We note that the matrix Gn of a KPB code has a
fractal structure, that is self similar patterns repeating
in successively smaller scales.

• We take advantage of such fractal structure to perform
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the basic folding operation of the initial binary search
tree. The resulting non-binary search tree has half depth
but more branches at each node.

• We show that there are n = log2N alternative tree
folding operations and n different non-binary search
trees can be realized for a given code.

• We then iterate the folding operation κ times and show
that there are (

n
κ ) alternative non-binary folded search

trees of height L = N/2κ.
• The core of the decoding algorithm with the folded tree

search is based on a suitable ordering of the branch
metrics at each node.

• We provide ML performances of RM and polar codes
for N = 256 using our folded tree decoder.

• We discuss complexity and memory requirements of our
folded tree decoder.

The rest of this paper is organized as follows. In Section II,
we discuss the KPB codes and the system model for binary
AWGN channel. In Section III, we propose the folding oper-
ation. In Section IV, we describe multiple folding operations.
In Section V, high level description of the folded tree decoder
is given. In Section VI, simulation results are discussed for
polar and RM codes under exact ML decoding. Therefore,
the complexity of the proposed algorithm is presented. In
Section VII, conclusions and future directions are discussed.

II. SYSTEM MODEL

From Definition 1 we can generate the codewords x =
(x0, . . . , xN−1)T of an (N,K,F) KBP code as

x = GF,nd̃ = Gnd (1)

using either the N × K generator matrix GF,n and the
vector d̃ of K information bits or the matrix Gn and the
information bit vector d = (d0, . . . , dN−1)T , where the
N −K bits in positions F are frozen to ‘0’.

Analysis of polar code constructions and the channel
polarization rule are beyond the scope of this paper. The
reader may find a detailed description in [9], while a heuristic
method is given in [5] and [6].

Example 1: Let us consider a polar code P (8, 6) with
F = {0, 2}. The matrix G3 is given by

G3 = F⊗3 =



1 1 1 1 1 1 1 1
0 1 0 1 0 1 0 1
0 0 1 1 0 0 1 1
0 0 0 1 0 0 0 1
0 0 0 0 1 1 1 1
0 0 0 0 0 1 0 1
0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 1


. (2)

Then, K = 6 bits are selected in d to be used for
information transmission, according to the construction rule
of channel polarization [2] and the bits d0 and d2 are frozen.
The encoder scheme of the polar code P (8, 6) is shown in
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Fig. 1. Encoder scheme for polar code with the block length N = 8.

Fig. 1 and x = G3d is given by

x0

x1

x2

x3

x4

x5

x6

x7


=



1 1 1 1 1 1 1 1
0 1 0 1 0 1 0 1
0 0 1 1 0 0 1 1
0 0 0 1 0 0 0 1
0 0 0 0 1 1 1 1
0 0 0 0 0 1 0 1
0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 1





0
d1

0
d3

d4

d5

d6

d7


. (3)

We now consider the maximum-likelihood detection prob-
lem over the AWGN channel, assuming a BPSK modulation
(i.e., ‘1’→ +1, ‘0’ → −1):

ỹ = x̃ + z, (4)

where z is the additive white Gaussian noise with zero mean
and variance σ2, and x̃ is the vector containing the BPSK
modulated signals corresponding to the coded bits in x. By
shifting and scaling the received vector ỹ, we get y = ỹ+1

2
and ML decoding is given by

d̂ML = arg
d|d(F)=0

min ‖y −Gnd‖2 (5)

where dF is the sub-vector of d with only frozen bits and, by
an abuse of notation, we assume binary components ‘0’,‘1’
in Gnd are converted to real numbers 0, 1.

III. THE FOLDING OPERATION

The definition of KPB codes, is based on the n-fold Kro-
necker product Gn = F⊗n and results in a fractal structure.
In fact, Gn has the form of Sierpinski triangle, which is a
well known fractal in chaotic phenomena introduced in 1915
by W. Sierpinski [10]. An example of the fractal form of the
Sierpinski triangle can be seen for G7 = F⊗7 in Fig.2.
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Fig. 2. The matrix G = F⊗7 has the fractal form of a Sierpinski triangle.

The self similarities of the fractal structure repeating in
different scales can be seen for any given n polarization steps
as

F⊗n =

[
F⊗(n−1) F⊗(n−1)

0 F⊗(n−1)

]
and

F⊗(n+2) =


F⊗n F⊗n F⊗n F⊗n

0 F⊗n 0 F⊗n

0 0 F⊗n F⊗n

0 0 0 F⊗n

 .

This attractive property is used for the folding operation. In
this way, KPB codes can be ML decoded by the use of non-
binary search tree. Let us consider a folded search tree of
height L = N/2 to show how complexity can be reduced.
Writing x = F⊗nd as

x0

x1
...

xN−1

 =

[
F⊗(n−1) F⊗(n−1)

0 F⊗(n−1)

]
d0

d1
...

dN−1

 , (6)

we can simply split it into two parts


x0

x1
...

xN/2−1

 = F⊗(n−1)


d0 ⊕ dN/2
d1 ⊕ dN/2+1

...
dN/2−1 ⊕ dN−1

 , F⊗(n−1) u0


xN/2
xN/2+1

...
xN−1

 = F⊗(n−1)


dN/2
dN/2+1

...
dN−1

 , F⊗(n−1) u1

(7)
In general, we can write the set of pairs of bit indices which
are added in u0 as

I = {I`} =

{(
N

2
− `,N − `

)
, ` = 1, . . . , L

}
(8)

This particular pairing results in the basic folding operation.

With the folding operation, the Euclidean distance term in
(5) can be written as a sum of squared norms of two vectors
of half the dimension, i.e.,

d̂ML = arg
d|d(F)=0

min

{∥∥∥y′− F⊗(n−1)u0

∥∥∥2

+
∥∥∥y′′− F⊗(n−1)u1

∥∥∥2
}

(9)
where

y′ =
(
y0, y1, · · · , yN/2−1

)T
y′′ =

(
yN/2, yN/2+1, · · · , yN−1

)T
.

The new decoding problem can now be solved by a search
in a non-binary tree with N/2 levels. It should be noticed
that u0 and u1 are simple linear functions of the pairs I` of
information bits in d, which are used to label the branches of
the corresponding non-binary tree. In order to perform exact
ML decoding the constraints on the frozen bits pass onto
the auxiliary vectors u0 and u1. These constraints result in
some tree nodes with less than four outgoing branches.

Example 2: Consider the a KPB code in Example 1 of
block length N = 8. The basic folding is given by

x0
x1
x2
x3

 =


1 1 1 1
0 1 0 1
0 0 1 1
0 0 0 1



d0 ⊕ d4
d1 ⊕ d5
d2 ⊕ d6
d3 ⊕ d7


and 

x4
x5
x6
x7

 =


1 1 1 1
0 1 0 1
0 0 1 1
0 0 0 1



d4
d5
d6
d7

 .
The four pairs of input bits which are added in u0 are
I = {(d7, d3), (d6, d2), (d5, d1), (d4, d0)}. The correspond-
ing non-binary tree is shown in Fig. 6a. At each node on
level ` a pair of bits I` is used to select the branch through
the corresponding bits u0,` and u1,`.

We can use the block diagram as an alternative description
of the folding operation (see Fig.1 for the example with
n = 3). In the general case, there are n sets of N/2 XOR-
connections, which reflect the Kronecker product structure of
the Gn. These sets are denoted by Ci for i = 0, . . . , n − 1
and the XORs connect input bits with a difference in position
index of 2i. The basic folding can be interpreted as moving
the XORs in the set Cn−1 to precode the information bits.
The folded equivalent encoder scheme for N = 8 is shown
in Fig.3.

We can have n possible different foldings for any selected
Ci for i = 0, . . . , n−1 sets, which yield different non-binary
trees, with N/2 levels. In this way, different pairs of bits are
XORed depending on the selected Ci. The frozen bits will
appear in different levels of the non-binary tree and the actual
decoder will behave differently.

Example 3: Let us consider the KPB code of Example
1, P (8, 6) with frozen bits d0 and d2. We can provide two
additional different foldings based on the structures in Figs. 4
and 5 by moving the XOR connections in C0 and C1, respec-
tively. Each folding operation is defined by the different pairs
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Fig. 3. Equivalent encoder scheme of basic folding is given for N = 8
by moving the C2 set of XOR-connections.

!
!
!
!
!
!
!

!
!

!
!
!
!
!
!
!
!

!
!
!
!
!
!
!
!
!

!"#$%&'%()'

!"#$%*'%+)!

%(!

%+!

!"#$%,'%-)!

!"#$%.'%/)!

%-!

%/!
!

!

0&!

0*!

0(!

0+!

0,!

0.!

0-!

0/!
!

"!

"!

"!

"!

"!

"!

"!

"!

C0 C2 

Fig. 4. Equivalent encoder scheme of the folding is given for N = 8 by
the deletion of C1. C1 is the set of xor-connections with the length of 2.
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Fig. 5. Equivalent encoder scheme of the folding is given for N = 8 by
the deletion of C0. C0 is the set of xor-connections with the length of 1.
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Fig. 6. Non-binary trees for P (8, 6). The frozen bits are d0 and d2. (a)
folding by deletion of C2, (b) folding by deletion of C1, (c) folding by
deletion of C0.

of input bits: I = {(d7, d6), (d5, d4), (d3, d2), (d1, d0)} for
C0 and I = {(d7, d5), (d6, d4), (d3, d1), (d2, d0)} for C1. All
three non-binary trees with 4 levels, that can be constructed
for this code, are shown in Fig.6.

We will later show an example of how the complexities
of different non-binary trees for a given KPB code can vary
due to the different tree structures.

IV. MULTIPLE FOLDING

Folding operations can be repeated more than once to
further reduce the number of tree levels. In particular, we can
consider the multiple folding of order 1 < κ ≤ n, which is
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TABLE I
NUMBER OF DIFFERENT FOLDED TREES FOR A GIVEN N AND κ

κ N=8 16 32 64 128 256 512 1024 2048
1 3 4 5 6 7 8 9 10 11
2 3 6 10 15 21 28 36 45 55
3 1 4 10 20 35 56 84 120 165
4 0 1 5 15 35 70 126 210 330
5 0 0 1 6 21 56 126 252 462
6 0 0 0 1 7 28 84 210 462
7 0 0 0 0 1 8 36 120 330
8 0 0 0 0 0 1 9 45 165

defined by choosing κ sets among the n XOR connection sets
Ci. There are a total of (

n
κ ) different κ-foldings, resulting

in different decoding trees of hight L = N/2κ. We can take
advantage in selecting the different folding that yields the
smallest decoding complexity for a given KPB code. For
convenience, Table 1 gives the number of different folded
trees for a given N and κ.

In the general case, we can rewrite the equations in (7) in
terms of F⊗(n−2). Let us now consider the κ = 2 folding
obtained by further applying the basic folding to each of
the two equations in (7). We then have four equations with
vectors of length N/4:

x0

x1
...

xN/4−2

xN/4−1

=F⊗(n−2)


d0 ⊕ dN/4 ⊕ dN/2 ⊕ d3N/4

d1 ⊕ dN/4+1 ⊕ dN/2+1 ⊕ d3N/4+1

...
dN/4−2 ⊕ dN/2−2 ⊕ d3N/4−2 ⊕ dN−2

dN/4−1 ⊕ dN/2−1 ⊕ d3N/4−1 ⊕ dN−1




xN/4
xN/4+1

...
xN/2−2

xN/2−1

 = F⊗(n−2)


dN/4 ⊕ d3N/4

dN/4+1 ⊕ d3N/4+1

...
dN/2−2 ⊕ dN−2

dN/2−1 ⊕ dN−1




xN/2
xN/2+1

...
x3N/4−2

x3N/4−1

 = F⊗(n−2)


dN/2 ⊕ d3N/4

dN/2+1 ⊕ d3N/4+1

...
d3N/4−2 ⊕ dN−2

d3N/4−1 ⊕ dN−1




x3N/4

x3N/4+1

...
xN−2

xN−1

 = F⊗(n−2)


d3N/4

d3N/4+1

...
dN−2

dN−1

 .
This is equivalent to moving both of the XOR connection

sets Cn−1 and Cn−2 to the input. We can derive a formula
for the indices of the grouped bits after κ basic foldings. The
set of indices of the 2κ bits placed in the `th level of the
tree is given by

I`=

(
1 ·N

2κ
− `, 2 ·N

2κ
− `, · · · , 2κ ·N

2κ
− `
)
, ` = 1, . . . , L

(10)

TABLE II
INITIALIZATION

r =∞

L = N/2κ

` = 1

ρ = (ρ1, ρ2, . . . , ρL)1×L

c = (0, 0, . . . , 0)1×L

ind = (0, 0, . . . , 0)1×L

m = (0, 0, . . . , 0)1×L

t = (0, 0, . . . , 0)1×N

I = {I1, I2, . . . , IL}

F = {F1,F2, . . . ,FL}

table` = sortu
(∥∥u− y(I`)

∥∥2
)
,∀` = 1, . . . , L

We will refer to this particular choice of I`s as the basic κ-
folding operation. The other choices of κ XOR connections
sets yield different expressions for the groupings I`.

V. THE FOLDED TREE ML DECODER

In this section, we describe the folded tree ML decoding
algorithm for general KPB codes and provide the full pseudo-
code of a non recursive implementation. We denote vector
variables by the boldface letters and consider a κ folding
operation for a given (N,K,F) KPB code.

As illustrated in the previous section, a non-binary tree
with height L = N/2κ is constructed and the set I =
{I`, ` = 1, . . . , L} defines the labeling for κ folded tree
branches.

The decoder takes as inputs the received noisy vector y =
(y0, y1, . . . , yN−1)T , the indices of the N − K frozen bits
are denoted by F and set I = {I`, ` = 1, . . . , L}. Let F`
denote the set of frozen indices appearing at level ` of the
tree. The exact structure of the non-binary tree depends on
the labeling I and the indices of frozen bits F .

Let ρ` denote the number of non-frozen bits in I`, for
` = 1, . . . , L. We assume the root of the tree is level 0
and, the leafs are level L. For a given code, different folding
choices yield different I and different ρ`s. In this case, each
node at level ` has 2ρ` valid candidates. This means a valid
candidate has no conflict between frozen bits.

The initialization steps for the decoder are given in Table
II, where: r is the radius of the search sphere, c contains
the current branch counter for each level, ind contains the
current index in table`, m contains the partial metrics for
each level, and t is the current candidate vector.

For all levels, ` = 1, . . . , L, the initialization generates a
table` by sorting in increasing order the Euclidean distances
between all possible binary vectors u of 2κ bits and the
received sub-vector y(I`). Each record of the sorted tables
stores two entries: the decimal representation of the binary
vector u and the corresponding squared distance. These
guarantee that the shortest metric branches are visited first
during the tree search.
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TABLE III
MAIN ALGORITHM

while ` 6= 0,∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

if c` < 2ρ`∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

c` = c` + 1(
m̃`, t

(I`), ind`
)

=
PickNextCandidate

(
t, `, ind`, table`, I`,F`, F̄`

)
m` = m̃`
if sum(m) < r∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

if ` = L∣∣∣∣∣∣∣∣∣
store d̂ = t
update r = sum(m)

t(I`) = 0
m` = 0
` = `− 1

else∣∣∣∣∣∣
` = `+ 1
c` = 0
ind` = 0

end
else∣∣∣∣∣∣
t(I`) = 0
m` = 0
` = `− 1

end
else∣∣ ` = `− 1
end

end

ML Estimation : return d̂
Minimum metric : return r.

Such table is pre-computed to speed up the tree search
phase for the exact ML solution. The pseudo code of the
main algorithm is given in Table III and the auxiliary function
in Table IV.

The algorithm essentially operates as a sphere decoder [11]
and successively reduces the search radius r as closer points
to the received vector are found along the tree search. The
faster the radius is reduced the more the tree branches are
pruned and less nodes need to be visited. The tree search
starts from the root node at level ` = 1 and, the search radius
r is set to infinity. The algorithm moves to lower levels under
the radius constraint, i.e., only if the current accumulated
metric is smaller than the radius sum(m) < r. If the radius
constraint is not valid in the visited level, algorithm moves
to the upper level. The current metric element m` and the
currently estimated vector t must be updated in both cases.

If the radius constraint is valid at the bottom level L, then
the ML estimate d̂ is updated by the current t. The radius is
updated by sum(m) and the algorithm moves to the upper
level.

Let us denote by F` the set of indices of the frozen bits
at level ` and F̄` the set of non-frozen bits, such that I` =
F`∪F̄`. At each level `, the next candidate branch is chosen
by the function PickNextCandidate (see Table IV) to fill
the bits in positions I` of the vector t. Note that |F`| of the
2κ bits in t(I`) are frozen and only t(F`) need to be updated.
In this process, PickNextCandidate uses table` to pick
up the next candidate in the table, which does not conflict
with the frozen bits constraints and the already selected bits

TABLE IV
PICKNEXTCANDIDATE FUNCTION

function PickNextCandidate
(
t, `, ind`, table`, I`,F`, F̄`

)
repeat

ind` = ind` + 1

u = dec2bin(table`(1, ind`))

solve d̂(I`) = F⊗κ · [(F⊗nt)(I`) ⊕ u]

until d̂(F`) = 0

fill non frozen bits t(F̄`) = d̂(F̄`)

m̃` = table`(2, ind`)

return (m̃`, t
I` , ind`)

in t. It also returns the updated index in the table and the
branch metric.

As observed at the beginning of the section, this algorithm
behaves as a sphere decoder and searches the non binary
tree in such a way to minimize the distance to the received
point, by only pruning the the non-competing branches that
have a larger accumulated metric. This yields the exact ML
decision.

VI. SIMULATION RESULTS

In this section, we discuss the exact ML performances of
RM and polar codes for block lengths 128 and 256. The
folded tree decoder with κ = 4 is used for KPB codes
(128, 120) and (256, 247). Bit error rates versus Eb/N0 are
given in Figs. 7-8. Also the Shannon bounds for the rates
120/128 and 247/256 are shown. Frame error rates vs. Eb/N0

are given in Figs. 9-10. By design, polar codes outperform
RM codes with suboptimal SC decoding in terms of BER. It
is interesting to observe that the RM codes outperform the
polar codes under ML decoding. It remains an open question
if this is true for larger code lengths.

We discuss expected complexity of the proposed algorithm
in terms of the average number of visited nodes. Fig.11
shows that the expected complexity is affected by the posi-
tions of the frozen bits in the non-binary tree. It can be seen
that the binary search tree in [7] required more than 105 node
visits for RM(64, 57). Here, two non-binary trees with κ =
3 and κ = 4 are considered for the RM(64, 57) in Fig.12.
The folded tree decoder with ML performance requires
significantly lower decoding complexity for RM(64, 57).
Additionally, the expected complexity for RM(128, 120) is
shown in Fig. 13 for κ = 3 and 4. Selecting the most
appropriate folding can significantly reduce the complexity
at low SNR.

We now discuss the memory requirement for the L stored
tables labeled as table` in the setup of the proposed algo-
rithm. Each table contains the indices of all possible vectors
with 2κ bits and requires 22

κ

entries. Moreover, L = N/2κ

tables are required for κ foldings. Thus, the total number of
sorted indices can be given as

∆ =
N

2κ
22
κ

.
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Fig. 7. Performance comparison BER vs. Eb/N0 for P(128,120) and
RM(128,120). Exact ML decoding by the folded tree decoder with κ = 4
and SC decoding.
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Fig. 8. Performance comparison BER vs. Eb/N0 for P(256,247) and
RM(256,247). Exact ML decoding by the folded tree decoder with κ = 4
and SC decoding.

Since we need 2κ bits to define an index in the tables, the
total number of required bits is given by

2κ∆ = N22
κ

(11)

and shown in the table below

TABLE V
NUMBER OF REQUIRED BITS FOR A GIVEN N AND κ

κ N=128 256 512 1024 2048
1 1KB 2KB 4KB 8KB 16KB
2 4KB 8KB 16KB 32KB 64KB
3 32KB 64KB 128KB 256KB 512KB
4 1MB 2MB 4MB 8MB 16MB
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Fig. 9. Performance comparison FER vs. Eb/N0 for P(128,120) and
RM(128,120). Exact ML decoding by the folded tree decoder with κ = 4
and SC decoding.
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Fig. 10. Performance comparison FER vs. Eb/N0 for P(256,247) and
RM(256,247). Exact ML decoding by the folded tree decoder with κ = 4
and SC decoding.

VII. CONCLUSION

In this work, we observed the fractal structure of the
Kronecker product-based codes such as polar codes and,
Reed-Muller codes. We proposed the κ folding method as a
tool for efficient decoding of such family of codes. Moreover,
we showed that different foldings are available to construct
different non-binary tree structures for a given code. Using
this, we proposed an efficient exact ML decoding algorithm.
By the use of this algorithm, we provide the exact ML
decoding of the Reed-Muller and polar codes with the
block length 256. We are currently investigating methods
for reducing complexity and memory requirements of the
proposed algorithm and as future work we will explore a
suboptimal variant of the algorithm to enable the decoding
of even longer block lengths.
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Fig. 11. Expected decoding complexities of non-binary trees (a) (b) (c)
for P (8, 6). The frozen bits are d0 and d2.
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Fig. 12. Expected decoding complexity for RM(64, 57).
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Fig. 13. Expected decoding complexity for RM(128, 120).
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