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Abstract—In many communication systems, the Gaussian mix-

ture model (GMM) is widely used to characterize non-Gaussian

man-made and natural interference. The envelope distribution

of such noise model is often expressed as a weighted sum of

Rayleigh if in-phase and quadrature components of the noise are

dependent. Instead, in this paper, a simple and exact closed form

probability density function of the envelope Gaussian mixture

model (i.e. the envelope of independent in-phase and quadrature

components of complex non-Gaussian noise) is obtained. Further-

more, the problem of estimating of the envelope Gaussian mixture

parameters is addressed. The proposed estimator of weights

and variances is based upon the Expectation-Maximization (EM)

algorithm.

Index Terms—Gaussian mixture noise, Envelope Gaussian

Mixture, Maximum Likelihood, EM algorithm, parameter es-

timation.

I. INTRODUCTION

In wireless communication systems, classical white Gaus-
sian noise is often assumed to be a very accurate model.
However, in other cases, such as the underwater [1] and the
powerline communications [2], the noise may exhibit non-
Gaussian behaviour and thus it is important to consider dif-
ferent versatile and robust noise/interference models. In 1977,
Middleton [3] proposed the Middleton’s Class A noise model,
a Gaussian mixture density model with Poisson selection, to
describe the electromagnetic (EM) interference from a variety
of noise sources. Arzberger et al. [2] also suggested that
the noise in powerline channels can also be modelled by
the Gaussian mixture model, a parametric probability density
function (pdf) expressed as summation of weighted Gaussian
pdf’s. The envelope distribution of this mixture density is often
represented as weighted sum of Rayleigh under the assumption
that the in-phase components and quadrature components of
the noise are dependent [4]. In our work, we assume that
both in-phase and quadrature components are independent and
identically distributed (i.i.d.) random variables as motivated
by [1], [2]. Hence, the envelope distribution of in-phase and
quadrature noise components will not result in the Rayleigh
mixture model, but give rise to the envelope Gaussian mixture
model (EGMM).

Parameters of the envelope Gaussian mixture model can be
estimated by maximum likelihood estimation (MLE). When
closed form expression cannot be found for MLE, iterative
methods, such as the Newton-based and the EM algorithm, are

used. These algorithms iteratively maximize the log likelihood
function. In an earlier work by Sari et al. [1], a conventional
maximum likelihood estimator using the quasi-Newton method
is used. In this paper, we consider the maximum likelihood
estimator via the EM algorithm, a widely used method pop-
ularized by Dempster, Laird and Rubin in 1977 [5]. The
EM algorithm has been used in many parameters estimation
problems, especially in dealing with the curved exponential
densities [6], such as the Middleton’s Class A model [7], the
Rayleigh mixture [8] and the Gaussian mixture density [9].

Maximum likelihood estimation via the EM algorithm is
considered in this paper for the envelope Gaussian mixture
model. The paper is organised as follows. In Section II, the
model for non-Gaussian channel noise is described. In Section
III, the envelope Gaussian mixture density function is derived.
In Section IV, the maximum likelihood (ML) estimator via
the EM algorithm is presented. The performance of the EM
algorithm is compared to that of conventional ML estimator
using the quasi-Newton method in Section V.

II. NON-GAUSSIAN NOISE MODEL

We first discuss the widely used two-term Gaussian mixture
model for the in-phase and quadrature noise amplitudes Y

and Z. Both in-phase and quadrature noise amplitudes are
considered as independent random variables with the following
two-term Gaussian mixture density function:
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are
the variances of the two Gaussian components. An example
where the above model can be used is when background
noise is always present and impulsive noise events occur
with probability (1 � a). The first Gaussian component can
be seen as the nominal background noise with variance �

2

1

.
The second component represents the combination of the
background noise and the impulsive noise, when impulsive
noise events occur. Since both background noise and impulsive
noise are assumed to be Gaussian random variables, the sum
of the two will also be a Gaussian random variable.

The two-term Gaussian mixture model was also considered
as an approximation of Middleton’s Class A noise model
[10],[11] and has been used extensively in both modelling the
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powerline noise [2] and the underwater communications noise
[1]. In many practical cases, a small number K of Gaussian
components (e.g., 2 or 3) are sufficient to accurately model
the noise without overfitting. In general we have
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P
K

k=1

⇡

k

= 1. The variances of the Gaussian pdf’s
are �

2

= {�2

k

}K
k=1

, and we assume that �2

k

> �

2

k�1

> �

2

k�2

>

... > �

2

1

.

III. ENVELOPE GAUSSIAN MIXTURE

Let us now consider the noise envelope random variable X

as a function of the in-phase and quadrature noise components
Y and Z. We start with the case where f

Y

(y) and f

Z

(z) are
two-term Gaussian mixtures as in (1) and Y and Z are i.i.d.
random variables. Then X can be expressed as:
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p
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Given the joint pdf f
Y,Z

(y, z), the cumulative density function
(cdf), F

X

(x), is defined as:

F

X

(x) =

Z Z
p
Y

2
+Z

2x

f

Y,Z

(y, z)dydz (4)

We can then find f

X

(x) by differentiating F
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(x) directly
using differention rule due to Leibnitz [12], we have:
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Substituting (6) into (5), yields:
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The integral (7) can be computed in closed form by letting
z = x sin (✓) and dz = x cos (✓)d✓ to yield:
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is the modified Bessel function of the first kind of zero-th
order. In (8), first two terms follow a Rayleigh distribution. The
term with modified Bessel function distinguished the envelope
distribution of two-term Gaussian mixture from the two-term
Rayleigh mixture. The envelope of two-term Gaussian mixture
is shown in Fig. 1 for different values of a and and the ratio
of two variances c = �

2

2
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= 10. One can observe that
when the value of mixing coefficient a = 0.7, the tail of the
pdf is approximately linearly decaying from the peak value
(dashed line in Fig. 1). When the ratio of the two variances
�

2

2
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! 1, similar to the case of a two-term Rayleigh
mixture model, the envelope of two-term Gaussian mixture
(8) turns into a single Rayleigh distribution. The effect of
varying the ratio of �2

2
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1

is illustrated in Fig. 2, in which the
dashed grey line is the Rayleigh pdf with variance �

2

= 1.
However, when �

2

2

� �
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1

, the envelope Gaussian mixture is
significantly different from the Rayleigh mixture as shown in
Fig. 3. The two-term Rayleigh mixture model often exhibits
a more pronounced muiti-modal behaviour than the envelope
of two-term Gaussian mixture.

Assuming that the in-phase and quadrature components are
not identically distributed and follow different GMM with K

and L components, i.e,
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then a more general envelope Gaussian mixture distribution
f

X

(x) can be written as:
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However, in many practical cases, the in-phase and quadrature
noise components can be described by the same distribution
with the same parameters, and the envelope Gaussian mixture
density simplifies to:
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IV. MAXIMUM LIKELIHOOD ESTIMATION VIA THE EM
ALGORITHM

In this section, we adopt the well-known two-step iterative
method called the EM Algorithm that finds the maximum
likelihood or maximum a posteriori estimates of parameters
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converges to the Rayleigh distribution as c ! 1 (dashed grey curve).

in statistical models in which observations are treated as
“incomplete data” [13]. Parameters of mixture densities, such
as the Rayleigh mixture model, the Middleton’s Class A model
and the Gaussian mixture can be estimated by using the EM
algorithm. Hence it is natural to predict that parameters of the
envelope Gaussian mixture density can be estimated by using
the same algorithm.1. The EM algorithm for the envelope of
Gaussian mixture model is presented in Appendix A.

Note that in the previous section, Y and Z are used to
represent the in-phase and quadrature noise amplitudes. Here,
they will be used as the latent variables [13] in the EM
algorithm. Given a data set X = {x

1

, ..., x

N

}, we assume
that all data samples are i.i.d.. Let p(x|✓) be the pdf that is
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Fig. 3. Comparison of envelope of two-term Gaussian mixture pdf with
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governed by the set of parameters, ✓, to be estimated. We have:
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where L(✓|X) is the log likelihood function. Our purpose is
to find the parameters ✓ which maximize L(✓|X) such that:
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Under the assumption that the envelope Gaussian mixture
model is taken, p(x
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|✓) is replaced with (12) and the incom-
plete data log likelihood function is given by:
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In order to solve this equation, the EM algorithm is utilized
by introducing the latent variables. However, unlike clustering
problems in Gaussian mixture or Rayleigh mixture in which
only one set of latent variables is introduced, here we employ
two sets of latent variables Y = {y

i

}K
i=1

and Z = {z
k

}K
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Gaussian component in (9) generates the i-th in-phase noise
sample and similarly z

k

for the quadrature noise samples. It
is important to note that since in-phase noise samples and
quadrature noise samples are assumed to be independently
generated, y

i

and z

k

are also independent. The product of these
two latent variables, y
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·z
k

, is binary and forms a 2-dimensional
indicator function (i.e. y
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We use the EM algorithm to estimate the parameters
✓ = {⇡,�2}. The expectation step and maximization step are
defined as follows:

• E-step: Compute Q(✓|✓(p)) , E[L(✓|X)|Y, Z, ✓(p)]
• M-step: Determine ✓ = ✓

(p+1) maximizing Q(✓|✓(p))
where ✓

(p) is the estimation of ✓ at p-th iteration of the EM
algorithm. We call X the ‘incomplete data’ and we assume
that the complete data S = (X,Y, Z) includes the binary latent
variables Y and Z. Then the joint density function p(x, y, z)

is:

p(x, y, z) = p(y, z)p(x|y, z) = p(y)p(z)p(x|y, z) (16)

since Y and Z are independent. The proportion of the noise
samples that are generated by k-th or i-th Gaussian component
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values for Y and Z is the envelope Gaussian mixture compo-
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This is an equivalent formulation of the mixture model in-
volving two explicit latent variables. By dealing with the
complete observation X , Y and Z, we can simplify the log
likelihood function using (19). Replacing p(x

n

|✓) in (15) with
the equivalent formulation found in (19), we have:
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The maximization step of the EM algorithm finds the
expression for ⇡

i

and ⇡
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. We introduce the Lagrange multiplier
� with the constraint
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where �(·) = I1(·)
I0(·) and I

1

(·) is the modified Bessel function
of first kind of first order. Equations (26) are non-linear
equations and therefore can only be solved numerically.

V. SIMULATION RESULTS

A simulation of the proposed estimator via the EM al-
gorithm is performed, in which we consider an envelope
Gaussian mixture model with unknown variances and mixing
coefficients, however we assume that the number of compo-
nents is known. Random data samples are randomly generated
from the distribution with known parameters. An alternative
method in estimating parameters of the envelope Gaussian
mixture apart from the EM algorithm is the quasi-Newton
method (See [1] for detail). The performance of the EM
algorithm will be compared with the performance of the quasi-
Newton method with the BGFS step update for the envelope
Gaussian mixture model [14]. The EM algorithm and the
quasi-Newton method will terminate when the change in log
likelihood function is less than stopping criterion, ✏. The EM
algorithm is more often used in parameter estimation of the
curved exponential families, since the quasi-Newton method
is more complicated to implement. On the other hand, the
EM algorithm enjoys greater simplicity and stability but has
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slower convergence speed. Here we focus on comparing their
convergence speed and accuracy in terms of iteration numbers
and Mean Square Error (MSE) between the estimated pdf and
normalised data histograms.

Our first example takes 50000 data samples which are
generated by the envelope of a two-term Gaussian mixture
distribution with parameters ⇡

1

= 0.3, ⇡
2

= 0.7, �2

1

= 1 and
�

2

2

= 10. Fig. 4 illustrates the normalised data histogram with
N = 25 bins of generated data samples, together with the
estimated envelope Gaussian mixture pdf and true envelope
Gaussian mixture pdf. The MSE between the envelope Gaus-
sian mixture pdf and the normalised data histogram is defined
as follows:

MSE =

1

N

NX

i=1

(

ˆ

Y

i

� Y

i

)

2 (27)

where Y

i

is the frequency density of the i-th bin and ˆ

Y
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is
the estimated probability density taken at the midpoint of i-
th bin. The MSE between the estimated pdf and histogram
is 3.12779 ⇥ 10

�4 and the parameters estimated are ⇡̂

1

=

0.303502, ⇡̂
2

= 0.696498, �̂2

1

= 1.04399 and �̂

2

2

= 9.946461,
which show that the ML estimator via the EM algorithm
yields good performance. Example 2 shown in Fig. 5 also
illustrates that parameters of the envelope Gaussian mixture
model have been correctly estimated by the EM algorithm. In
fact, for examples with distributions that are well separated
(i.e. �

2

2

� �

2

1

), both the EM algorithm and the quasi-
Newton method perform well in terms of reproducing the
true parameters. However, in some ill-conditioned cases (i.e.
example 4, 5, 7 and 8) where too many components have been
included in the model due to overfitting or to similar values
of variances, both the EM algorithm and the quasi-Newton
method perform poorly in terms of attaining the true values
of parameters as shown in TABLE I. In addition, example 6
does not converge to the true value due to small sample size.
Fortunately, both methods may achieve some local optima of
the log likelihood functions in all cases, therefore the estimated
envelope Gaussian mixture pdf’s using both methods still
exhibit excellent agreement with the histograms.

Despite that the EM algorithm performs well in terms
of maximizing the log likelihood function, it has relatively
slower convergence rate depending on the models and data
size [14]. If we only compare the numbers of iterations
to convergence, quasi-Newton would take fewer iterations,
since the convergence speed of the quasi-Newton algorithm
is super linear, whereas the EM algorithm converges linearly
[14]. TABLE I shows that the computation iterations for
estimation of the parameters of the envelope of two-term
Gaussian mixture model with stopping criterion, ✏ = 10

�6.
It is clear in the TABLE I that the quasi-Newton method
converges much faster than the EM algorithm. The quasi-
Newton method, on average, took less than 1/8 in iteration
numbers of the EM algorithm. For example 4, 6 and 7, number
of iteration for the EM algorithm can go over 1000. Moreover,
the computation time per iteration of the EM algorithm is
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Fig. 4. Comparison of Normalised data histogram, true envelope Gaussian
mixture pdf and estimated envelope Gaussian mixture pdf.
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Fig. 5. Normalised data histogram generated with mixing coefficient ⇡1 =
0.3, ⇡2 = 0.4, ⇡3 = 0.3, �2

1 = 1, �2
2 = 9 and �2

3 = 25. Stopping
criterion is set to be 10�6. Number of iteration taken for the EM algorithm to
converge is 1491. Parameters estimated are ⇡̂1 = 0.301052, ⇡̂2 = 0.406479,
⇡̂3 = 0.292469, �̂2

1 = 1.109467, �̂2
2 = 8.970086 and �̂2

3 = 24.172147.

much longer than that of the quasi-Newton method, since the
variances, �

2

k

and �

2

i

in (26) have to be found numerically
in each EM iteration. For this reason, we conclude that, in
terms of iteration numbers, the quasi-Newton method should
be preferred to the EM algorithm in estimation parameters of
the envelope Gaussian mixture density functions. However,
reader should take note that the EM algorithm is still an
attractive method in this estimation problem due to greater
simplicity (i.e. automatic satisfaction of probability constraints
and monotonic convergence without the need to set a step
size). On the other hand, implementation of the quasi-Newton
method is indeed complicated. As Jamshidian and Jennrich
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TABLE I
COMPARISON OF THE PERFORMANCE OF THE EM ALGORITHM WITH THE PERFORMANCE OF THE QUASI-NEWTON METHOD FOR THE ENVELOPE

GAUSSIAN MIXTURE MODEL

True Parameters Estimated parameters via EM Estimated parameters via QN EM QN
# ⇡1 ⇡2 ⇡3 �2

1 �2
2 �2

3 ⇡1 ⇡2 ⇡3 �2
1 �2

2 �2
3 ⇡1 ⇡2 ⇡3 �2

1 �2
2 �2

3 Iter Iter

1 0.3 0.7 - 1 10 - 0.29992 0.70008 - 1.01055 10.00381 - 0.29998 0.70002 - 1.01863 10.00449 - 168 20
2 0.95 0.05 - 1 10 - 0.94084 0.05916 - 0.97562 9.37184 - 0.94085 0.05915 - 0.97564 9.37315 - 145 22
3 0.5 0.5 - 1 10 - 0.50771 0.49229 - 1.00778 10.04186 - 0.50775 0.49225 - 1.00779 10.04249 - 121 19
4 0.5 0.5 - 1 1.5 - 0.40913 0.59087 - 1.01156 1.40103 - 0.365771 0.634229 - 1.10931 1.53166 - 1000 < 21
5 0.95 0.05 - 1 1.5 - 0.25011 0.74989 - 0.83423 1.09010 - 0.36550 0.63450 - 0.95190 1.18866 - 103 56
6 0.3 0.4 0.3 1 9 25 0.30305 0.42639 0.27056 1.03800 9.49385 26.098378 0.30265 0.42510 0.27225 1.03661 9.45800 26.04114 1000 < 63
7 0.4 0.4 0.2 1 2 25 0.40117 0.40481 0.19402 0.94892 2.11022 26.19052 0.27070 0.53347 0.19583 0.79183 1.87935 26.03970 1000 < 74
8 0.2 0.4 0.4 1 9 10 0.18559 0.33575 0.47866 0.80414 9.45651 9.45735 0.18555 0.65777 0.15668 0.80420 9.45740 9.45147 196 56

[15] have pointed out, to choose between the EM algorithm
and the quasi-Newton method is more or less a personal
choice.

VI. CONCLUSION

In this paper, we have derived the general expression for
the envelope Gaussian mixture model. Such model is different
from the Rayleigh mixture and may be applied to describe the
envelope of powerline noise and the envelope of underwater
communication noise. We proposed the EM algorithm to
estimate the parameters of the envelope Gaussian mixture.
Finally, we discussed the convergence speed and accuracy of
the EM algorithm by simulations. This was compared with the
quasi-Newton algorithm.
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APPENDIX

A. EM algorithm for the Envelope Gaussian Mixture Model

1. Initialize the mixing coefficients ⇡
i

and ⇡

k

, together with
variances �

2

i

and �

2

k

with random values.
2. E step: Given the data sample x

n

, evaluate the respon-
sibility using the current parameters ⇡ and �

2 for all i and k

from 1 to K

�

n,i,k

= E[y(n)
i

· z(n)
k

] = p(y

i

= 1, z

k

= 1|x
n

)

=

⇡

i

⇡

k

p(x

n

|�2

i

,�

2

k

)

P
K

s=1

P
K

t=1

⇡

s

⇡

t

p(x

n

|�2

s

,�

2

t

)

(28)

3. M step: Update the parameters using the current respon-
sibility

⇡

k

=

1

N

NX

n=1

KX

i=1

�

n,i,k

(29)

�
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=
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N

n=1
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2
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�� 1
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� 1

�

2
i

��
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2
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P
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K

i=1

�

n,i,k

(30)

for all k from 1 to K. �(·) = I1(·)
I0(·) and I

1

(·) is the modified
Bessel function of first kind of first order. Equation (30)
are non-linear equations and therefore can only be solved
numerically.

4. Evaluate the likelihood function

L(✓|X) =

NX

n=1

log

(
KX

i=1

KX

k=1

⇡

k

⇡

i

· p(x
n

|�2

k

,�

2

i

)

)
(31)

and check the convergence of either the parameters or the
likelihood function. If the convergence criterion is not satisfied,
return to Step 2 (E step).
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