tapered active region and buried facets, polarisation-
insensitive operation within 0-5dB is obtained. Further, we
have investigated the influence of AM-crosstalk-induced
power penalties on the number of WDM channels. For a 1dB
penalty ~ 12 channels can be transmitted simultaneously.
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ALGEBRAIC DECODING OF THE TERNARY
(11, 6, 5) GOLAY CODE

M. Elia and E. Viterbo

Indexing terms: Codes and coding, Error-correction codes

An algebraic decoding algorithm for the ternary (11, 6, 5)
Golay code is presented.

Introduction: Algebraic decoding of cyclic error-correcting
codes has recently received considerable attention (see Refer-
ences 1-6). In this letter an algebraic decoding algorithm for
the ternary (11, 6, 5) Golay code is presented.

The ternary (11, 6, 5) Golay code: The ternary Golay code is
the only perfect code over a nonbinary field that corrects
multiple errors [7]. It is a cyclic perfect code over GF(3) = {0,
1, —1}, with an irreducible generator polynomial
g(x) = x> + x* — x> + x2 — 1 that divides x'' — 1. Tt is also a
ternary quadratic residue code [8]. Let « denote a root of g(x).
 is a primitive 11th-root of unity in GF(3%). Let ¢ = {1, 3, 9,
5, 4} be the cyclotomic coset associated with g(x).
Let r{x) = ¢(x) + ux' + vx’ be a received word, where ¢(x) is
a code word and where errors u and v occur at locations i and
j with i #j. If no errors occur then u=v=0. If u # 0 and
v =0 then one error has occurred at location i. Lastly, if two
errors have occurred then u, v € {1, —1}. We define the syn-
dromes as
S, =roM) =ua* +va¥, ke¥
To correct the errors we must know their magnitudes and
locations. In the case of a double error we need four syn-
dromes to obtain four equations. Only one syndrome must be
directly computed from r(x), namely S,, and only two more
syndromes give irredundant information, namely S, = S%’
and S, = §%!. However, the decoding algorithm may be based
only on two syndromes S, and S;:
S, = ua’* + va!
{S, = ua® + por® W

Substituting y, = ux' and y, = va/, and observing that u® = u
and v® = v, for u, v € GF(3), we obtain the set of equations:

{Yl +y2=5 @

¥+ 3 =355

with y, = y, = 0 in the case of no error and y, #0, y, =0 in
the case of a single error. If a double error occurs, we find y,
and y, as roots of the equation

y—oy+0,=0 3)

where 6, = y, + y, and ¢, = y,y, are elementary symmetric
functions related to the syndromes by the Newton identities

[13:
Sy =0,
4

{S5=Sf+02S§—U§S, @

Let us observe that 622 = 1. Therefore, on computing ¢, from
the second equation in (4), we must take the correct determi-

nation. The next lemma proves that this choice is not ambigu-
ous.

Lemma 1: Equation

Ss—51_

1

0 (5)

02 — S0, +

has only one root that satisfies the condition 03> = 1.

Proof: First we prove that at least one of the roots ¢, and ¢’

of eqn. 5 does not satisfy the condition, since, if 632 = 6422 =
1 then 0’226%%% = 1 and we would have
5\ 2

P = (_Sss‘ § 1) T o 1ot

1

In GF(3®), the power S22 = y is an 11th root of unity. So the
condition

Y- 1?2 =1 (©)

should hold for an 11th root of unity, therefore
x*(x — 1)?2 — 1 should have a common factor with x!* — 1.
Application of the Euclid algorithm shows that these two
polynomials are relatively prime; then (6) is not satisfied by
any 11th root of unity.
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From eqn. 2 it is now straightforward to check that
—8s— 8i/S, = (o} + y3)* so we have

02 =)z
$ gl
{172 =01 —yl)
and therefore the first part of the proof excludes the possibility
that o7 is a 22nd root of unity. O

Lemma 2: A code word has one error, if and only if S5 = S},
S, #0.

Proof: If there is precisely one error at location i, then §, =
ud’, and S5 = ua®. Since u® = u we have

Ss=sf

as required.

Conversely if the above condition is satisfied, then the
second equation in (4), together with condition S5 =S},
implies that o, is a root of the equation

0,8,(6, —5)=0

Then either ¢, = 0, which means that only one error occurs,
or g, = S3. The latter is excluded because it gives a double
root y = —§, in (3), which is not compatible. In fact, we have

Y-Sy +82t=p2+28,y+Si=(y+S8)*=0
and from y, = y, = uo’ = v’ we distinguish two cases: (i) if
u = v then i = j and one error u occurs in position i, but this
means y = $,, contradicting y = —S;; (i) if u= —v then

o = —o/, which is again impossible, since raising this expres-
sion to the 11th power gives 1 = —1.

A complete decoding algorithm: Let us denote with L() the
discrete logarithm to base « in the cyclic group of the 11th
roots of unity. Since the code is perfect, the correction of up to
two errors exhausts all possibilities. Therefore we propose the
following complete decoding algorithm:

(@) If S; =0, read out r(x) and end this algorithm; otherwise,
g0 to next step.

(b) If S5 = S3, then a SINGLE error
u=S!' occurs in position i= L/(5}%)

Write out r(x) — ux’ and end this algorithm; otherwise, go
to next step.

(¢) TWO errors occur. From Newton identities obtain the
second degree eqn. 5 whose roots are

—Ss— 53
et 45
1

Choose the root that satisfies the condition a}' = +1 and
write the equation

Y —S,y+0,=0
The roots of this equation,
Via=—5 % \/(53 )

are in GF(3%) because S7 — a, = (y, — ¥,) is a perfect square.
Compute the errors as

11

u=y}' and v=y'

and obtain the error locations as

=ul2) =)

2022

Finally write out the received code word as
r(x) — ux' — vx’
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RESULTS OF 12GHz PROPAGATION
MEASUREMENTS IN LAE (PNG)

Q. W. Pan and G. H. Bryant

Indexing terms: Radi pr

pagation, A ion, Rainfall
rate, Rain-cell diameter, Rain height

Satellite-to-earth propagation attenuation data above
10GHz in the tropical and equatorial areas is scarce due to
the fact that most developing countries in this region cannot
afford complicated beacon s and have limited exper-
tise in this field. There is therefore a lack of data at high
clevation angles. At Lac the elevation to AUSSAT is 73
degrees. In the Letter a low-cost and simple system for mea-
suring propagation path attenuation of satellite signals at
12 GHz is reported. The novelty of this system is the use of a
standard domestic satellite low-noise block (LNB) connected
directly to a spectrum analyser in place of an expensive
beacon receiver. The rainfall is mainly convective with rela-
tively small rain-cell di; s. A high el angle makes
it possible, to some extent, to separate the effects of the indi-
vidual rain cells.

Introduction: In satellite transmission at frequencies above
10GHz, signal attenuation is mainly attributed to rain. Many
slant path attenuation prediction models, derived from rainfall
rate data accumulated over many years in the temperate
region, work reasonably well. However, applying the same
models to the tropics, where convective rains are dominant, is
not accurate enough. Furthermore, in temperate climates, for
the same rainfall rate, the attenuation decreases with the ele-
vation angle. But in the tropics the reverse is found to be the
case. This may be due to the comparatively small diameter of
convective rain cells. In order to have an appropriate revised
model for the tropics, more data from this region should be
collected.

Satellite signals: AUSSAT provides, among its services, a
beacon at 12-74975GHz and the ABC TV channel at
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