Experimental results: For a computer simulation, several image
sequences, 176 x 144, 352 x 240 and 256 grey level, were used. The
original sequences, hall-monitor and outdoor sequence were cap-
tured at 30 frame/s. Fig. 22 and b show the results of the Bayes
decision with the original PDF and with the proposed blurred
PDF at a frame rate of 1/30s, respectively. Fig. 2¢ and d show the
results at a frame rate of 1/15s. In the original sequence, the first
15 frames containing only the background are used for generating
the background PDF. In Fig. 2a4 and ¢, there are many falsely
detected pixels. The Bayes detector with the proposed PDF has a
more robust discrimination capability as shown in Fig. 2b and d.
Fig. 2¢ and d shows the under-sampled case with half the frame
rate (15 frame/s). In this case, the Bayes detector with the original
background PDF shows seriously degraded detection capability

Fig. 2 Detection of moving pixels

Hall monitor: 103rd image

a Frame rate 1/30s, detection with original PDF

b Frame rate 1/30s, detection with proposed method
¢ Frame rate 1/15s, detection with original PDF

d Frame rate 1/15s, detection with proposed method

a d
b 8
c f

Fig. 3 Segmentation result

Outdoor sequence
a 350th frame
b 363th frame
¢ 376th frame
d 389th frame
e 402th frame
f415th frame

due to aliasing. However, the proposed algorithm still obtains
good results. Fig. 3 shows the final segmentation results of mov-
ing objects for an outdoor sequence. The moving object area is
represented by a bounding box and the centroid of the object as
‘+’. The real trajectory of a tracked object is shown in Fig. 3f.
False alarms due to intensity fluctuations caused by swaying
leaves are completely eliminated by using the projection profiles of
moving pixels.

Conclusions: An efficient algorithm that detects and tracks moving
objects in a static camera environment has been proposed. By
using the Bayes decision method with a Gaussian blurred PDF,
false alarms in detecting moving objects were reduced. The pro-
posed method showed robust segmentation and tracking results
against noise, illumination change, and irregular motion. It could
be used for unmanned surveillance and traffic monitoring systems.
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Decoding of binarklnseparable Goppa codes
using Berlekamp-Massey algorithm

M. Elia, E. Viterbo and G. Bertinetti

It is shown that the Berlekamp-Massey algorithm can be applied
without exceptions to decode the class of binary Goppa codes
with location set T" = {y;; ..., v,} < GF(2") and separable Goppa
polynomial G(z) = z' + z + B defined over GF2™) such that G(y,)
#0 for 1 <i<n, up to tile designed minimum distance 27 + 1.

Introduction: Binary Goppa codes with separable Goppa polyno-
mial of degree ¢ can correct up to 7 errors. A general algorithm
based on the solution of a key equation [1] was described by Pat-
terson [3] and a key step to the solution of the key equation was
the solution of a quadratic equation in a polynomial ring given in
[4]. A decoding scheme for binary Goppa codes based on the
Gorenstein-Peterson-Zierler (GPZ) method [7] and the Berlekamp-
Massey (BM) algorithm used to produce the error locator polyno-
mial was proposed in [5], although it requires z to be even. It
seems that no decoding scheme that does not have exceptions has
yet been proposed. In this Letter we consider a Goppa code with
location set I" = {y,, ..., ¥,} € GF(2™) and Goppa polynomial G(z)
= 2! + z + [ defined over GF(2™), having simple roots (i.e. the pol-
ynomial is separable) and such that G(y) # 0 for 1 <7 < n. This
code has length », dimension & > n — mt and minimum distance d
2 2t + 1, thus it can correct up to ¢ errors [6]. Since the codes are
binary, for error correction it is only necessary to compute the
error locator polynomial o(z) = z' + o;z"! + ... + oz + G,
According to GPZ the set of elementary symmetric functions &,,
..., G, is obtained by solving the linear system of equations
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t—1

Y Tiori=Ty; §=0,.,t-1 (1)

=0
which is formed by determining a sequence of 2¢ syndromes 77, ...,
T5;_;.-Once the system is written down it can be solved with classi-
cal methods, and in particular the efficient Berlekamp-Massey
algorithm can be applied. In the following Section we show how a
sequence of 2¢ syndromes can be easily computed from the
received word.

Main result: Let ¢ = (¢, ..., ¢,), € = (e, ..., e and r = (|, ..., 1)
be the transmitted codeword, the error pattern and the received
word, respectively, with r = ¢ + e. Recalling that the same code
with separable Goppa polynomial G(z) is generated by G(z)* [6],
from the received word r we can compute two sets of ¢ syndromes
each, i.e.

L
S; = =t eyt —1
=G
T]‘anng”fz G=0,.,t—1
= Ghw

It is immediately seen that T4, = S, and, using this relation, every
even indexed syndrome T can be computed for r — 1 < 2j < 21 -
1. Furthermore, observing that G(y) = v/ + y; + B and writing

Tot—on—1 + Ti—on + BTi_2n-1

L T.,Yim—2h—1+,h;—2h+ﬁ%¢-2h—1
= r- —
gt G(n)
N t—2h-1
i
= rit—— =S a1
~ " G(n)

every odd-indexed syndrome T, can be computed, for £ - 1 < 2j
+1<2t-1,by

Tot—on—1 = Tt—2n+BTt—20—1+Si—2n-1 h=0, .., V—g—l}
Given the sequence of 2¢ syndromes Ty, T3, ..., T».5, 15,1, applica-
tion of the BM algorithm to the system of equations (eqn. 1)
yields the number of errors € < ¢, as well as the coefficients o, ...,
o, for the error locator polynomial o(z).

Example: Consider a (27, 2™ — 4m, 9) Goppa code with location
set GF(2") and G(z) z* + z + B, where the trace of B in GF2™) is
equal to 1. A decoding algorithm capable of correcting four errors
is based on the following linear system of equations:

T3 To i Toj[oa Ty
T4 T3 T2 T1 a9 _ T5
Ts Ty T3 T2 |03 T\ Te
Tg T5 T4 T3 T4 T7

where T,, T,, T,, Ty are computed from the received word
together with S, S,, S; and the remaining syndromes are obtained
as

T, = S2 Ts=To+ BT + 51
T(;:Sg T, =T, + BT+ S3

The number of corrected errors is equal to the rank of the coeffi-
cient matrix.

Conclusions: We have shown that the Gorenstein-Peterson-Zierler
method for decoding BCH codes up to the designed minimum dis-
tance can be applied without exception to binary Goppa codes
having T < GF(2™) as the location set and separable Goppa poly-
nomial z* + z + B. Therefore, the Berlekamp-Massey algorithm [§]
can be used to efficiently find the error locator polynomial o(z)
for correcting up to ¢ errors. Furthermore, when ¢ is small, a direct
solution of the GPZ linear system of equations yields closed
expressions for the coefficients of o(z) in terms of syndromes. In
particular, the case 1 = 2 has been fully discussed in [2], where a
complete decoding algorithm was proposed for two error correct-
ing codes with GF(2™) as the location set and irreducible Goppa
polynomial G(z) = z? + z + B. This is interesting when the decoder
is hardware implemented and parallel computations are allowed.

Finally, the proposed approach can be applied to binary Goppa
codes with any separable Goppa polynomial: in these cases the
odd indexed T7;,, syndromes for (r — 1) < 2j + 1 < (2t - 1) are
obtained solving a linear system with a full coefficient matrix
instead of the diagonal matrix produced by the trinomial z/ + z +

B. :

The complexity of the proposed algorithm with respect to Pat-
terson’s algorithm deserves further investigation regarding particu-
lar implementations.
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Iterative probabilistic decoding and parity
checks with memory

1.Dj. Goli¢

A method that effectively reduces the weight of parity checks used
in iterative probabilistic decoding algorithms is proposed. The
method is especially applicable to so-called parity checks with
memory and may lead to a significant improvement in fast
correlation attacks on stream ciphers based on linear feedback
shift registers. A technique for generating low-weight parity
checks with memory is also proposed.

Introduction. Fast correlation attacks [1] on binary linear feedback
shift registers (LFSRs) in keystream generators for stream cipher
applications are important cryptanalytic techniques which are
based on iterative probabilistic decoding algorithms for binary
symmetric channels. The attacks exploit the correlation between
the known keystream sequence and a linear combination of the
LFSR sequences. The goal is to reconstruct the combined LFSR
sequence from an observed segment of the keystream sequence in
the known-plaintext scenario. The problem is equivalent to one of
decoding a truncated cyclic linear block code The success of such
an attack critically depends on the number of low-weight parity
checks used (see [4, 5]).

Each parity check, as a linear equation satisfied by the LFSR
sequence, corresponds to a phase shift of a polynomial multiple of
the LFSR feedback polynomial f(x) which is called a parity-check
polynomial. The weight of a parity check is defined as the number
of bits involved. If f(x) has low weight, then the repeated squaring
will yield parity-check polynomials of the same weight [4]. If the
weight of f(x) is large, then a polynomial residue method [2] for
generating low-weight parity-check polynomials of as small a
degree as possible can be used. For a random f{(x) of degree r, it
turns out that the expected minimal degree of a parity-check poly-
nomial of weight w is O(27 ().
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