SILVER SPACE-TIME TRELLIS-CODED MODULATION

Ezio Biglieril, Yi Hongz, and Emanuele Viterbo?

'Universitat Pompeu Fabra, Barcelona, Spain, e .biglieri@iecee.org
Institute of Advanced Telecom., University of Wales, Swansea, UK, yv.hong@swansea.ac.uk
3DEIS-Universita della Calabria, 89036 Rende (CS), Italy, viterbo@deis.unical.it

ABSTRACT

Silver Code (SilC) was originally discovered in [1-4] for
2 x 2 multiple-input multiple-output (MIMO) transmission.
It has non-vanishing minimum determinant 1/7, slightly
lower than Golden code, but is fast-decodable, i.e., it allows
reduced-complexity maximum likelihood decoding [5-7]. In
this paper, we present a multidimensional trellis-coded mod-
ulation scheme for MIMO systems [11] based on set parti-
tioning of the Silver Code, named Silver Space-Time Trel-
lis Coded Modulation (SST-TCM). This lattice set partition-
ing is designed specifically to increase the minimum deter-
minant. The branches of the outer trellis code are labeled
with these partitions. Viterbi algorithm is applied for trel-
lis decoding, while the branch metrics are computed by us-
ing a sphere-decoding algorithm. It is shown that the pro-
posed SST-TCM performs very closely to the Golden Space-
Time Trellis Coded Modulation (GST-TCM) scheme, yet
with a much reduced decoding complexity thanks to its fast-
decoding property.

1. INTRODUCTION

High-speed wireless networks for multimedia traffic require
high spectral efficiency schemes with low packet delay.
Multiple-input multiple-output (MIMO) systems and alge-
braic space—time codes offer a good set of solutions to this
challenging design problem. Wireless channels are com-
monly modeled as block fading, where it is assumed that
the channel is fixed over the duration of a frame. For such
channels, concatenated coding schemes are appropriate. Re-
cently, a concatenated scheme, named Golden Space-Time
Trellis Coded Modulation (GST-TCM), was proposed in [12,
20] for 2 x 2 MIMO. The inner code is a Golden code [11]
and the outer code is a trellis code, which improves the cod-
ing gain. The Viterbi algorithm is used for trellis decoding,
where the branch metrics are computed using a sphere de-
coder (SD) [21,22] for the inner code. GST-TCM is appro-
priate for high-data-rate systems, thanks to its flexibility in
the choice of the modulation spectral efficiency. However,
the GST-TCM scheme suffers from a high decoding com-
plexity.

To reduce the decoding complexity of GST-TCM, while
maintaining good performance and high spectral efficiency,
we advocate the replacement of the Golden code with the
Silver Code (SilC), which yields Silver Space-Time Trellis
Coded Modulation (SST-TCM). SilC, proposed in [1-4] for
2 x 2 MIMO, has non—vanishing minimum determinant of %
[10], full-diversity, cubic shaping, and the fast-decodable ca-
pability, i.e., it enables reduced-complexity maximum likeli-
hood decoding (MLD), as specialized in the form of an SD
search [5-7]. Other fast—-decodable space-time block codes,

presented in [23], suffer from diversity loss due to their con-
struction. We therefore do not consider it for this 2 x 2
MIMO ST-TCM.

In the proposed SST-TCM, lattice set partitioning is com-
bined with a trellis code to increase the minimum determi-
nant. Thanks to the fast-decodable capability of SilC, we
can substantially reduce the branch-metric computation com-
plexity of the SD algorithm used in the Viterbi algorithm. We
show a design example of SST-TCM, a 16-state TCM which
achieves a power gain of 4.2 dB over the uncoded SilC and
has a performance comparable to that of GST-TCM, for a
frame error rate (FER) of 1073 and a spectral efficiency of 6
bits per channel use (bpcu), but with a much lower decoding
complexity.

The rest of the paper is organized as follows. Section 2
introduces SilC, system model, and the general code design
criterion for SST-TCM. Section 3 introduces set partitioning
rules of SilC. Section 4 presents the proposed SST-TCM. In
Section 5 a code design example of SST-TCM with a spectral
efficiency of 6 bpcu is shown. Finally, conclusions are drawn
in Section 6.

The following notations are used: 7 denotes transpose,
complex conjugation, and ¥ Hermitian transpose. Z, Q,
C and Z[j] denote the ring of rational integers, the field of
rational numbers, the field of complex numbers, and the ring
of Gaussian integers, where j> = —1, respectively. Let Q(6)
denote an algebraic number field generated by the primitive
element 6. GF(2) = {0, 1} denotes the Galois field of degree
two. The m x m identity matrix is denoted by I,,. The m x n
null matrix is denoted by 0,,,x,.
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2. SYSTEM MODEL

Silver Code — First we recall the Silver code ., defined
in [1-4]. It has codeword matrices of the form

X =X12(s1,52) +X34(53,54) (1)

where the first (resp., second) component code encodes in-
formation symbols sy, s, (resp., s3,54) and sy, 52,53, 54 € Z[J],
X 2(s1,52) is chosen as an Alamouti code [8], i.e.,

s1 —583
X12(81,8) = { s; STZ } 2
and X3 4(s3,54) is chosen as follows:
- =2
X34(s3,84) = T[ 2 2 } (3)

which has the Alamouti structure [8], where
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where 71,20 € C, and U € C%*2 is the unitary “Alamouti”
matrix
U= (] 7(65
(2

with |@;|? + |@2|*> = 1. The best known code of the form (4)
was defined by the following unitary matrix [1-6]
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The SilC has the following properties:

—1+2j
1—j

1. Full rank: The special cyclic division algebra struc-
ture of Q(v/—7) guarantees that all codewords have full
rank [10].

2. Full rate: The spectral efficiency is of two Q-QAM infor-
mation symbols per channel use, i.e., 2log, Q bit/s/Hz,
and saturates the two degrees of freedom of 2 x 2 MIMO.

3. Cubic shaping: this relates to the cubic shape of the vec-
torized eight-dimensional constellation, and guarantees
that no shaping loss is incurred by the code [6,7]. We
also say this code is information-lossless.

4. Nonvanishing determinant for increasing Q-QAM size:
this property is derived in [10].

5. Minimum determinant 1/7: this preserves the coding
gain for any Q-QAM size.

System Model. We consider a2 x 2 (ny =2,ng =2) MIMO
system over slow fading channels. The received signal ma-
trix Y € C?*?L (2L is the frame length), is given by

Y =HX+2Z, (5)

where Z € C?*2 is the complex white Gaussian noise matrix
with i.i.d. samples ~ .A4¢(0,Ny), and H € C?*? is the chan-
nel matrix, which is constant during a frame and varies inde-
pendently from one frame to another. The elements of H are
assumed to be i.i.d. circularly symmetric Gaussian random
variables ~ A4¢(0,1). The channel is assumed to be known
at the receiver.

In (5), X = [X1,.... %, ..., Xr] € C**?L is the transmitted
signal matrix, where X; € C>*2. The inner codewords X;,t =
1,...,L are selected as follows:

1. X; are independently selected from the SilC ..
2. A trellis code is used as the outer code. It encodes across
symbols X; selected from partitions of ..

In this paper, we use Q-QAM constellations, with Q = 2"
information symbols in (1). We assume the constellation is
scaled to match Z[j] + (1 + j)/2. This implies that its mini-
mum Euclidean distance is set to 1, and centered at the origin.
The average energy E; is 0.5, 1.5 and 2.5 for Q = 4,8, 16,
respectively, and E, = E;/q is the energy per bit, where ¢
denotes the number of information bits per symbol. We have
Ny =202, where 67 is the noise variance per real dimension,
which can be adjusted as 62 = (nrEj,/2)1005NR/10) \where
SNR;, denotes the signal-to-noise ratio per bit.

Design Criterion. Assuming that a codeword X is trans-
mitted, the maximum-likelihood receiver might decide erro-

neously in favor of another codeword X. Let r denote the
rank of the codeword difference matrix X — X. Since SilC

is full-rank, r = ny = 2. Let A;,i = 1,...,r, be the eigenval-

ues of the codeword distance matrix A = (X — X)(X — X)T.
Further, let A =[] A; be the determinant of the codeword dis-
tance matrix A, and Ay, the corresponding minimum de-
terminant Apin = min det(A). We call nyng the diversity
X#X
gain and (Amin)l/nT the coding gain [9]. In the case of lin-
ear codes, we can simply consider the all-zero codeword ma-
trix, which yields Ay, >  min  det (XXT) , Where equality
X#02x2L

holds for infinite codes [11].

In order to compare two coding schemes supporting the
same information bit rate, but with different minimum de-
terminants (Amin,1 and Ap;, 2) and different constellation en-
ergies (E, 1 and E;»), we define the asymptotic coding gain

as
Vas = vV Amin,l /Es,l
“ vV Amin,2/Es,2

When L = 1, the codeword matrix X = X| € . is square.
The SilC .¥ has full rate, full rank r = 2, and nonvanishing
minimum determinant 8y, = 1/7 [10]; thus, Apin = Smin for
the uncoded SilC. In all cases, we have

det (XX7) = det (i (x,xj)) . (7)

t=1

(6)

A code design criterion attempting at maximizing Ap;, is
hard to apply, due to the nonadditive nature of the determi-
nant metric in (7). Since X,XlT are positive definite matrices,
we use the following determinant inequality [19]

L
Amin > _min Y det (X,xj ) A @)
X7é02x2L =1
Maximization of the lower bound A;nin will be adopted as a
design criterion of our concatenated scheme. In particular,
. . . e e . !
we will design trellis codes that attempt at maximizing A,
by using set partitioning to increase the minimum number of
nonzero terms in the sum (8).

3. SET-PARTITIONING OF SILC

We use a systematic design approach following Ungerboeck-
style set-partitioning rules for coset codes [14—16] and for
GST-TCM [20], respectively. As in [20], the design criterion
for the trellis code is developed in order to maximize A;mn,
since this yields the maximum lower bound on the asymp-
totic coding gain of the SST-TCM over the uncoded SilC:

Yas > V A;nin/E&,l )
- Vv 6min/Es,Z

We observe that, since SilC shares with the Golden Code
the cubic-shaping property, then in STT-TCM we can simply
use the same set-partitioning rule as that in GST-TCM. Let
us recall the set partition chain in [20].

©))

Partitioning SilC. Let us consider a subcode .7, C . for
k=1,...,4, obtained from

e ={XxB" X € .7}, (10)



‘ Level ‘ Subcode ‘ Lattice ‘ Binary code ‘ Amin ‘
0 2 78 Co=(8,8,1) | Smin
1 57 D} C=(8,6,2) | 26min
2 5% Eg G =(8,4,4) 46min
3 %) Lg C3=(8,2,4) | 88min
4 | A=27| 278 | C4=(8,0,0) | 168mi

Table 1: SilC partition chain with corresponding lattices,

binary codes, and minimum squared determinants. Here
Smin = 1/7.
where

p—| /(1-0) 1-0 1 (1)

Jjo Jjo

where 6 = (14 +/5)/2. This yields minimum square deter-
minant 288, (see Table 1). It is shown that the codewords
of .7}, when vectorized, correspond to different sublattices
of Z8. Tt can be verified that these lattices form the lattice
partition chain, similarly to that of GST-TCM [20]

78 5 D3 D Eg D Lg D 278 (12)

where Di is the direct sum of two four-dimensional Shléfli
lattices, Eg is the Gosset lattice, and Lg is a lattice of index
64 in Z8. Any two consecutive lattices A O A’ in this chain
form a four-way partition, since the quotient group A/A’ has
order 4. Let [A/A’] denote the set of coset leaders of the quo-
tient group A/A’. The lattices in the partition chain can be
obtained by Construction A [18], using the nested sequence
of linear binary codes Cy = (8,8 — 2k, dmin), Where dy;y is
the minimum Hamming distance and k =0,...,4:

Co=(8,8,1) DC; =(8,6,2) DC, = (8,4,4) (13)
DC;=(8,2,4) DCs=(8,0,%0)

Following in the footsteps of [14—16], we consider the lattice
partition chain A D A’ D Ay, where A,A’, A, are any three
consecutive lattices in the partition chain. We can write

A=A+ [A/A] = A+ [A/N]+ [N /A

Let C,C’" and C” be the corresponding codes in (13). Then
we can write!

A=NA+[C/C" = A+ [C/CTHIC/CT] . (14

The coset leaders in [C/C'] form a group of order 4 (Z /27 x
7./27), generated by two binary generating vectors h; and
h,

[C/C/] = {b]h[ + bohy | bi,by € GF(Q,)}

If we consider all the lattices in (12), and the corresponding
nested sequence of linear binary codes Cy in (13), we obtain
the same [C;/Ci11],1=0,...,3, as for GST-TCM.

Note that the binary components in GF(2) of the coset leaders are lifted
to the ring of integers (slight notational abuse).

4. SST-TCM

Encoder Structure. We adopt the same encoder structure
and trellis labeling as GST-TCM, shown in [20, Fig. 5].
Specifically, the input bits feed two encoders, an upper trellis
encoder and a lower lattice encoder. Generalizing (14), we
consider two lattices A and A, from the lattice partition chain
in (12), such that Ay is a proper sublattice of the lattice A. Let
¢ denote the relative partition level of A, with respect to A.
The quotient group A /Ay has order N, = |A/A;| = 4¢, which
corresponds to the total number of cosets of the sublattice Ay
in the lattice A.

The upper encoder is a trellis encoder that operates on g,
information bits. Given the relative partition depth ¢, we se-
lect a trellis code rate R, = 1/£. The trellis encoder outputs
ne = g0/ R. bits, which are used by the coset mapper to label
the coset leaders ¢ € [A/Ay]. The mapping is obtained by the
product of the n. bit vector with a binary coset leader gen-
erator matrix H,. with relevant rows. Since the trellis has 29
incoming and outgoing branches from each state, we limit
ourselves to considering g, = 2, so as to preserve a reason-
able branch trellis complexity.

The lower encoder is a lattice encoder for Ay, and oper-
ates on ¢, information bits. The A, encoder generates vec-
tors x. The vectors x and the binary coset leaders ¢ from
trellis encoder are added component-wise, and mapped to the
SilC codeword X;.

We now focus on the structure of the trellis code to be
used. We consider linear convolutional encoders over the
quaternary alphabet Z4 = {0, 1,2,3} with mod-4 operations.
We assume the natural mapping between pairs of bits, and
symbols in Z4. Let B € Z4 denote the input symbol, and
ay,...,0p € Zy the £ output symbols generated by the poly-
nomials g1 (D), ...g¢(D) over Z4[D].

Labeling. In order to increase the potential coding gain, the
lower bound A/, in (8) should be maximized. This lower
bound is determined by the shortest simple error events in
the trellis, i.e.,

to+L' —1
det(X,X,") (15)

/

min  — min

X#0p0L  {=,
> min det(X,oX,I) + rgl(in det(Xl,.XJ)
1

1o

where L' is the length of the shortest simple error event di-
verging from the zero state at 7, and merging into the zero
state at t; = t, + L'. Therefore, we have the following:

Design criterion. We focus on simple error events. The in-
coming and outgoing trellis paths for each state should be-
long to different cosets that are as deep as possible in the
partition tree. This guarantees that simple error events in the
trellis have large A . .

Fast decoding. For SST-TCM, the decoder structure is sim-
ilar to that of GST-TCM, i.e., a Viterbi algorithm using a
branch metric computer obtained by SD. The branch metric
computer should output the distance of the received symbol
from all the cosets of a sublattice in the lattice. The decoding
complexity depends on two parameters

1. the total number of distinct parallel branch metrics.
2. the number of states in the trellis.



[000,001,002,003] ~
[100,101,102,103]
[200,201,202,203]
[300,301,302,303]
[011,012,013,010] <%
[111,112,113,110] <
[211,212,213,210] ~
[311,312,313,310]
[022,023,020,021]
[122,123,120,121] < 3
[222,223,220,221] <
[322,323,320,321] VA .
[033,030,031,032] 7 7
[133,130,131,132]
[233,230,231,232]

[000,011,022,033]
[001,012,023,030]
[002,013,020,031]
/L7 [003,010,021,032]
L7 [100,111,122,133]
2> 1101,112,123,130]
4 [102,113,120,131]
X7 1103,110,121,132)]

= [200,211,222,233]
[201,212,223,230]
= [202,213,220,231]
[203,210,221,232]
D [300,311,322,333]
[301,312,323,330]
[302,313,320,331]

[3383,330,331,332] =

[3083,310,321,332]

Figure 1: The 16-state trellis corresponding to the generators gy (D) = D, g>(D) = D?, and g3(D) = 1+ D?. Labels on the left
are emanating from each state clockwise, labels on the right are merging counterclockwise, A = 78, Ay=Lg, 0 =3, SST-TCM.

In GST-TCM, the branch metric computer can be real-
ized as a traditional sphere decoder for each branch metric,
which requires an O(M*) worst-case decoding complexity,
where M is the cardinality of the relevant constellation. For
SilC, it was pointed out in [6, 7] that its worst-case decoding
complexity is O(M?).

5. CODE DESIGN EXAMPLE

In this section, we exhibit a code design example of SST-
TCM with 16-state trellis codes. We assume that each frame
contains L = 130 symbols (2 x 2). We first describe uncoded
SilC schemes with the same frame length, to be used as base-
lines for performance comparison.

Uncoded Silver code 6 bpcu. A total of 12 bits must be
sent in a Silver codeword: the symbols a,b,c,d are in a 8-
QAM (3bits). This guarantees that the same average energy
is transmitted from both antennas. In this case we have E; » =
1.5 and g = 3 bits.

Example. The 16-state trellis codes with 16-QAM gain
4.2 dB over an uncoded transmission scheme at the rate of
6 bpcu and A = 78, Ay = Lg, where by = 0,0 = 3. We have
Es1 =2.5and g =3 bits.

We consider a 3-level partition with quotient group
A/Ay = 78/Lg of order N, = 64. The quaternary trellis en-
coders for 16-states with rate R, = 1/3 have ¢; = 2 input
information bits and n. = 6 output bits, which label the coset
leaders. The sublattice encoder has g = 2 and g3 = 8 in-
put bits, giving a total number of input bits per information
symbol g = (g1 + g2+ ¢q3) /4 = 12 /4 = 3bits.

The 16-state GST-TCM has the following generator poly-
nomials: g1 (D) = D,g2(D) = D?,g3(D) = 1+ D?, where D
is a delay operator mod 4. In Fig. 1, for each trellis state, the
four outgoing branches with labels «;, a,, o3, corresponding

to input B = 0,1,2,3, are listed on the left side of the trel-
lis. Similarly, the four incoming trellis branches to each state
are listed on the right side of the trellis structure. In such a
case, a; chooses the cosets from Di in A=78, oy chooses
the cosets from Eg in Dﬁ, and a3 chooses the cosets from
Ay = Lg in Eg.

We can see that the shortest simple error event has length
L' = 3, corresponding to the state sequence 0 — 1 — 4 — 0
and to labels 001, 100,011. This will yield

A;nin > min(SSmin746min + 5min + 2é"min) = 7é"min-

The performances of the proposed codes, GST-TCM, and
the uncoded schemes including SilC and Golden code at
6 bpcu are compared in Fig. 2. We can observe that a 16-state
GST-TCM outperforms the uncoded SilC and the Golden
code scheme by 4.2 dB at FER= 10~3. We also observe that
the SST-TCM has a performance comparable to GST-TCM,
but its decoding complexity is greatly reduced.

6. CONCLUSIONS

In this paper, we present SST-TCM, a concatenated cod-
ing scheme suitable for slow-fading 2 x 2 MIMO systems.
The inner modulation is the SilC, which provides full diver-
sity, nonvanishing determinant, and fast-decodable proper-
ties. Lattice set partitioning is designed specifically to in-
crease the minimum determinant of SilC codewords, which
label the branches of the trellis code. Viterbi algorithm is
applied in trellis decoding, where branch metrics are com-
puted by using a lattice decoder. We were able to show that
the proposed SST-TCM has a performance very close to that
of GST-TCM, yet with a substantial decoding complexity re-
duction. Future work may consider the use of Diophantine
approximation in the decoding [24].
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—&- SST-TCM Z /L, 6bpcu
—— GST-TCM Zg/Lg Bbpcu

~©~ Uncoded Silver Code 6bpcu
—%— Uncoded Golden Code 6bpcu
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22 24

Figure 2: Performance comparison of 16-state trellis codes
in SST-TCM and GST-TCM, using 16-QAM constellation,
and uncoded Silver code and Golden code transmission at
the rate 6bpcu, A = Z8, Ay = Lg, £ = 3.
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