
SILVER SPACE–TIME TRELLIS-CODED MODULATION

Ezio Biglieri1, Yi Hong2, and Emanuele Viterbo3

1Universitat Pompeu Fabra, Barcelona, Spain, e.biglieri@ieee.org
2Institute of Advanced Telecom., University of Wales, Swansea, UK, y.hong@swansea.ac.uk
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ABSTRACT

Silver Code (SilC) was originally discovered in [1–4] for
2× 2 multiple-input multiple-output (MIMO) transmission.
It has non-vanishing minimum determinant 1/7, slightly
lower than Golden code, but is fast-decodable, i.e., it allows
reduced-complexity maximum likelihood decoding [5–7]. In
this paper, we present a multidimensional trellis-coded mod-
ulation scheme for MIMO systems [11] based on set parti-
tioning of the Silver Code, named Silver Space-Time Trel-
lis Coded Modulation (SST-TCM). This lattice set partition-
ing is designed specifically to increase the minimum deter-
minant. The branches of the outer trellis code are labeled
with these partitions. Viterbi algorithm is applied for trel-
lis decoding, while the branch metrics are computed by us-
ing a sphere-decoding algorithm. It is shown that the pro-
posed SST-TCM performs very closely to the Golden Space-
Time Trellis Coded Modulation (GST-TCM) scheme, yet
with a much reduced decoding complexity thanks to its fast-
decoding property.

1. INTRODUCTION

High-speed wireless networks for multimedia traffic require
high spectral efficiency schemes with low packet delay.
Multiple-input multiple-output (MIMO) systems and alge-
braic space–time codes offer a good set of solutions to this
challenging design problem. Wireless channels are com-
monly modeled as block fading, where it is assumed that
the channel is fixed over the duration of a frame. For such
channels, concatenated coding schemes are appropriate. Re-
cently, a concatenated scheme, named Golden Space-Time
Trellis Coded Modulation (GST-TCM), was proposed in [12,
20] for 2× 2 MIMO. The inner code is a Golden code [11]
and the outer code is a trellis code, which improves the cod-
ing gain. The Viterbi algorithm is used for trellis decoding,
where the branch metrics are computed using a sphere de-
coder (SD) [21, 22] for the inner code. GST-TCM is appro-
priate for high-data-rate systems, thanks to its flexibility in
the choice of the modulation spectral efficiency. However,
the GST-TCM scheme suffers from a high decoding com-
plexity.

To reduce the decoding complexity of GST-TCM, while
maintaining good performance and high spectral efficiency,
we advocate the replacement of the Golden code with the
Silver Code (SilC), which yields Silver Space–Time Trellis
Coded Modulation (SST-TCM). SilC, proposed in [1–4] for

2×2 MIMO, has non–vanishing minimum determinant of 1
7

[10], full-diversity, cubic shaping, and the fast-decodable ca-
pability, i.e., it enables reduced-complexity maximum likeli-
hood decoding (MLD), as specialized in the form of an SD
search [5–7]. Other fast–decodable space-time block codes,

presented in [23], suffer from diversity loss due to their con-
struction. We therefore do not consider it for this 2 × 2
MIMO ST-TCM.

In the proposed SST-TCM, lattice set partitioning is com-
bined with a trellis code to increase the minimum determi-
nant. Thanks to the fast-decodable capability of SilC, we
can substantially reduce the branch-metric computation com-
plexity of the SD algorithm used in the Viterbi algorithm. We
show a design example of SST-TCM, a 16-state TCM which
achieves a power gain of 4.2 dB over the uncoded SilC and
has a performance comparable to that of GST-TCM, for a
frame error rate (FER) of 10−3 and a spectral efficiency of 6
bits per channel use (bpcu), but with a much lower decoding
complexity.

The rest of the paper is organized as follows. Section 2
introduces SilC, system model, and the general code design
criterion for SST-TCM. Section 3 introduces set partitioning
rules of SilC. Section 4 presents the proposed SST-TCM. In
Section 5 a code design example of SST-TCM with a spectral
efficiency of 6 bpcu is shown. Finally, conclusions are drawn
in Section 6.

The following notations are used: T denotes transpose,
∗ complex conjugation, and † Hermitian transpose. Z, Q,
C and Z[ j] denote the ring of rational integers, the field of
rational numbers, the field of complex numbers, and the ring
of Gaussian integers, where j2 = −1, respectively. Let Q(θ )
denote an algebraic number field generated by the primitive
element θ . GF(2) = {0,1} denotes the Galois field of degree
two. The m×m identity matrix is denoted by Im. The m×n
null matrix is denoted by 0m×n.

2. SYSTEM MODEL

Silver Code – First we recall the Silver code S , defined
in [1–4]. It has codeword matrices of the form

X = X1,2(s1,s2)+ X3,4(s3,s4) (1)

where the first (resp., second) component code encodes in-
formation symbols s1,s2 (resp., s3,s4) and s1,s2,s3,s4 ∈Z[ j],
X1,2(s1,s2) is chosen as an Alamouti code [8], i.e.,

X1,2(s1,s2) =

[
s1 −s∗2
s2 s∗1

]
(2)

and X3,4(s3,s4) is chosen as follows:

X3,4(s3,s4) = T

[
z1 −z∗2
z2 z∗1

]
(3)

which has the Alamouti structure [8], where

T ,

[
1 0
0 −1

]
and

[
z1

z2

]
= U

[
s3

s4

]
(4)



where z1,z2 ∈ C, and U ∈ C2×2 is the unitary “Alamouti”
matrix

U =

[
ϕ1 −ϕ∗

2
ϕ2 ϕ∗

1

]

with |ϕ1|2 + |ϕ2|2 = 1. The best known code of the form (4)
was defined by the following unitary matrix [1–6]

U =
1√
7

[
1 + j −1 + 2 j

1 + 2 j 1− j

]

The SilC has the following properties:

1. Full rank: The special cyclic division algebra struc-

ture of Q(
√
−7) guarantees that all codewords have full

rank [10].

2. Full rate: The spectral efficiency is of two Q-QAM infor-
mation symbols per channel use, i.e., 2 log2 Q bit/s/Hz,
and saturates the two degrees of freedom of 2×2 MIMO.

3. Cubic shaping: this relates to the cubic shape of the vec-
torized eight-dimensional constellation, and guarantees
that no shaping loss is incurred by the code [6, 7]. We
also say this code is information-lossless.

4. Nonvanishing determinant for increasing Q-QAM size:
this property is derived in [10].

5. Minimum determinant 1/7: this preserves the coding
gain for any Q-QAM size.

System Model. We consider a 2×2 (nT = 2,nR = 2) MIMO
system over slow fading channels. The received signal ma-
trix Y ∈ C2×2L (2L is the frame length), is given by

Y = HX+Z, (5)

where Z∈C2×2L is the complex white Gaussian noise matrix
with i.i.d. samples ∼ NC(0,N0), and H ∈ C2×2 is the chan-
nel matrix, which is constant during a frame and varies inde-
pendently from one frame to another. The elements of H are
assumed to be i.i.d. circularly symmetric Gaussian random
variables ∼ NC(0,1). The channel is assumed to be known
at the receiver.

In (5), X = [X1,...,Xt, ...,XL] ∈ C2×2L is the transmitted

signal matrix, where Xt ∈ C2×2. The inner codewords Xt ,t =
1, . . . ,L are selected as follows:

1. Xt are independently selected from the SilC S .

2. A trellis code is used as the outer code. It encodes across
symbols Xt selected from partitions of S .

In this paper, we use Q-QAM constellations, with Q = 2η

information symbols in (1). We assume the constellation is
scaled to match Z[ j]+ (1 + j)/2. This implies that its mini-
mum Euclidean distance is set to 1, and centered at the origin.
The average energy Es is 0.5, 1.5 and 2.5 for Q = 4,8,16,
respectively, and Eb = Es/q is the energy per bit, where q
denotes the number of information bits per symbol. We have
N0 = 2σ2, where σ2 is the noise variance per real dimension,

which can be adjusted as σ2 = (nT Eb/2)10(-SNRb/10), where
SNRb denotes the signal-to-noise ratio per bit.

Design Criterion. Assuming that a codeword X is trans-
mitted, the maximum-likelihood receiver might decide erro-

neously in favor of another codeword X̂. Let r denote the

rank of the codeword difference matrix X− X̂. Since SilC

is full-rank, r = nT = 2. Let λi, i = 1, . . . ,r, be the eigenval-

ues of the codeword distance matrix A= (X−X̂)(X− X̂)
†
.

Further, let ∆=∏λi be the determinant of the codeword dis-
tance matrix A, and ∆min the corresponding minimum de-
terminant ∆min = min

X6=X̂

det(A). We call nT nR the diversity

gain and (∆min)
1/nT the coding gain [9]. In the case of lin-

ear codes, we can simply consider the all-zero codeword ma-

trix, which yields ∆min ≥ min
X6=02×2L

det
(
XX

†
)
, where equality

holds for infinite codes [11].
In order to compare two coding schemes supporting the

same information bit rate, but with different minimum de-
terminants (∆min,1 and ∆min,2) and different constellation en-
ergies (Es,1 and Es,2), we define the asymptotic coding gain
as

γas =

√
∆min,1/Es,1√
∆min,2/Es,2

. (6)

When L = 1, the codeword matrix X = X1 ∈S is square.
The SilC S has full rate, full rank r = 2, and nonvanishing
minimum determinant δmin = 1/7 [10]; thus, ∆min = δmin for
the uncoded SilC. In all cases, we have

det
(
XX

†
)

= det

(
L

∑
t=1

(
XtX

†
t

))
. (7)

A code design criterion attempting at maximizing ∆min is
hard to apply, due to the nonadditive nature of the determi-

nant metric in (7). Since XtX
†
t are positive definite matrices,

we use the following determinant inequality [19]

∆min ≥ min
X6=02×2L

L

∑
t=1

det
(

XtX
†
t

)
, ∆′

min. (8)

Maximization of the lower bound ∆
′
min will be adopted as a

design criterion of our concatenated scheme. In particular,

we will design trellis codes that attempt at maximizing ∆
′
min,

by using set partitioning to increase the minimum number of
nonzero terms in the sum (8).

3. SET-PARTITIONING OF SILC

We use a systematic design approach following Ungerboeck-
style set-partitioning rules for coset codes [14–16] and for
GST-TCM [20], respectively. As in [20], the design criterion
for the trellis code is developed in order to maximize ∆′

min,
since this yields the maximum lower bound on the asymp-
totic coding gain of the SST-TCM over the uncoded SilC:

γas ≥
√
∆′

min/Es,1√
δmin/Es,2

. (9)

We observe that, since SilC shares with the Golden Code
the cubic-shaping property, then in STT-TCM we can simply
use the same set-partitioning rule as that in GST-TCM. Let
us recall the set partition chain in [20].

Partitioning SilC. Let us consider a subcode Sk ⊆ S for
k = 1, . . . ,4, obtained from

Sk = {XBk,X ∈ S }, (10)



Level Subcode Lattice Binary code ∆min

0 S Z8 C0 = (8,8,1) δmin

1 S1 D2
4 C1 = (8,6,2) 2δmin

2 S2 E8 C2 = (8,4,4) 4δmin

3 S3 L8 C3 = (8,2,4) 8δmin

4 S4 = 2S 2Z8 C4 = (8,0,∞) 16δmin

Table 1: SilC partition chain with corresponding lattices,
binary codes, and minimum squared determinants. Here
δmin = 1/7.

where

B =

[
j(1−θ ) 1−θ

jθ jθ

]
. (11)

where θ = (1 +
√

5)/2. This yields minimum square deter-

minant 2kδmin (see Table 1). It is shown that the codewords
of Sk, when vectorized, correspond to different sublattices
of Z8. It can be verified that these lattices form the lattice
partition chain, similarly to that of GST-TCM [20]

Z8 ⊃ D2
4 ⊃ E8 ⊃ L8 ⊃ 2Z8 (12)

where D2
4 is the direct sum of two four-dimensional Shläfli

lattices, E8 is the Gosset lattice, and L8 is a lattice of index
64 in Z8. Any two consecutive lattices Λ ⊃ Λ′ in this chain
form a four-way partition, since the quotient group Λ/Λ′ has
order 4. Let [Λ/Λ′] denote the set of coset leaders of the quo-
tient group Λ/Λ′. The lattices in the partition chain can be
obtained by Construction A [18], using the nested sequence
of linear binary codes Ck = (8,8− 2k,dmin), where dmin is
the minimum Hamming distance and k = 0, . . . ,4:

C0 = (8,8,1) ⊃C1 = (8,6,2)⊃C2 = (8,4,4) (13)

⊃C3 = (8,2,4) ⊃C4 = (8,0,∞)

Following in the footsteps of [14–16], we consider the lattice
partition chain Λ ⊃ Λ′ ⊃ Λ`, where Λ,Λ′,Λ` are any three
consecutive lattices in the partition chain. We can write

Λ= Λ` +[Λ/Λ`] = Λ` +[Λ/Λ′]+ [Λ′/Λ`].

Let C,C′ and C′′ be the corresponding codes in (13). Then

we can write1

Λ= Λ` +[C/C′′] = Λ` +[C/C′]+ [C′/C′′] . (14)

The coset leaders in [C/C′] form a group of order 4 (Z/2Z×
Z/2Z), generated by two binary generating vectors h1 and
h2

[C/C′] = {b1h1 + b2h2 | b1,b2 ∈ GF(2)}

If we consider all the lattices in (12), and the corresponding
nested sequence of linear binary codes Ck in (13), we obtain
the same [Ci/Ci+1], i = 0, . . . ,3, as for GST–TCM.

1Note that the binary components in GF(2) of the coset leaders are lifted
to the ring of integers (slight notational abuse).

4. SST–TCM

Encoder Structure. We adopt the same encoder structure
and trellis labeling as GST-TCM, shown in [20, Fig. 5].
Specifically, the input bits feed two encoders, an upper trellis
encoder and a lower lattice encoder. Generalizing (14), we
consider two lattices Λ and Λ` from the lattice partition chain
in (12), such thatΛ` is a proper sublattice of the lattice Λ. Let
` denote the relative partition level of Λ` with respect to Λ.

The quotient group Λ/Λ` has order Nc = |Λ/Λ`|= 4`, which
corresponds to the total number of cosets of the sublattice Λ`
in the lattice Λ.

The upper encoder is a trellis encoder that operates on qc

information bits. Given the relative partition depth `, we se-
lect a trellis code rate Rc = 1/`. The trellis encoder outputs
nc = qc/Rc bits, which are used by the coset mapper to label
the coset leaders c∈ [Λ/Λ`]. The mapping is obtained by the
product of the nc bit vector with a binary coset leader gen-
erator matrix Hc with relevant rows. Since the trellis has 2qc

incoming and outgoing branches from each state, we limit
ourselves to considering qc = 2, so as to preserve a reason-
able branch trellis complexity.

The lower encoder is a lattice encoder for Λ`, and oper-
ates on qµ information bits. The Λ` encoder generates vec-
tors x. The vectors x and the binary coset leaders c from
trellis encoder are added component-wise, and mapped to the
SilC codeword Xt .

We now focus on the structure of the trellis code to be
used. We consider linear convolutional encoders over the
quaternary alphabet Z4 = {0,1,2,3} with mod-4 operations.
We assume the natural mapping between pairs of bits, and
symbols in Z4. Let β ∈ Z4 denote the input symbol, and
α1, . . . ,α` ∈ Z4 the ` output symbols generated by the poly-
nomials g1(D), . . .g`(D) over Z4[D].

Labeling. In order to increase the potential coding gain, the
lower bound ∆′

min in (8) should be maximized. This lower
bound is determined by the shortest simple error events in
the trellis, i.e.,

∆′
min = min

X6=02×2L

to+L′−1

∑
t=to

det(XtX
†
t ) (15)

≥ min
Xto

det(Xto X
†
to)+ min

Xti

det(XtiX
†
ti
)

where L′ is the length of the shortest simple error event di-
verging from the zero state at to and merging into the zero
state at ti = to + L′. Therefore, we have the following:

Design criterion. We focus on simple error events. The in-
coming and outgoing trellis paths for each state should be-
long to different cosets that are as deep as possible in the
partition tree. This guarantees that simple error events in the
trellis have large ∆′

min.

Fast decoding. For SST-TCM, the decoder structure is sim-
ilar to that of GST-TCM, i.e., a Viterbi algorithm using a
branch metric computer obtained by SD. The branch metric
computer should output the distance of the received symbol
from all the cosets of a sublattice in the lattice. The decoding
complexity depends on two parameters

1. the total number of distinct parallel branch metrics.

2. the number of states in the trellis.
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[000,001,002,003]

[100,101,102,103]

[200,201,202,203]

[300,301,302,303]

[011,012,013,010]

[111,112,113,110]

[211,212,213,210]

[311,312,313,310]

[022,023,020,021]

[122,123,120,121]

[222,223,220,221]

[322,323,320,321]

[033,030,031,032]

[133,130,131,132]

[233,230,231,232]

[333,330,331,332]

[000,011,022,033]

[001,012,023,030]

[002,013,020,031]

[003,010,021,032]

[100,111,122,133]

[101,112,123,130]

[102,113,120,131]

[103,110,121,132]

[200,211,222,233]

[201,212,223,230]

[202,213,220,231]

[203,210,221,232]

[300,311,322,333]

[301,312,323,330]

[302,313,320,331]

[303,310,321,332]

Figure 1: The 16-state trellis corresponding to the generators g1(D) = D, g2(D) = D2, and g3(D) = 1+D2. Labels on the left

are emanating from each state clockwise, labels on the right are merging counterclockwise,Λ= Z8, Λ` = L8, ` = 3, SST-TCM.

In GST-TCM, the branch metric computer can be real-
ized as a traditional sphere decoder for each branch metric,
which requires an O(M4) worst-case decoding complexity,
where M is the cardinality of the relevant constellation. For
SilC, it was pointed out in [6, 7] that its worst-case decoding
complexity is O(M3).

5. CODE DESIGN EXAMPLE

In this section, we exhibit a code design example of SST-
TCM with 16-state trellis codes. We assume that each frame
contains L = 130 symbols (2×2). We first describe uncoded
SilC schemes with the same frame length, to be used as base-
lines for performance comparison.

Uncoded Silver code 6 bpcu. A total of 12 bits must be
sent in a Silver codeword: the symbols a,b,c,d are in a 8-
QAM (3bits). This guarantees that the same average energy
is transmitted from both antennas. In this case we have Es,2 =
1.5 and q = 3 bits.

Example. The 16-state trellis codes with 16-QAM gain
4.2 dB over an uncoded transmission scheme at the rate of
6 bpcu and Λ = Z8,Λ` = L8, where `0 = 0, ` = 3. We have
Es,1 = 2.5 and q = 3 bits.

We consider a 3-level partition with quotient group
Λ/Λ` = Z8/L8 of order Nc = 64. The quaternary trellis en-
coders for 16-states with rate Rc = 1/3 have q1 = 2 input
information bits and nc = 6 output bits, which label the coset
leaders. The sublattice encoder has q2 = 2 and q3 = 8 in-
put bits, giving a total number of input bits per information
symbol q = (q1 + q2 + q3)/4 = 12/4 = 3bits.

The 16-state GST-TCM has the following generator poly-
nomials: g1(D) = D,g2(D) = D2,g3(D) = 1 + D2, where D
is a delay operator mod 4. In Fig. 1, for each trellis state, the
four outgoing branches with labels α1,α2,α3, corresponding

to input β = 0,1,2,3, are listed on the left side of the trel-
lis. Similarly, the four incoming trellis branches to each state
are listed on the right side of the trellis structure. In such a
case, α1 chooses the cosets from D2

4 in Λ = Z8, α2 chooses

the cosets from E8 in D2
4, and α3 chooses the cosets from

Λ` = L8 in E8.
We can see that the shortest simple error event has length

L′ = 3, corresponding to the state sequence 0 → 1 → 4 → 0
and to labels 001,100,011. This will yield

∆′
min ≥ min(8δmin,4δmin + δmin + 2δmin) = 7δmin.

The performances of the proposed codes, GST-TCM, and
the uncoded schemes including SilC and Golden code at
6 bpcu are compared in Fig. 2. We can observe that a 16-state
GST-TCM outperforms the uncoded SilC and the Golden
code scheme by 4.2 dB at FER= 10−3. We also observe that
the SST-TCM has a performance comparable to GST-TCM,
but its decoding complexity is greatly reduced.

6. CONCLUSIONS

In this paper, we present SST-TCM, a concatenated cod-
ing scheme suitable for slow-fading 2× 2 MIMO systems.
The inner modulation is the SilC, which provides full diver-
sity, nonvanishing determinant, and fast-decodable proper-
ties. Lattice set partitioning is designed specifically to in-
crease the minimum determinant of SilC codewords, which
label the branches of the trellis code. Viterbi algorithm is
applied in trellis decoding, where branch metrics are com-
puted by using a lattice decoder. We were able to show that
the proposed SST-TCM has a performance very close to that
of GST-TCM, yet with a substantial decoding complexity re-
duction. Future work may consider the use of Diophantine
approximation in the decoding [24].
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