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Abstract—We consider the design of polar codes for block
fading channels. The key idea is to combine modulation, fading,
and coding in a single entity. This design is based on two facts:
(i) for each fading block, symbols with different fading coefficient
has different reliability; (ii) for each symbol, different bit levels of
a high order modulation observe different noise levels. In other
words, the bit channels are partially polarized by modulation
and fading. This new viewpoint inspires us to construct polar
codes by matching code polarization perfectly with modulation
polarization and fading polarization. The resulting codes adapt to
the channel quality fluctuation, thus provide better performance
than conventional polar BICM schemes and LDPC codes.

I. INTRODUCTION

The changing signal-to-noise ratio (SNR) exhibited by a
fading channel can cause severe error bursts. A classical
method for combating the channel quality fluctuation is adap-
tive coded modulation (ACM), utilizing a feedback channel
to provide channel state information at the transmitter (CSIT)
[1–3]. In ACM, the channel coding and modulation designs
are separable. The error bursts are eliminated by adjusting the
size of the transmitted constellation according to the quality
of the channel. However, this technique suffers from a varying
system throughput, making it unsuitable when fixed through-
put is required. Deriving an adaptive transmission scheme with
fixed constellation size and data rate is particularly interesting.

One promising research direction is to use CSIT in the
design of codes for fading channels. In general, it is im-
practical to adapt an arbitrary code to each channel state,
but particular structure of polar codes [4], which making
this approach feasible. The idea of polar code is to trans-
form a communication channel into polarized subchannels:
either completely noisy or noiseless. Information bits are then
transmitted over the noiseless subchannels, while fixed or
frozen bits are send over the noisy ones. Polar codes are
particularly suited to fading channels, as they adapt to varying
channel quality. The low complexity of polar code construction
allows the implementation of a real-time adaptive coding. In
practice, polar codes can be firstly designed at the receiver side
according to CSI, and then the frozen indices are fed back to
the transmitter.

Recently, many efforts have been made to construct polar-
based schemes for transmissions over fading channels. In
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[5], polar lattices for fading channels are constructed. In [6],
the author models the subchannels induced by the polarizing
transformation as multi-path fading channels and tracks their
diversity order and noise variance. In [7], an embedded po-
lar coding scheme is proposed for fading binary symmetric
channels. In [8], the author constructs polar codes for block
Rayleigh fading channels under the assumption that only
channel statistics are available. In [9], the authors study the
polarization of block fading channel with two distinct fading
coefficients. However, the methods in [6–9] are limited to
bipolar signaling, i.e., transmitting one bit per channel use. It
remains an open problem to construct polar codes with high
order modulation for fading channels.

In this paper, we propose an explicit method to construct
polar codes for block fading channels with arbitrary input
alphabet size. We note that the reliability of each transmit-
ted symbol varies with its fading coefficient. Moreover, the
bits with different modulation level observe different noise
level. In analogy to code polarization, these effects can be
viewed as fading polarization and modulation polarization.
This new viewpoint allows us to combine coding, fading,
and modulation in a single entity for improved performance.
In other words, the proposed polar coding scheme matches
code polarization perfectly with the fading polarization and the
modulation polarization, and thus provides better performance
than conventional polar or LDPC BICM [10,11].

Section II presents system model. Section III describes
the proposed construction of polar codes. Section IV shows
simulation results and comparisons with other codes. Section
V sets out both theoretical and practical conclusions. The
Appendix contains the proof of the theorem.

II. SYSTEM MODEL AND PROBLEM STATEMENT

A. System Model
We consider the discrete-time channel model

yk = hksk + nk, k = 1, ..., L, (1)

where L is the frame size. In the kth channel use, sk is the
transmitted symbol in an M-PAM constellation PM :

PM = {−M + 1,−M + 3, ...,M − 1}, (2)

yk is the channel output, nk is a zero mean Gaussian noise,
nk ∼ N

(
0, σ2

)
, and hk is the channel gain. Here, hk and
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nk are assumed to be independent. We do not specify the
fading type or the distribution of hk, since we assume that the
transmitter knows the realization of hk.

In the block fading channel model, a transmission frame
of L symbols is affected by 1 ≤ B ≤ L independent
fading realizations, resulting in a block of L/B symbols being
affected by the same fading realization. Different values B

represents different types of fading, e.g., for B = L, we refer
to fast fading and for B = 1 to slow fading.

We assume that each transmitted frame contains one code-
word, i.e., in each frame, a rate-R encoder maps K information
bits {ui}K1 into N coded bits {xi}N1 , where

N = L log2(M). (3)

Let R , K/N be the code rate. After then, every log2(M)

coded bits are modulated to generate a signal using M-PAM
modulation in (2) with Gray mapping.

In this work, we fix the code rate to R = 1/2. As shown in
[9], the mutual information outage (MIO) occurs if

1

L

L∑
k=1

I(sk; yk) < R =
1

2
. (4)

To avoid MIO, transmission control can be employed, i.e., if
MIO occurs, the transmitter will not send messages.

B. Polar Codes

1) Code Construction: Polar codes are constructed based
upon a phenomenon called channel polarization discovered by
Arıkan [4]. The polarization matrix is given as

G = BNF⊗n, (5)

where N = 2n, BN is a bit-reversal permutation matrix [4],

F =

[
1 0

1 1

]
, (6)

and (·)⊗n denotes the n fold Kronecker product of a matrix
recursively defined by F⊗n = F⊗ F⊗(n−1).

Consider N independent copies of a binary-input discrete
memoryless channel W : {0, 1} → Y, where Y is output
alphabets. The N input bits u = [u1, u2, ..., uN ], which are
selected from uniform distributions, are multiplied by G

in (5) and then transmitted over the N copied of W . Let
y = [y1, y2, ..., yN ] be the channel output bits. Assuming the
past bits are decoded successfully and known, the bit-channel
observed by ui can be written as

W (i) ,W (i)(y, {ut}i−1
1 |ui ), i = 1, ..., N . (7)

Channel polarization is the fact that the capacity of W (i),
denoted as I(W (i)), approached to either 1 or 0, as N goes to
infinity. These polarized channels

{
W (i)

}N
1

suggest a channel
coding scheme, referred to as polar codes, by transmitting a
sequence of K information bits over K noiseless channels
and transmitting a sequence of N−K fixed or frozen bits over
N−K noisy channels. Different form conventional linear block
codes, the main challenge for polar code design is finding F .

The Bhattacharyya parameter, denoted as Z(W ), can be
used to measure the error probability of a channel W . It is the
upper bound of error probability under maximum-likelihood
(ML) decoding and is defined as [4]

Z(W ) =
∑
y∈Y

√
p(y|0)p(y|1). (8)

Let Z(i), i = 1, ..., N , represent the Bhattacharyya parameter
of the bit channel W (i) in (7). The indices of the N−K largest
values in the set

{
Z(i), i = 1, ..., N

}
form the frozen bit set F .

Let Z(i)
0 = Z(W ) and Z

(i)
n = Z(i). For binary erasure channel

(BEC), Z(i)
n can be computed recursively from Z

(1)
0 as [4]

Z
(i)
j+1 =


2Z

(i)
j −

(
Z

(i)
j

)2
, 1 ≤ i < 2j + 1(

Z
(i−2j)
j

)2
, 2j + 1 ≤ i ≤ 2j+1

(9)

2) Polar Encoding: The encoder of a polar code is

x = uG = uBNF⊗n. (10)

The the input bit sequence {ui}N1 are divided into two sets: the
information bits set A and the frozen bit set F . The frozen bits
are not decoded given that they are known a priori at receiver.

3) Polar Decoding: Arikan proposes the successive cance-
lation decoding (SC) procedure summarized in Algorithm 1.
In line 5 of Algorithm 1, W (i)(y, {ût}i−1

1 |ui ) represents the
likelihood of ui given the channel output y and the previously
decoded bits {ût}i−1

1 .

Algorithm 1 Successive Cancelation Decoding [4]
1: for i = 1, 2, ..., N do
2: if i ∈ F then
3: ûi ← ui; //this is a frozen bit
4: else
5: ûi ← arg maxui∈{0,1}W

(i)(y, {ût}i−1
1 |ui );

6: end if
7: end for

In the SC decoder, past decisions are never revisited in
the future. In return for this sub-optimality, the likelihoods
W (i)(y, {ût}i−1

1 |ui ) can be computed efficiently and the de-
coding complexity scales like O(N logN). To enhance the
decoder performance, the list SC decoder was introduced in
[12]. The idea is to keep a list of most likely codewords at
each decoding step. When the last codeword bit has been
decoded, the most likely codeword in the list is returned as the
decoded codeword. For small block length, the performance
of list decoder is very close to the ML decoder.

C. Problem Statement

With the received signal being scaled by the channel gain,
the block fading channel in (1) can be treated as a set of
independent AWGN channels with different received SNRs.

ŷk = sk + n̂k, k = 1, ..., L, (11)

where ŷk = yk/hk, n̂k ∼ N
(

0, σ2
k

)
, and σ2

k = σ2/h2
k.
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1) Fading Polarization: The symbol error probability of the
kth channel in (11) is

Ps(ŝk 6= sk) = 2
M − 1

M
Q

(
|hk|
σ

)
, (12)

where Q(·) is the complementary error function. The channels
with large fading coefficients are more reliable than the ones
with small fading coefficients. In other words, the channels are
partially “polarized” by the fading process. In analogy to code
polarization, we refer to this effect as fading polarization.

2) Modulation Polarization: Since the bits {xi}km(k−1)m+1,
where m = log2M , are mapped to the symbol sk, under Gray
mapping, the bit error probability of xj can be easily computed
as

Pb(x̂j 6= xj) ≈
1

2m−(j mod m)
Q

(
|hk|
σ

)
, j = (k−1)m+1, ..., km

(13)
The approximation in (13) ignores high order terms and is
quite accurate in practice. We observe that the bits with
different indexes have different reliability. In other words, the
bits are partially “polarized” by the modulation operation. We
refer to this effect as modulation polarization.

In this work, we take advantage of fading and modulation
polarization to construct polar codes. We will optimize the
mapping of the coded bits to the fading coefficients and mod-
ulation levels, so that the frame error probability is minimized.

III. CONSTRUCTION OF POLAR CODES FOR BLOCK
FADING CHANNELS WITH HIGH ORDER MODULATION

We first introduce our design criterion and then derive the
optimal mapping between coded bits and fading coefficients.

A. Design Criterion

We consider the mapping between the coded bits {xi}N1
and the AWGN channels in (11). Without loss of generality,
let

{
xρ(i)

}N
1

be a permuted version of {xi}N1 by an index
permutation. The received signals in (11) can be written as

ŷk =M
({

xρ(k)

}km
(k−1)m+1

)
+ n̂k, k = 1, ..., L, (14)

where M(·) denotes the PAM modulation operation.
To gain more intuition, we denote the pairs of coded bit,

modulation level, and channel SNR as

Lρ ,

{(
xρ(i); ηi,

ĥ2
i

σ2

)}N
1

, (15)

where
ηi = i mod m, ĥi = hdi/me. (16)

The operation dxe rounds x to the next larger integer. Note
that ηi represents the ith coded bit index in the modulation
symbol label, while ĥi represents the fading for the ith coded
bit. Together, the pair

(
ηi, ĥ

2
i /σ

2
)

represents the ith coded bit
channel after bit labeling and fading.

With a different permutation ρ, a coded bit can be assigned
to a different modulation level and a different channel. To
simplify notation in the code design, we prefer to use the

natural order of coded bits. The pairing L in (15) can be
rewritten as

Lρ =

{(
xi; ηρ̄(i),

ĥ2
ρ̄(i)

σ2

)}N
1

, (17)

where ρ̄ is the inverse permutation of ρ.
Remark 1: From (17), the modulation level and channel

index of a coded bit is uniquely determined by permutation ρ.
Since the construction of polar codes depends on the pairing

Lρ, different permutations lead to different performance. Our
design criterion is to find the optimal permutation ρ maximiz-
ing the performance of polar codes.

For a given permutation ρ̄, let W (i) : ui → ŷ where ŷ =

[ŷ1, ŷ2, ..., ŷL], denotes the ith bit channel, where

W (i) ,W (i)(ŷ, {ut}i−1
1 |ui ). (18)

Let Z(i)
n be the Bhattacharyya parameter of W (i). The upper

bound on the block error probability can be calculated as

PB =
∑
i∈A

Z
(i)
n , (19)

where A is the information set corresponding to K smallest
Bhattacharyya parameters. Our code design criterion will be

ρ̄opt = arg min
ρ̄
PB. (20)

B. Computing Z
(i)
n

Here we show how to compute Z(i)
n in (20) for a given ρ̄.

Recalling that the polar encoder contains n = log2N stages.
In each stage, the encoder first pairs the N bit channels
in a predefined order, and then polarizes each pair. Fig.
1 demonstrates the operation of channel polarization: two
independent binary channels W1 and W2 are selected and
transformed to a pair of binary channels W ′ and W ′′.

Let W (i)
j denote the ith bit channel in stage j, and Z

(i)
j be

the Bhattacharyya parameter of W (i)
1 , where j = 0, 1, ..., n.

Note that j = 0 represents the initial stage, i.e., when j = 0,
W

(i)
0 represents the bit channel xi → y(i):

y(i) =M
(
{bt}m1

)
+ n(i), (21)

where n(i) ∼ N
(

0, σ2/ĥ2
i

)
and bηρ̄(i) = xi.

From (21), the value of Z(i)
0 can be calculated by [13]

Z
(i)
0 =

∫ +∞

−∞

√
p(y(i)|bηρ̄(i) = 0)p(y(i)|bηρ̄(i) = 1)dy(i) (22)

Note that the integral in (22) can be written in the form∫ +∞

−∞
e−x

2

f(x)dx. (23)

It can be computed efficiently using Gauss–Hermite quadra-
ture [14].

Note that the value of Z(i)
0 varies with the index i, thus is

not a constant. It means that in the future encoding stages,
we need to polarize bit channels with different reliability.
This is different from the standard polar codes design in [4]
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Fig. 1. One level of channel polarization: (W1,W2) 7−→ (W ′,W ′′)

[13], where channels with the same reliability are polarized.
Therefore, the recursion in (9) can not be applied.

In summary, the difficulty of computing Z
(i)
n from Z

(i)
0

lies in polarizing bit channels with different Bhattacharyya
parameters. This problem is solved by the following lemma.

Lemma 1: Suppose that (W1,W2) 7−→ (W ′,W ′′) for some
set of binary-input channels (Fig. 1). Then,

Z(W ′′) = Z(W1)Z(W2), (24)

Z(W ′) ≤ Z(W1) + Z(W2)− Z(W1)Z(W2), (25)

Z(W ′) ≥ Z(W1) ≥ Z(W ′′). (26)

Equality holds in (25) iff W1 and W2 are BECs. We have
Z(W ′) = Z(W ′′) iff Z(W1) = Z(W2) = 0 or 1.

Proof: The proof is similar to that of [4, Proposition 5].

Adding (24) and (25) in Lemma 1 shows that the reliability
can only improve after channel polarization in the sense that

Z(W ′) + Z(W ′′) ≤ Z(W1) + Z(W2), (27)

with equality iff W1 and W2 are BECs.
In this work, we use (24) and the upper bound (25) to

actually estimate the reliability of each bit channels. Starting
from Z

(i)
0 in (22), we can recursively compute the upper

bounds on Z
(i)
n using (24) and (25). The frozen bits are

then selected based on these upper bounds. This method does
not require the exact value of Bhattacharyya parameters, thus
greatly simplifies the construction of polar code.

C. Finding ρ̄opt

The number of possible permutation patterns in (20) is
N !/((N/B)!)B , where B is the number of distinct fading
coefficients. For large N , it is impossible to solve (20) by
an exhaustive search. To reduce the search space, we relax the
optimization problem in (20) to

ρ̄opt,1 = arg min
ρ̄

∑
i=2,4,...,N

Z
(i)
1 . (28)

In other words, we minimize the block error probability of
the even-indexed channels W

(i)
1 , i = 2, 4, ..., N , in the first

polarization stage. The motivation behind this choice comes
from (26), i.e., after each polarization operation, the even-
indexed channel becomes more reliable than the odd-indexed
one. Optimizing the performance of even-indexed channels in
the first stage will create a good starting point for the whole
polarization process. Simulations verified that the relaxation
in (28) serves as a good criterion in practice.

We consider the un-permuted pairs in (17), i.e., ρ̄(i) = i

Lφ ,

{(
xi; ηi,

ĥ2
i

σ2

)}N
1

. (29)

Consequently, the Bhattacharyya parameter in (22) reduces to

Ẑ
(i)
0 =

∫ +∞

−∞

√
p(y(i)|bηi = 0)p(y(i)|bηi = 1)dy(i). (30)

This problem in (28) is solved by the following theorem.

Theorem 1: Let
{
Ẑ

(κ(i))
0

}N
1

be a sorted version of
{
Ẑ

(i)
0

}N
1

in descending order, i.e., Ẑ(κ(i))
0 ≥ Ẑ

(κ(j))
0 if i ≤ j. The

solution of (28) is
ρ̄opt,1 = π(Φ), (31)

for any arbitrary permutation π, where Φ is the set of pairs of
indices in the set {κ(i)}N1 , defined by

Φ = {(Φ(i, 1),Φ(i, 2))}N/21 (32)
= {(κ(1), κ(N)), (κ(2), κ(N − 1)), · · ·, (κ(N/2), κ(N/2 + 1))}

i.e., pairing the index of the largest Bhattacharyya parameter
with the smallest.

Proof: See Appendix A.
Theorem 1 shows that the optimal permutation is unique up

to a permutation π. In practice, we can always use ρ̄opt,1 =

Φ and the pairing between coded bits, modulation level and
channel index can be written as

Lopt =

{(
x1; ηκ(1),

ĥ2
κ(1)

σ2

)
,

(
x2; ηκ(N),

ĥ2
κ(N)

σ2

)
, · · · ,(

xN−1; ηκ(N/2),
ĥ2
κ(N/2)

σ2

)
,

(
xN ; ηκ(N/2+1),

ĥ2
κ(N/2+1)

σ2

)}
(33)

Example 1: In Fig. 2, we demonstrate the construction of
polar codes with N = 8. In stage 0, we first compute

{
Ẑ

(i)
0

}N
1

according to (30). After then, we sort
{
Ẑ

(i)
0

}N
1

to obtain the
permutation order κ. Now we are able to map the coded bits
to the modulation levels and channels:
• If i is odd, we map xi to the modulation level ηκ((i+1)/2)

in the channel with fading coefficient ĥκ((i+1)/2).
• If i is even, we map xi to the modulation level
ηκ(N+1−i/2) in the channel with fading coefficient
ĥκ(N+1−i/2).

Finally, we compute

Z
(i)
0 =

{
Ẑ

(κ((i+1)/2))
0 , if i is odd
Ẑ

(N+1−i/2)
0 , otherwise

(34)

From stage 1 to 3, we compute successively Z
(i)
1 , Z(i)

2 , and
Z

(i)
3 by using (34), (24) and (25). We select the frozen bits

according to Z
(i)
3 .

In summary, the proposed method allows us to design polar
codes in real time and track the changes in channels.
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+
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+
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+
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+
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x5

+

+

+

+u1

u2

u3

u4

+

+u5

u6

u7

u8

Stage 3 Stage 2 Stage 1 Stage 0

(1) η ĥ(1)κ (1)κ( , ):

0
(2) η ĥ(8)κ (8)κ( , ):W

0
(3) η ĥ(2)κ (2)κ( , ):W

0
(4) η ĥ(7)κ (7)κ( , ):W

0
(5) η ĥ(3)κ (3)κ( , ):W

0
(6) η ĥ(6)κ (6)κ( , ):W

0
(7) η ĥ(4)κ (4)κ( , ):W

0
(8) η ĥ(5)κ (5)κ( , ):W

Fig. 2. Construction of polar codes with mapping Φ in (32): If i is odd, xi is mapped to the modulation level ηκ((i+1)/2) in the channel with fading
coefficient ĥκ((i+1)/2); If i is even, xi is mapped to the modulation level ηκ(N+1−i/2) in the channel with fading coefficient ĥκ(N+1−i/2).

IV. SIMULATION RESULTS

This section examines the performance of the proposed
polar codes. We consider Rayleigh fading channel, i.e.,

hi ∼ 2hi exp(−h2
i ). (35)

The frame size is 512. In each fame, there are 2 distinct fading
coefficients, denoted as, {h1, h2}, i.e., every block of length
256 symbols will be affected by the same fading coefficient.
To avoid mutual information outage in (4), we apply a simple
transmission control protocol, i.e., the transmitter will not send
message if

max{h1, h2} < T , (36)

where T is a threshold. This outage occurs with probability

Pout , Pr (max{h1, h2} < T ) = Pr (h1 < T ) Pr (h2 < T ) .
(37)

We set Pout = 0.0489 with T = 0.5, i.e., for every 100

transmission frames, on average 5 frames are not suitable
for transmission. We construct (512, 256) polar codes using
the mapping proposed in (33). For comparison purposes,
the performance of (512, 256) polar codes with BICM, and
(512, 256) LDPC codes from IEEE 802.11ad are also shown.
In the polar BICM, the coded bits are random interleaved
and then modulated. Since the interleaved bit channels are
approximately equally likely, we construct the codes by setting

Z
(i)
0 =

1

N

N∑
t=1

Ẑ
(t)
0 , i = 1, ..., N . (38)

Fig. 3 illustrates the block error rate of proposed polar codes
under SC decoding with 4-PAM. For the LDPC codes, belief
propagation decoding with up to 50 iterations was used. The

proposed polar codes provide significant gain with respect to
LDPC. The reason is that LDPC cannot adapt to the channel
changes. We find that the polar BICM perform quite badly over
fading channels. This phenomenon has also been observed
in [6]. The loss is due to the mismatch between the code
polarization and fading polarization. This result confirms that
the performance of polar codes is dominated by the mapping
between coded bits, modulation level, and channels.

Fig. 4 shows the performance of proposed polar codes with
16-PAM. We observe similar tendencies, i.e., the proposed
polar codes outperform polar BICM and LDPC. The SNR gap
to LDPC is 8 dB at block error rate 10−4. This result confirms
that our construction is valid for high order modulation.

V. CONCLUSIONS

In this paper, a method for constructing polar codes for fad-
ing channels with high order modulation was proposed. Dif-
ferent from traditional adaptive coded modulation approaches,
we adapt the code structure to the channel changes, given fixed
constellation size and code rate. The novelty of our design is
to optimize the mapping of the coded bits to the modulation
levels and fading channels. The simulation results show that
with our design, polar codes provide 8 dB gain with respect
to LDPC codes at block error rate 10−4 for 16-PAM.

APPENDIX

A. Proof of Theorem 1

For an arbitrarily permutation ρ̄ in (17), we have

Z
(i)
0 = Ẑ

(ρ̄(i))
0 , i = 1, ..., N (39)
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Fig. 4. Performance of different rate-1/2 codes in Rayleigh fading channels
with 16-PAM

where Ẑ0 is given in (30). From (24), we have∑
i=2,4,...,N

Z
(i)
1 =

∑
i=2,4,...,N

Z
(i−1)
0 Z

(i)
0

=
∑

i=2,4,...,N

Z
(ρ̄(i−1))
0 Z

(ρ̄(i))
0 . (40)

For simplicity, let

θ(ρ̄(i)) = Ẑ
(ρ̄(i))
0 . (41)

We derive the relation∑
i=2,4,...,N

θ(ρ̄(i− 1))θ(ρ̄(i))

=
1

2

∑
i=2,4,...,N

[(θ(ρ̄(i− 1))θ(ρ̄(i)) + θ(ρ̄(i))θ(ρ̄(i− 1)))]

=
1

2

∑
t=1,2,...,N

θ(t)θ(P(t)), (42)

where the sequence {P(t)}N1 represents a permutation of {t}N1 .
Recalling that

θ(κ(1)) ≥ θ(κ(2)) ≥ · · · ≥ θ(κ(N)). (43)

According to the rearrangement inequality in [15], for any
permutation P, it holds

1

2

∑
t=1,2,...,N

θ(t)θ(P(t))

≥ 1

2

∑
t=1,2,...,N

θ(κ(t))θ(κ(N − t+ 1))

=
∑

t=1,2,...,N/2

θ(κ(t))θ(κ(N − t+ 1)). (44)

From (42) and (44), for any permutation ρ, we have∑
i=2,4,...,N

Z
(i)
1 ≥

∑
t=1,2,...,N/2

θ(κ(t))θ(κ(N − t+ 1)). (45)

The equality holds when

ρ̄ = π (Φ) , (46)

which yields (31).
�
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