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Abstract — The usual approach to improve
transmission performance over fading channels
is to increase the system diversity. This usually
entails an increase in power or bandwidth. The
type of diversity we propose does not present
these drawbacks. The diversity is embedded in
the signal constellation and it directly depends
on the Hamming distance between the constel-
laton vectors. We also analyze additional coding
schemes to apply to high modulation diversity
constellations.

Index Terms — Modulation diversity, lattices,
fading channels.

1 Introduction

New lattice constellations matched to both Gaussian
and fading channels have been published recently [1].
These lattices were built using algebraic number the-
ory tools. They were found to be efficient on Rayleigh
fading channels because they exhibit a very high diver-
sity order (8,12,16,...). The same lattices have good
performance on Gaussian channels due to their high
density (asymptotic gain of 3.0, 4.5 or 6.0 dB). The
study of these lattices to a new diversity technique that
improves the performance on the Rayleigh fading chan-
nel without adding any redundancy and with no loss in
performance on the Gaussian channel. This technique is
simply described as a multidimensional rotation which
increases the diversity order of the signal constellation.

A high dimensional space rotation produces a high
diversity order. When the diversity grows to infinity,
the Rayleigh channel acts like a Gaussian channel [8].
Figure 1 shows the pairwise error probability P(x — y)
on a Rayleigh channel versus the signal-to-noise ratio.
The two lattice points x and y have L distinct com-
ponents, i.e. the Hamming distance between the two
points is dg(x,y) = L. This creates a modulation di-
versity equal to L [1]. It is seen in Figure 1 that for L
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greater than 12, the performance is less than 2dB away
from the Gaussian channel curve.

A brief summary of the algebraic construction of lat-
tices is given in Figure 2. A special algebraic embedding
o called canonical embedding [3] is applied to an inte-
gral ideal I. The embedding ¢ converts the ideal [ into
a lattice A, 1 in the n-dimensional real space R™. The
ideal is a subset of the ring of integers Og of a num-
ber filed K = Q(f) generated by a primitive element
8. The A, 1 lattice rank is n and its diversity order
is equal to L. The diversity of the algebraic lattice is
related to the roots of the minimal polynomial of the
primitive element. Thus, two important families of al-
gebraic lattices are obtained when the roots are all real
or all complex.

By appropriately selecting the number field and the
ideal, it is possible to build the densest known lattices
listed in Fig. 2 [2] with a high diversity order. Practi-
cally, the modulation diversity of these dense lattices is
a consequence of a multidimensional rotation produced
by the canonical embedding. Hence, we can also con-
struct multidimensional rotated cubic Z™ lattices (ro-
tated QAM constellation) by directly computing the
canonical embedding in a totally real or a totally com-
plex number field [7].

Section 2 describes how to compute some high diver-
sity multidimensional rotations from totally complex
number fields, and gives the exact expression of the
rotation matrix. Section 3 compares the rotated lat-
tices with trellis coded schemes designed for the fading
channels. Finally, we propose in Section 4 some coding
techniques to be combined with rotated comstellations
in order to outperform the AWGN channel.

In the sequel, we assume that the transmitter uses
a quadrature amplitude modulation. The bidimen-
sional QAM constellation associated to the modulation
is viewed as a finite subset extracted from the integer
lattice ZZ. A point p in the real n-dimensional space
is built by grouping n/2 bidimensional @AM symbols.
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Figure 1: Pairwise error probability

This point p is rotated and its components are inter-
leaved before being transmitted over the fading chan-
nel. The transmitted vector is x = Rp where R is an
n X n rotation matrix, Rt = R™1). We assume that
the Rayleigh channel coefficients are independent and
perfectly known by the receiver.

2 High Diversity Rotations

The effect of the rotation matrix R is to spread the
same information on different space axes. Thus, when
* deep fading occurs on one of the n axes, the information
is still extracted from unfaded axes. The probabilty
that a deep fading occurs at the same time on the n
components is almost zero.

The most difficult problem is the search of a rota-
tion matrix that guarantees the diversity order for any
size of the QAM constellation, i.e. for any number of
bits per symbol. This problem can be simplified if we
look at a rotation of dimension n and diversity order
L as the generator matrix of the rotated integer lattice
Z, 1 = RZ™. The diversity is guaranteed if the min-
imum Hamming distance between the lattice points is
equal to L [1]. One possible solution [7] is to build
the lattice Z, ; by applying a complex canonical em-
bedding to the ring of integers in a cyclotomic number

field.
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Figure 2: Algebraic Lattices for fading channels.



Let us define the canonical embedding and see how
to compute the rotations. First, the number field K =
Q(9) is defined by a minimal polynomial pg(z) of degree
n whose roots are § = 64,05, ...,0,. It has been shown
[1] that the diversity of a lattice derived from K is L =
71 -+ Py where 7y is the number of real roots and 27, is
the number of complex roots (71427, = n). We restrict
our search to totally complex fields generated by 6 =
e2™/N (cyclotomic fields) where the lattice dimension
and the root order are related by the Euler function,
n = ¢(N). In this case, 7y = 0 and 27, = n and so the
lattice diversity is equal to half of the dimension, L =
n/2. The canonical embedding in the field described
above is defined by n isomorphisms o; : £ — C,7 =
1...n. Each isomorphism o; associates a distinct root
to the generator element, 0;(8) = ;. If we apply the
canonical embedding to the set 1,8,68%, ..., 6%/2-1 using
n/2 isomorphisms out of n, we obtain an n/2 x n/2
complex matrix

0'2(1)
0'2(9)

Un/Z(l)
017./2(0)

a.n/2(9n/2—1 )
1)
The matrix written above in complex form is the gen-
erator matrix of the lattice Z,, ,,/, under some condi-
tions. The roots must be chosen in the following order,

0.1(911/2—-1) 0.2(077,/2—-1)

0; =0 x e4j"(i_1)/n,i =1.n/2
and the minimal polynomial must be written as
pe(z) = 2™+ ex™? 11

where the constant ¢ takes the values 0 or -1 (see Table
1). The real matrix form of size n X n is obtained by
splitting each complex entry into a 2 X 2 real matrix.
As an example, for n = 24 and N = 72, we build a 24-
dimensional rotation with diversity order equal to 12.
The diversity is sufficiently high to convert the Rayleigh
channel into a Gaussian channel [8]. Figure 4 shows the
performance of the lattice Zy4 12 on the Rayleigh chan-
nel for a spectral efficiency of 2 bits/dimension and the
performance of the 16-QAM on the Gaussian channel.

The bit error rates of all rotations listed in Table 1
with 1 bit per dimension are shown in Figure 3. This
supports the theoretical analysis shown in Figure 1. All
the BER curves in Fig. 3 lay between the Gaussian
curve (at the most left) and the Rayleigh curve with no
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n| N po()
4 8 et 41
12 2t~ z2 41
8 | 16 28 4+1
24 | 28 —2*+1
12136 | 22 — 2541
16 | 32 2% 41
48 | 2% — 28 41
24 {72 | 2% — 212 41
32 | 64 3% 41
96 | %2 — 218 11

Table 1: Minimal polynomial of Z,,/, lattices from
cyclotomic number fields Q(ezj"/ N ).

diversity L = 1 (at the most right). The comparison
is done with a 4-PSK modulation and we see that a
32-dimensional rotation with L = 16 is only 1 dB away
from AWGN.

3 Lattices versus TCMs

Let us compare the rotated constellations to trellis
coded modulations. It is obvious that rotated QAMs
have no gain on the Gaussian channel. A trellis coded
modulation may have a gain up to 6 dB over the Gaus-
sian channel.

The diversity order of a TCM is equal to the mini-
mum Hamming distance between all the possible sig-
nal sequences in the trellis. If we consider an n-
dimensional TCM, its diversity L can be bounded by
n < L <nx(v/k+ 1) when the trellis has 2“ states
and the convolutional encoder is of rate k/(k +1). The
lower bound is reached if the trellis contains parallel
transitions. The upper bound is reached if we find a
special trellis encoder where the minimum length of a
diverging path is (v/k) + 1 and all the components of
the n-dimensional points are distinct.

For one dimensional TCMs, the diversity is practi-
cally limited to 6 or 7 (2048 states for 2 bits/dimension).
For higher dimensions, the trellis diversity is also lim-
ited by its size, and in all dimensions higher than 4,
parallel transitions are needed to reduce the number of
states. In these cases the diversity is still limited by the
dimension of the coded signal set (L < 8 if we rotate
the Wei 8-dimensional TCM [4]).

Nevertheless, for comparison reasons on the Rayleigh
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Figure 3: Bit error rates for the family of Z, ,,/, con-
stellations, 2 bits per symbol.

v | Generators in octal | Diversity
systematic recursive

3 11, 02, 16 2

4 23, 12, 16 3

5 41,52, 34 3

6 117, 52, 164 4

Table 2: Optimal trellis coded 8-PAM modulation for
the Rayleigh fading channel.

channel, we computed the best trellis coded 8-PAM
modulations shown in Table 2. The 64 states 8-PAM
(L = 4) exhibits a good performance on the Rayleigh
channel. If we compare the slopes of the 8-PAM and
the Z4 12 curves, it is possible to compute the signal-to-
noise ratio for which the maximum diversity is reached
(the curve becomes a straight line). The diversity 4 is
reached by the 64 states 8-PAM at 9.4 dB and the di-
versity 12 by the 24-dimensional rotated QAM at 14.5
dB. Rotating the 8-dimensional Wei TCM gives a gain
of 7 dB at 10~2 on the Rayleigh channel compared to
the same TCM without rotation. The performance are
identical to that of a 16-dimensional uncoded rotation
and still 3 dB away from that of the Gaussian channel.
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4 Beyond the Gaussian Channel

We have seen that a high diversity rotation converts the
Rayleigh channel into a Gaussian channel. Practically,
with Z4,12 the performance are still 1.5 dB away (Fig-
ure 4). An interesting question arises : On the Rayleigh
channel, how can we achieve a performance better than
the Gaussian channel?

We propose 3 different schemes. The first technique
is to rotate a lattice with a positive fundamental gain,
such as the Leech lattice [2]. It is known that the
Leech lattice Ay4 has an asymptotic gain of 6 dB on
the Gaussian channel. Thus theoretically, the perfor-
mance should go 6 dB beyond the Gaussian channel if
we rotate Agg into Azq15. Practically, the gain should
be 3 or 4 dB instead of 6 because of the relatively high
kissing number and the finite diversity order.

The second scheme is the rotation of a trellis coded
modulation. In this scheme, the lattice decoder is com-
bined with the Viterbi decoder and hence a soft output
lattice decoder must be available. The soft output de-
coding of convolutional codes [5][6] has been used to
decode powerful concatenated schemes (Turbo codes).
The soft output lattice decoding is still too complex and
has not been completely studied, but it would enable
us to further approach the channel capacity.

The third scheme is the simplest one. It is possible to
push the rotated lattice performance beyond the Gaus-
sian channel by adding a high rate error control code.
As an example, we concatenate the 24-dimensional ro-
tation with a (252,220) Reed-Solomon code. As shown
in Figure 4 the gain is 3 dB at 107°. The price to pay
is a bandwidth expansion factor of 1.14 .

5 Conclusions

It is possible to improve the performance on the
Rayleigh fading channel with a multidimensional un-
coded rotation. The fading effect becomes negligible
when very high diversity rotations are applied. It is
even possible to go beyond the Gaussian channel with
some price to pay (complexity or bandwidth expan-
sion).
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