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Abstract— We propose an original technique for the design
of convolutional Tanner structures that are full diversity under
iterative decoding. The code design is based on the analysis of
the local trellis neighborhood and is suitable for transmission
over wireless non-ergodic channels. This new technique enables
us to split the giant convolutional checknode into multiple smaller
checknodes which is a means to mimic the standard analysis of
LDPC codes under iterative message passing decoding.

Index Terms: convolutional codes, iterative decoding, fad-
ing channels, erasure channels, generalized low density codes.

I. INTRODUCTION

Let C[N, K] be a linear binary code of length N and
dimension K whose codewords are transmitted over a non-
ergodic memoryless channel. The channel has nc states, where
the number of states satisfies 2 ≤ nc � N . A channel
state may correspond to a fading coefficient, e.g., block-fading
channels with single and multiple antennas. The state can also
be defined by a cross-over probability of a binary symmetric
channel (BSC), or an erasure event as for non-ergodic BEC
(block-erasure channel). Let c = (c1, c2, . . . , cN ) ∈ C denote
a codeword. The symbol ci is assumed to undergo a channel
state h(ci), where i = 1 . . .N . The state h(ci) is selected from
a finite set ℵ defined by

ℵ = {h1, h2, . . . , hnc
} (1)

The non-ergodic channel has limited diversity because |ℵ| is
taken very small when compared to the code length. The
problem of code multiplexing [1], also referred to as channel
interleaving, is to select h(ci) among the hj in order to
minimize the word error probability after decoding at the
receiver side. In this paper, we restrict our study to the worst
case nc = |ℵ| = 2 states, i.e., a channel with minimal diversity
order. Half the bits in the codeword c undergo a fading h1

and the other half undergo a fading h2. It is assumed that
the two fading instances are independent from one codeword
to another and are not known by the encoder. Only the state
position is controlled by the encoder, i.e., it knows if ci is
transmitted on state 1 or state 2. The generalization to channels
with more degrees of freedom should be straightforward. Our
objective is to build a rate-1/2 full-diversity Tanner code based

on convolutional constituents [2]. More details on the non-
ergodic channel properties and other code constructions can
be found in [3] and references cited therein.

II. GENERALIZED LOW DENSITY CODES WITH
CONVOLUTIONAL CONSTITUENTS

A Gallager-Tanner construction based on convolutional
codes has been proposed in [2]. The construction yields a
family of asymptotically good codes, i.e., dHmin(C) ≥ δN
where δ > 0. Those codes are also suitable for iterative
decoding. Briefly, a generalized low density (GLD) code as
in [2] interleaves all code symbols whereas only information
symbols are interleaved in a parallel turbo code [4]. The math-
ematical definition of the convolutional GLD-Tanner structure
follows.
Let C1[N, K1] be a linear binary code of length N and
dimension K1 built from a recursive systematic convolutional
code (RSC) properly terminated at both trellis sides. The
recursive nature is not essential, we only chose RSC codes
because they have a flexible canonical structure for coding
rates r = k/n, between 1

2
and 1. The convolutional GLD

code is defined by

C = C1 ∩ π(C1) (2)

where π is a random permutation of size N . If border effects
are neglected, the rate R = K/N of C built from a rate-r
convolutional code is R = 2r−1. More precisely, let r = k/n
be the original coding rate of the infinite-length convolutional
code. Assume that the RSC code has 2ν states, i.e., the
constraint length is ν +1. In practice, the intersection between
C1 and π(C1) does not include the two trellis terminations. It
is easy to show that the overall rate is

R = (2r − 1)× (1− 2
nT

N
) � (2r − 1) (3)

where T = � ν
k
	 is the number of transitions required in the

trellis termination phase.

In the sequel, without loss of generality and for simplicity
reasons, we restrict our study to a rate- 3

4
convolutional code

obtained by puncturing the 4-state rate- 1

2
code with generators

g0(x) = 1 + x + x2 and g1(x) = 1 + x2, i.e., the famous
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(7, 5)8 code in octal notation. The overall rate is R = 0.495
for N = 800 and R = 0.4995 for N = 8000 bits. The
decoding of C = C1 ∩ π(C1) is iterative in a way similar
to parallel turbo codes [4]. The constituents C1 and π(C1)
are decoded using a forward-backward algorithm [5] while
passing extrinsic information on both parity and information
bits at each half-iteration.

III. CODE DESIGN FOR BLOCK-FADING CHANNELS BASED
ON THE LOCAL TRELLIS STRUCTURE

As stated in section I, our objective is to build a full-
diversity convolutional GLD-Tanner code. For the sake
of brevity and simplicity, we do not discuss why an ML
design approach via the analysis of error events in the
two convolutional constituents fails to attain this objective.
Despite our belief that iterative decoding of GLD codes is
close to ML decoding in terms of error rate performance
(only 0.2dB separate iterative and ML decoders for parallel
turbo codes as shown in [7]), the diversity order analysis of
low weight error events is useless because the GLD code
is asymptotically good. The study of iterative decoding on
a Tanner graph with two giant convolutional checknodes is
intractable. Thus, we propose a new approach based on the
local trellis neighborhood.
The full-diversity construction is described for the block-
erasure channel. It can be proven that the same structure is
full-diversity in presence of Rayleigh-distributed block-fading
by considering the partial codewords around the rootbit in the
local neighborhood and analyzing the χ2 distribution within
the a posteriori probability message as in [3].
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Fig. 1. Forward state probabilities when b1 is erased and b2 = 0. The
surviving transitions are marked with dashed red lines. The configuration
b1b2 = X0 brings no improvement for reducing the ambiguity.

Let us start by studying how the trellis decoder bahaves
locally in presence of block erasures. Two propositions
are announced before revieling the full-diversity structure.
The standard notations of the Forward-Backward algorithm
(BCJR) are used as in [5]. It is always assumed that the

all-zero codeword has been transmitted by the encoder. The
symbol X represents a punctured bit. Consider the trellis
section shown in Fig. 1. Assume that the forward state
probabilities are all equal, i.e., ambiguity is maximal with
αt(m) = 1

4
for all states m. This maximal ambiguity is

equivalent to forgetting all the past in the code trellis. The
transition label is denoted b1b2. If b1 is erased and b2 forced
to 0 as in Fig. 1, then the new forward state probabilities
are αt+1(m

′) = 1

4
, ∀m′. Hence a label configured as X0

does not reduce the ambiguity. Similar arguments hold for
0X and XX. Now, we can announce the following proposition.

Proposition 1: The two binary elements of a transition label
must be forced to 00 in order to reduce the state ambiguity
from 100% to 50%. Illustration is given in Fig. 2.
Proof. Assume that αt(m) = 1

4
, ∀m. Force the transition label

to b1b2 = 00. Under erasures, the BCJR transition metric
γ(m, m′) can only take two possible values, 0 or 1. Then,
we have αt+1(0) ∝ 1 × αt(0) + 0 × αt(1) = 1

4
, In a similar

way, we get αt+1(1) = 0, αt+1(2) ∝ 1

4
, and αt+1(3) = 0.

After normalization (divide by
∑

m αt+1(m)), the final value
of the forward state probabilities is αt+1(0) = αt+1(2) = 1

2

and αt+1(1) = αt+1(3) = 0. QED.
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Fig. 2. Forward state probabilities when b1 = 0 and b2 = 0. The surviving
transitions are marked with dashed red lines. The configuration b1b2 = 00

eliminates half the ambiguity on trellis transitions.

Once the number of surviving states is reduced by forcing
the two labeling bits to a zero value, we would like to keep
the ambiguity at 50%, i.e., αt+1(m

′) ∈ { 1

2
, 1

2
, 0, 0}. This

is possible if the two departing states belong to the same
butterfly. The trellis section of a 4-state convolutional code
has 2 butterflies. The transition matrix for the (7,5) code is

A =

⎡
⎢⎢⎣

1 0 D1D2 0
D1D2 0 1 0
0 D1 0 D2

0 D2 0 D1

⎤
⎥⎥⎦ (4)

where a matrix entry at row i and column j represents
Db1

1 Db2
2 on the transition from state m = i to state m′ = j.
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The butterflies can be found in the transition matrix by
searching rectangular submatrices with four non-zero entries
in the corners. In this case, the first butterfly starts at states
0,1 and ends at states 0,2. The second butterfly starts at states
2,3 and ends at states 1,3. The general structure of the trellis
(excluding binary labels and not taking into account the state
indexation) does not depend on the choice of the generator
polynomial (see [8]). A 2ν-state convolutional code has 2ν−1

butterflies in a full trellis section that can be determined
from its transition matrix. As depicted in Fig. 3, a butterfly
maintains the ambiguity at 50% after erasing both b1 and b2.

Proposition 2: Assume that the two binary elements of a
transition label are erased. The state ambiguity is maintained
at 50% if the surviving states belong to the same butterfly.
Otherwise, the ambiguity increases to 100%. Illustration is
given in Fig. 3.
Proof. The proof is also based on BCJR equations for the
forward recursion. It is left to the reader. Just remember that
transition metrics are reduced to 0 and 1. QED.

Full-diversity Gallager-Tanner Construction (Root GLD
Code)
Now, a full-diversity Gallager-Tanner construction can be
derived from propositions 1 & 2. The convolutional GLD C
code is built from (2) where the constituent C1 follows the
multiplexing pattern 11|X1|X2|22|X2|X1 with a period of
6 transitions as illustrated in Fig. 4. A window including 7
trellis sections is considered. A symbol 1 in the multiplexing
pattern represents a binary element sent on the first channel
state. A symbol 2 represents transmission on the second
channel state. The symbol X corresponds to a punctured bit.
A forward BCJR procedure is applied on the first 3 sections.
A backward BCJR procedure is applied on the last 3 sections.
In Fig. 4, channel state 1 is assumed to correspond to a
perfect knowledge of the encoded bit (|h1| = +∞), channel
state 2 is supposed to be an erasure (h2 = 0). After executing
the forward and backward procedures, two transitions survive
in the middle section. The binary digit b2 is identical on both
labels, its value b2 = 0 is solved. Hence, the multiplexing
pattern 11|X1|X2|22|X2|X1 yields a rate- 3

4
convolutional

constituent capable of solving one erased bit (the second bit)
in 11 and one erased bit in 22. The first bit b1 in C1 will be
placed in the second label position in π(C1). We conclude
that the GLD code is capable of solving 2 erased bits
out of 4 in the multiplexing pattern 11|X1|X2|22|X2|X1,
those placed on 11 and 22 positions. Those bits, referred
to as rootbits, have a diversity order equal to 2 and will be
considered to be the information bits of C. Parity bits placed
on the second position in X1 and X2 will have a diversity
order limited to 1 (no diversity).

Permutation Embedded in the Root GLD Code
The class of information bits sent on h1 (resp. h2) is denoted
1i (resp. 2i). Similarly, the class of parity bits transmitted on
h1 is denoted 1p and the other denoted by 2p. The permutation

π of the GLD code C built from the multiplexing pattern
11|X1|X2|22|X2|X1 shown in Fig. 4 must interleave the
binary elements within the same class without mixing the four
classes. Such a GLD code is similar to multi-edge type LDPC
codes [9] and its density evolution should follow the same
rules. It is called root GLD code in reference to root LDPC
codes proposed in [3]. The information bits of classes 1i and
2i are referred to as rootbits because they are the root of
a checknode that guarantees a full-diversity outgoing message.

The permutation π of size N is built as follows:
• A random permutation π1 of size N/4 is applied on class

1i, π1 : 1i → 1i. The permutation π1 is the direct sum
of π1,1 and π1,2 each of size N/8. The first permutation
π1,1 interleaves information bits from even positions to
odd positions. The second permutation π1,2 interleaves
information bits from odd positions to even positions.

• Similarly, a randomly selected permutation π2 of size
N/4 is applied on class 2i, π2 : 2i→ 2i.

• A random permutation π3 of size N/4 is applied on class
1p, π3 : 1p → 1p.

• A random permutation π4 of size N/4 is applied on class
2p, π4 : 2p → 2p.

• The overall permutation π of the root GLD code is the
direct sum of π1, π2, π3, and π4.

A fully random GLD code has a permutation π selected
from an ensemble of cardinality N !. As described above, a
full-diversity root GLD code has a permutation selected from
an ensemble of cardinality (N

4
!)2(N

8
!)4.

Proposition 3: Let C = C1 ∩ π(C1) be a rate-1/2 bi-
nary GLD code of length N and C1 the rate-3/4 punctured
(7,5) convolutional code. Let the permutation π be randomly
selected from the ensemble of cardinality (N

4
!)2(N

8
!)4 as

described previously. If C1 has binary digits ordered according
to the periodic multiplexing pattern 11|X1|X2|22|X2|X1,
then C is a full-diversity GLD code on both block-fading and
block-erasure channels under iterative probabilistic decoding.

The proof of proposition 3 on the block-erasure channel is
a direct result of the Gallager-Tanner construction described
above. We omit the proof in the presence of Rayleigh-
distributed block-fading. It is based on showing that the log-
ratio message of a rootbit includes a χ2 distribution of order 4.
This can be done by a direct application of the BCJR algorithm
on the local neighborhood (the window with 7 trellis sections)
or by the full enumeration of all partial codewords via the
product of 7 transition matrices.
Monte Carlo simulation of the code from proposition 3 and
the comparison with information theoretical limits are given
in the next section. Notice that proposition 3 states that the
code is full diversity when the binary digits ordering is well
selected, but it says nothing about its coding gain. Fortunately,
the next section shows a performance at 1dB distance from the
outage probability limit [10][6].
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Fig. 3. Forward state probabilities when both b1 and b2 are erased. The surviving transitions are marked with dashed red lines. Figure (a) shows how the
ambiguity spreads from 50% to 100%. Figure (b) shows the butterfly structure that inhibits ambiguity increase.
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Fig. 4. Illustrating how the multiplexing pattern 11|X1|X2|22|X2|X1 is capable of solving one erased bit on a block-erasure channel with two states.
Illustration is given for the (7,5) rate-1/2 convolutional code. The all-zero codeword is assumed to be transmitted.
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Fig. 5. Computer simulations of convolutional GLD codes for length N = 800 and N = 8000 bits on a Rayleigh block-fading channel.

IV. EXPERIMENTAL RESULTS

We performed Monte Carlo simulations of Generalized low-
density codes based on the punctured (7, 5)8 convolutional
rate-1/2 constituent. Results of word error rate versus
signal-to-noise ratio per bit are depicted in Fig. 5. GLD
codes with a random permutation are not full diversity, i.e.,
the word error rate varies as Pew ∝ 1/(Eb/N0) (diversity
order is equal to 1). Root GLD codes from proposition 3
are full diversity, Pew ∝ 1/(Eb/N0)

2 (diversity order is
2). We also plotted the outage probability limit computed
by evaluating the probability that the instantaneous mutual
information is less than 0.5 bits per channel use. Root GLD
codes based on the (7,5) constituent achieve a near-outage
performance. As shown in [3] for LDPC codes, the coding
gain can be improved by introducing some irregularity in the
convolutional GLD code structure in order to minimize the
outage area near the ergodic line.
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code design for block fading channels,” Allerton’s Conference, Monti-
cello, Illinois, Sept 2004.

[2] S. Vialle and J.J. Boutros, “A Gallager-Tanner construction based on
convolutional codes,” Workshop on Coding and Cryptography, pp. 393-
404, Paris, January 1999. Click to download.
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