
Gaussian Sampling Based Lattice Decoding

Tanumay Datta, A. Chockalingam
Dept. of ECE

Indian institute of Science
Bangalore, India

Email: tanumaydatta@gmail.com, achockal@ece.iisc.ernet.in

Emanuele Viterbo
Dept. of ECSE

Monash University
Australia

Email: emanuele.viterbo@monash.edu

Abstract—The problem of searching the closest lattice point
in large dimensional lattices finds many applications in single
and/or multiple antenna communications. In this paper, we
propose a Gaussian sampling based lattice decoding algorithm
(GSLD). The algorithm iteratively updates each coordinate by
sampling from a continuous Gaussian distribution and then
quantizes the sampled value to the nearest alphabet point. The
algorithm complexity per iteration is independent of the size
of the alphabet, and hence is of high interest in higher order
modulation schemes. We show that the algorithm is able to
achieve near-optimal performance in polynomial complexity in
different wireless communication system models.
Keywords – Lattice decoder, Gaussian sampling, Gibbs sampling, large

dimensional codes.

I. INTRODUCTION

Let us consider the generic linear model

y = Hx + n, (1)

where the matrix H ∈ Rm×n, vectors y,n ∈ Rm×1, and
x ∈ Zn. We denote the lattice Λ(H) := {s = Hx|x ∈ Zn}
generated by matrix H by operating on x. Hence, for the
lattice Λ(H) whose basis vectors are given by columns of H,
the problem of finding closest lattice point from any arbitrary
point y can be expressed as

x̂ = arg min
x∈Zn

‖y −Hx‖2. (2)

This model becomes directly applicable in wireless com-
munication scenarios where x is the information vector
transmitted through the channel H and received as y. Under
the assumption that additive noise vector n ∼ CN (0, σ2),
the problem of finding the most likely transmitted vector
becomes equivalent to (2). The well known solution to this
NP-hard problem is the sphere decoding (SD) algorithm,
originally proposed in [1]. The complexity of SD is exponen-
tial, and thus SD becomes computationally infeasible when
the number of real dimensions is more than 32.

Many suboptimal variants of sphere decoder algorithm have
been proposed in the literature. In [2], the authors proposed
K-best sphere decoder, which takes the tree search approach
and selects K best paths at each node. A fixed complexity
sphere decoder (FSD) algorithm has been proposed in [3],
which is able to solve the variable complexity problem
of the sphere decoder but suffers performance degradation
in higher dimensions. In [4], a randomized lattice decod-
ing algorithm is proposed, which takes zero forcing serial
interference cancellation (ZF-SIC) approach coupled with

selection of best vector from a set of multiple collected
samples technique on a reduced lattice basis. Another re-
duced complexity closest point decoding algorithm based on
probabilistic search method and employing error performance
oriented fast stopping criterion is proposed in [5]. In MIMO
communication scenario, the authors in [6]-[8] have proposed
different algorithms based on Gibbs sampling technique for
decoding of transmitted symbols.

In this paper, we propose a Gaussian sampling based lattice
decoding (GSLD) algorithm. The algorithm updates each
coordinate iteratively by generating and sampling from a
continuous Gaussian distribution, and then quantizes the
sampled value to the nearest alphabet point. The sampling
and updating process does not depend on the underlying
alphabet, and the complexity per iteration does not vary with
the alphabet size. Thus, the algorithm is of high importance
in systems using modulation alphabets of large size. The
proposed Gaussian sampling technique coupled with mul-
tiple restarts and efficient stopping criterion is shown to
achieve very close to optimal performance using polynomial
complexity. Simulation results in spatial multiplexing and
space time block coded systems, using different modulation
schemes, are presented which show that proposed GSLD
yields bit error rate (BER) performance within 0.2 dB of
SD performance at 0.01 BER. We also show that in 128
real dimensions, where SD can not be simulated due to
its exponential complexity, GSLD is able to achieve BER
performance close to the unfaded SISO-AWGN performance
lower bound.

Notations: Bold lowercase and uppercase letters denote col-
umn vectors and matrices, respectively. For a vector r, rj

denotes its jth coordinate. For a matrix R, its jth column
is denoted by rj . ‖r‖p denotes the p-norm of vector r.

(
.
.

)
denotes the binomial coefficient. For a set A, |A| denotes
its cardinality. �(.) and �(.) mean the real and complex
parts of a complex number respectively. (.)T denote transpose
operations and ⊗ represents Kronecker product.

II. SYSTEM MODEL IN WIRELESS COMMUNICATION

Consider a MIMO system with nt transmit and nr receive
antennas. The transmitted information symbols take values
from a modulation alphabet A. Let xc ∈ Ant denote the
transmitted vector. Let Hc ∈ Cnr×nt denote the channel
gain matrix, whose entries are assumed to be i.i.d. circularly
symmetric complex Gaussian with zero mean and unit vari-

978-1-4799-0446-4/13/$31.00 ©2013 IEEE

2013 IEEE International Symposium on Information Theory

2244

ance. In case of spatial multiplexing, the received vector yc

is
yc = Hcxc + nc, (3)

where nc is the noise vector whose entries are modeled as
i.i.d. circularly symmetric complex Gaussian with zero mean
and variance σ2. The complex channel model in (3) can be
converted into a real system model in (1) by the following
transformations:

H =

[�(Hc) −�(Hc)
�(Hc) �(Hc)

]
, y =

[�(yc)
�(yc)

]
,

x =

[�(xc)
�(xc)

]
, n =

[�(nc)
�(nc)

]
. (4)

Let the set of points that the elements in x take values from
be A. Note that, A = A+ jA, e.g., if xc takes values from
16-QAM alphabet, then A = [−3,−1, 1, 3], and n = 2nt,
m = 2nr.

In case of space-time block codes (STBC), the complex
channel model can be written as

Yc = Hc Xc + Nc, (5)

where Xc is the nt×T space-time coded data matrix. We can
transform the model into an effective linear channel model
of the form (1) as:

ye = Hexe + ne, (6)

where He = (I⊗Hc)B, and B is the STBC encoding matrix
which operates on the ntT ×1 sized complex data vector xe.
The nrT × 1 vectors ye and ne are obtained by stacking the
columns of the matrices Yc and Nc, respectively.

III. PROPOSED GAUSSIAN SAMPLING BASED LATTICE

DECODING (GSLD)

In this section, we propose a sub-optimal algorithm for
closest vector problem in random lattices based on Gaussian
sampling. The proposed algorithm performs random walk
through the lattice points where the transition probabilities
between two points are governed by the difference in costs of
the two points given by (2). The random walk starts from an
initial vector (e.g., zero forcing (ZF) solution, minimum mean
square error (MMSE) solution, random lattice point) and
ends after a certain maximum number of iterations or upon
reaching a satisfactorily good point. We perform multiple
such restarts serially and declare the best vector in terms of
cost as the solution vector.

At each iteration, the algorithm updates each coordinate one
by one by keeping others fixed. By removing the interfer-
ence from other coordinates, we evaluate the probability
distribution of that coordinate entry and sample from such
Gaussian distribution. The sampled value is quantized to
the nearest alphabet point and this quantized value is then
taken as the updated entry in that coordinate. For an infinite
lattice the quantization operation simplifies to rounding off
to the nearest integer. Note that the process of computing the
probability distribution and sampling is independent of the
underlying alphabet.

Starting from the vector x, the probability distribution of the
ith coordinate entry, keeping others fixed can be written as

p (xi|y,H, xj , ∀j 	= i) ∝ exp

(
−‖y−Hx‖2

σ2

)
∝ exp

(
−‖ỹ

(i) − hixi‖2
σ2

)
, (7)

where hi denotes the ith column vector of H and ỹ(i) =
y −∑

j �=i hjxj represents the residual received vector after
removing the interference from other coordinates. We can
further rewrite

‖ỹ(i) − hixi‖2 = ‖ỹ(i) − hiμi‖2 + ‖hi‖2|xi − μi|2, (8)

where μi = (ey(i))T hi

‖hi‖2 . Hence,

p (xi|y,H, xj , ∀j 	= i) ∝ exp

(
−|xi − μi|2

σ2

‖hi‖2

)
. (9)

We generate a random variable from Gaussian distribution in
(9) with mean μi and variance σ2

2‖hi‖2 , and quantize the gen-
erated value to the nearest point in the alphabet. We update
the ith coordinate of the vector x to this quantized value. The
complexity in sampling and updating of coordinate i comes
from the computation of ỹ(i) and μi. Alternatively, ỹ(i) can
be written as

ỹ(i) = y −
n∑

j=1

hjxj︸ ︷︷ ︸
�
= by

+hixi. (10)

ŷ is computed in the beginning and at the start of each
coordinate update hixi is added to ŷ to get ỹ(i). Hence, the
number of computations required to compute ỹ(i) becomes
O(n). The number of computations needed to compute μi is
also O(n). After the sampling, let the sampled and quantized
value be xnew

i . To minimize computations, before updating
x, we check whether xnew

i is equal to xi or not. We define a
counter C, which is set to zero if the new value is different
from the old value and is incremented by one otherwise. Note
that, if C ≥ n − 1, then in the previous n − 1 coordinate
updates the vector x has not changed. In that case, for the
sampling of ith coordinate, the previously stored value of μi

can be used, thus reducing the number of computations in the
case where the random walk is stuck at a particular lattice
point. Now, ŷ is recalculated as

ŷ = ỹ(i) − hix
new
i , (11)

and the ith coordinate is updated to xnew
i . After each itera-

tion, the best vector obtained so far is updated. Let this be
denoted by z. At the end of maximum number of allowed
iterations, denoted by Imax, z is declared as the final output.
The complexity of the algorithm can further be reduced by
stopping the iterations when the best vector obtained so far z

does not change for some consecutive iteration updates. We
define another counter S, which keeps track of how many
previous consecutive updates z has not changed. S is set
to zero when a better point is reached and z is updated.

2013 IEEE International Symposium on Information Theory

2245

We compare ‖y −Hz‖2 so far with a threshold Θ and stop
the algorithm if S ≥ T1 in the case that ‖y−Hz‖2 ≤ Θ.
Alternatively, we stop the algorithm if S ≥ T2. Intuitively,
T1 < T2 in order to give more iterations to the random walk
to help it converge to a better solution.

The number of operations in computation of μi is linear in
n, which has to be performed for each coordinate in each
iteration. The total number of iterations is also O(n). Hence,
the complexity of the algorithm is O(n3). The pseudo code
of the proposed algorithm is given below.

Algorithm 1 Gaussian sampling based lattice decoding algorithm (GSLD)

1: input: y, H, n, m, σ2; x: initial vector; Imax: max. # iterations;
A: Alphabet ; T1; T2; Θ

2: C = 0, S = 0, t = 0,
3: Compute β = ‖y −Hx‖2; z = x;
4: Compute ri = ‖hi‖2 for i = 1, 2, · · · , n; by = y −

Pn
j=1 hjxj ;

5: while t < Imax do
6: for i = 1 to n do
7: if C < n− 1 then
8: Compute ey(i) = by + hixi;

9: Compute μi = (ey(i))T hi

ri

;
10: end if
11: Generate sample si from N (μi,

σ2

2ri

);
12: Generate xnew

i
from quantization of si;

13: if xnew
i �= xi then

14: C = 0; by = ey(i) − hix
new
i

;
15: else
16: C = C + 1;
17: end if
18: Update ith coordinate of x with xnew

i
;

19: end for
20: γ = ‖y −Hx‖2;
21: if (γ ≤ β) then
22: z = x; β = γ; S = 0;
23: else
24: S = S + 1;
25: end if
26: if β < Θ then
27: if S ≥ T1 then
28: goto step 37
29: end if
30: else
31: if S ≥ T2 then
32: goto step 37
33: end if
34: end if
35: t = t + 1;
36: end while
37: output: z. z : output solution vector

A. Comparisons with other sampling based detectors

1) Comparison with Gibbs sampling: In Gibbs sampling, to
update each coordinate a probability mass function is gener-
ated for all the points in the alphabet [7], [6]. The individual
probability values are generated from the differences in ML
costs and then normalized to generate the probability mass
function. Starting from a vector x, for transmission alphabet
A, we calculate the probability mass function for sampling
the i th coordinate as follows. Let us define a n × 1 vector
xa, where

xa
j = xj , ∀j 	= i

= Aa. j = i, (12)

whereAa denotes the a-th element inA. Now, the probability
of choosing Aa in ith location can be written as

p(xi = Aa|y,H,x) =
exp

(
− ‖y−Hxa‖2

σ2

)
∑|A|

b=1 exp
(
− ‖y−Hxb‖2

σ2

) . (13)

This computation can be simplified by calculating only the
differences in ML costs, which amounts to computing

(|A|
2

)
ML cost differences. Hence, the complexity of conventional
Gibbs sampling will increase with increasing the alphabet
size. Herein lies a main difference between Gibbs sampling
and the proposed GSLD.

The authors in [8] proposed a mixed Gibbs sampling tech-
nique, which uses a weighted mixture of probability mass
function obtained from Gibbs sampling in (13) and uniform
distribution over the whole alphabet. This approach was
shown to alleviate the stalling problem, i.e., the problem of
getting stuck in a local trap and thus not reaching the global
minima in medium to high SNR range in conventional Gibbs
sampling. In Fig. 1, we compare the BER performances of
conventional Gibbs sampling, mixed Gibbs sampling and
the proposed GSLD for 4-QAM and 16-QAM alphabets
in 16 × 16 spatially multiplexed MIMO system. Maximum
number of iterations for all the algorithms has been kept
at 256 and no stopping criterion is used for any of them.
Sphere decoder is also simulated for comparison. For both
the alphabets, it can be observed that GSLD performs much
better than conventional Gibbs sampling and achieve very
close to sphere decoder performance in low to medium
SNR range. Thus GSLD can be very useful in low to
medium SNR range where sphere decoder complexity is very
high. The performance of GSLD technique is comparable to
mixed Gibbs sampler performance in 4-QAM but in 16-QAM
GSLD performs significantly better.

0 5 10 15 20 25
10

−4

10
−3

10
−2

10
−1

10
0

Average received SNR (dB)

B
it

 E
rr

o
r

R
a
te

Conv. Gibbs [6], 16−QAM
Mixed Gibbs [8], 16−QAM
Prop. GSLD, 16−QAM
Sphere Decoder, 16−QAM
Conv. Gibbs [6], 4−QAM
Mixed Gibbs [8], 4−QAM
Prop. GSLD, 4−QAM
Sphere Decoder, 4−QAM

16x16 spatial multiplexing MIMO

16−QAM

4−QAM

Fig. 1. BER results for 16 × 16 spatial multiplexing MIMO system for
4-QAM and 16-QAM using conventional Gibbs sampler [6], mixed Gibbs
sampler [8], proposed GSLD and sphere decoder.

2) Comparison with randomized lattice decoding: The au-
thors in [4] have presented a randomized lattice decod-
ing algorithm, which is a randomized version of ZF-SIC

2013 IEEE International Symposium on Information Theory

2246

algorithm applied on LLL-reduced lattice. The algorithm
generates discrete Gaussian distribution at each coordinate
layer and samples a point. Separate multiple parallel samples
are generated and the best among the obtained samples is
declared as the final solution. The differences between this
algorithm in [4] and our proposed Gaussian sampling based
algorithm are:

1) in [4], the sampling process works on the upper tri-
angular R matrix, which is obtained from the QR
decomposition of LLL-reduced H matrix. In our ap-
proach, the samples are drawn based on (9) and do
not require either LLL reduction or QR decomposition.
Our approach is iterative in nature and can cover the
search space efficiently using random walks starting
from multiple starting points.

2) in [4], samples are generated from truncated discrete
Gaussian distribution. In our approach, we generate
a real number from a Gaussian distribution and then
quantize it according to the alphabet.

B. Multiple restarts strategy

From Fig. 1, it can be observed that GSLD also exhibits
stalling effect in the high SNR range, and the effect is more
critical in higher order QAM. To alleviate this effect, we
run the algorithm multiple times, each time starting from a
different initial vector and take the best among all the output
vectors obtained from different independent random walks.
We implement this multiple restart strategy to improve the
performance of GSLD.

0 5 10 15 20 25 30 35 40 45
10

−4

10
−3

10
−2

10
−1

10
0

Number of restarts

P
ro

b
a
b
il

it
y
 o

f
n
o
t

a
c
h
ie

v
in

g
 M

L
 s

o
lu

ti
o
n

16× 16, 4-QAM

16× 16, 16-QAM

16× 16, 64-QAM

Spatial Multiplexing MIMO
σ2=1.6

Average number
of restarts for
64−QAM = 1.4498

Average
number of
restarts for
4−QAM
=1.002

Average number
of restarts for
16−QAM = 1.068

Fig. 2. Complementary cumulative density function of the number of
restarts required in order to achieve ML performance.

To design the multiple restart strategy, we study how many
restarts are required to achieve optimal solution for different
modulation alphabets. In Fig. 2, we plot the complementary
cumulative density function of number of restarts required
in order to achieve ML performance in 16 × 16 spatial
multiplexing MIMO system with 4-, 16-, and 64-QAM
modulation alphabets. In the experiment, we have used the
first initial vector as MMSE output vector and the rest as
randomly chosen vectors. The ML solution is obtained using
the sphere decoder apriori. We numerically evaluated the

probability of reaching the ML solution at a given restart.
The complementary cumulative density function of number
of restarts gives the probability of not reaching ML solution
using a given number of restarts. We can set our maximum
number of restarts depending upon how much sub-optimality
can be tolerated, e.g., for a system allowing 10−3 codeword
error rate, GSLD will require 2, 6 and 18 maximum number
of restarts for 4-, 16-, and 64-QAM, repectively. It can be
observed that for a given number of restarts, the probability of
not reaching the ML solution increases with the alphabet size.
Intuitively, as the alphabet size grows, the size of the search
space also increases and hence it requires more number of
restarts to achieve the ML performance.

C. Complexity reduction using stopping criterion

Multiple restarts achieve better BER performance at the
cost of some increased computational complexity. Hence, a
stopping criterion based on heuristics can be used, which
stops further restarts if a good enough solution is reached
before reaching the maximum number of restarts. The authors
in [8] have used a stopping criterion based on ML cost
of the best solution vector obtained so far. Let us define
s as the best vector obtained after a certain number of
restarts across all restarts. The ML cost of the actually
transmitted vector is nothing but the norm of the noise vector
which is chi-square distributed with mean mσ2. Hence, if
‖y−Hs‖2 ≤ mσ2, then s can be regraded as a reliable
solution and can be declared as the final solution without
any further restarts. On the contrary, if ‖y−Hs‖2
 mσ2,
then this vector is not reliable and more restarts are required.
Again, if ‖y −Hs‖2 > mσ2 and s is repeated as the
solution of different restarts, it can be considered as a
reliable solution, as intuitively the global minima is expected
to occur as solution of most restarts. Thus, the stopping
criterion compares number of repetitions of s in the list of
all output vectors from different restarts with a threshold
G(s) ∝ (‖y−Hs‖2 −mσ2

)
. By experimental study we

have set the proportionality constant to be log2 |A|√
mσ2 . If s is

repeated more than G(s) times, then we stop the algorithm
and declare s as the final solution. Otherwise, next restart is
started.

IV. RESULTS AND DISCUSSIONS

In Fig. 3, we compare the BER performance of proposed
GSLD with R-MCMC-R [8], randomized lattice decoding
[4], and sphere decoding algorithms in 16× 16 MIMO sys-
tem using 16- and 64-QAM modulation. Maximum number
of iterations used in each restart is 16n log2 |A| and the
maximum number of restarts used is 50. We have used
Θ = mσ2+2

√
mσ2, T1 = 20 log2 |A|, and T2 = 20 log2 |A|.

For randomized lattice decoding, the number of parallel
samples taken are 174. It can be observed that the proposed
GSLD performs very close to the sphere decoder. The per-
formance of GSLD is comparable to that of R-MCMC-R,
and it outperforms randomized lattice decoding for 16- and
64-QAM modulation alphabets.

2013 IEEE International Symposium on Information Theory

2247

10 15 20 25 30 35 40
10

−4

10
−3

10
−2

10
−1

10
0

Average received SNR (dB)

B
it

 E
rr

o
r

R
a
te

Shuiyin et al. [4], 16−QAM
R−MCMC−R [8], 16−QAM
Prop. GSLD, 16−QAM
Sphere Decoder, 16−QAM
Shuiyin et al. [4], 64−QAM
R−MCMC−R [8], 64−QAM
Prop. GSLD, 64−QAM
Sphere Decoder, 64−QAM

64−QAM

16−QAM

16 × 16 Spatial Multiplexing MIMO

Fig. 3. BER performance comparison of proposed GSLD with R-MCMC-
R [8], randomized lattice decoding [4], and sphere decoder algorithms for
16× 16 MIMO system with 16- and 64-QAM.

Complexity in average number of real operations
in ×106 and SNR in dB required to achieve
10−2 BER for 16× 16 MIMO

Algorithm 16-QAM 64-QAM
Complexity SNR Complexity SNR

Prop. GSLD 0.93 16.9 4.85 23.8
R-MCMC-R [8] 1.71 17 11.18 24

R3TS [9] 3.96 17 25.42 24.2
FSD [3] 4.83 17.6 305.72 24.3

TABLE I
PERFORMANCE AND COMPLEXITY COMPARISON OF PROPOSED GSLD

WITH OTHER DETECTORS IN [8], [9] AND [3] FOR 16× 16 MIMO AND
16-/64-QAM.

In Table I, we have listed the complexity in average number
of real operations and SNR in dB required to achieve 10−2

BER for different detection algorithms. The results are for
16 × 16 MIMO with 16-QAM and 64-QAM modulation
schemes. It can be observed that the proposed GSLD is
able to achieve comparable BER performances using lower
number of computations. The saving in complexity is more
significant in case of 64-QAM, showing the importance of
the proposed algorithm in communication systems employing
higher order modulation alphabets.

0 5 10 15 20 25
10

−4

10
−3

10
−2

10
−1

10
0

Average received SNR (dB)

B
it

 E
rr

o
r

R
a
te

Prop. GSLD, 2× 2 Golden code
SD, 2× 2 Golden code
Prop. GSLD, 4× 4 NO-STBC
SD, 4× 4 NO-STBC
Prop. GSLD, 8× 8 NO-STBC
Unfaded SISO -AWGN

4−QAM

Fig. 4. BER performance comparison of proposed GSLD with sphere
decoder for 2× 2 MIMO system using golden code, 4-QAM, 4× 4 MIMO
system using NO-STBC from CDA, 4-QAM, and 8×8 MIMO system using
NO-STBC from CDA, 4-QAM.

In Fig. 4, we show the BER performances of proposed GSLD
for 2 × 2 MIMO system using golden code [10], 4 × 4
and 8 × 8 MIMO system using full-rate, full-diversity non-
orthogonal STBC (NO-STBC) from cyclic division algebra
(CDA) [11] using 4-QAM. In case of 2 × 2 and 4 × 4
MIMO, we compare GSLD performance with sphere decoder
performance. It can be observed that our proposed GSLD is
able to achieve almost sphere decoder performance. In case of
8×8 NO-STBC MIMO exploiting 128 real dimensions using
full-rate, full-diversity code from CDA, it is not possible
to simulate sphere decoder because of its computationally
infeasible complexity. Hence we plot unfaded SISO-AWGN
performance as a lower bound to ML performance. We
observe that the performance of GSLD gets close to the
unfaded SISO-AWGN performance in high SNR range.

V. CONCLUSION

We proposed a novel Gaussian sampling based lattice decoder
which iteratively updates its coordinates by generating and
sampling from a continuous Gaussian distribution. The per-
iteration complexity is independent of the alphabet size. The
proposed GSLD with restarts is shown to achieve very close
to ML performance and outperform other sampling based
detection algorithms.

ACKNOWLEDGMENT

This work was performed at the Monash Software Defined
Telecommunications Lab and was supported by the Monash
Professional Fellowship, Australia-India Senior Visiting Fel-
lowships 2012-2013, and Australian Research Council Dis-
covery grants (ARC DP130100336).

REFERENCES

[1] E. Viterbo and J. Boutros, “A universal lattice code decoder for fading
channels,” IEEE Trans. Info. Theory, vol. 45, pp. 1639-1642, Jul. 1999.

[2] Z. Guo and P. Nilsson, “Algorithm and implementation of the K-best
sphere decoding for MIMO detection,” IEEE Journal on Selected Areas
of Communication, vol. 24, issue 3, pp. 491-503, Mar. 2006.

[3] L. G. Barbero and J. S. Thompson, “Fixing the complexity of the
sphere decoder for MIMO detection,” IEEE Trans. Wireless Commun.,
vol. 7, no. 6, pp. 2131-2142, Jun. 2008.

[4] S. Liu, C. Ling, and D. Stehle, “Randomized lattice decoding: Bridging
the gap between lattice reduction and sphere decoding,” IEEE Trans.
Inform. Theory, vol. 57, issue 9, pp. 5933-5945, Sep. 2011.

[5] W. Zhao and G. B. Giannakis, “Reduced complexity closest point
decoding algorithms for random lattices,” IEEE Trans. Wireless Com-
mun., vol. 5, no. 1, pp. 101-111, Jan. 2006.

[6] R. Chen, J. S. Liu, and X. Wang, “Convergence analyses and compar-
isons of Markov chain Monte Carlo algorithms in digital communica-
tions,” IEEE Trans. Signal Proc., vol. 50, pp. 255-270, Feb. 2002.

[7] M. Hansen, B. Hassibi, A. G. Dimakis, and W. Xu, “Near-optimal
detection in MIMO systems using Gibbs sampling,” Proc. IEEE
ICC’2009, Honolulu, Dec. 2009.

[8] T. Datta, N. A. Kumar, A. Chockalingam, and B. S. Rajan, “A novel
MCMC algorithm for near-optimal detection in large-scale uplink
multiuser MIMO systems,” Proc. ITA’2012, pp. 69-77, San Diego, Feb.
2012.

[9] T. Datta, N. Srinidhi, A. Chockalingam, and B. S. Rajan, “Random-
restart reactive tabu search algorithm for detection in large-MIMO
systems,” IEEE Comm. Lett., vol. 14, no. 12, pp. 1107-1109, Dec.
2010.

[10] J.-C. Belfiore, G. Rekaya, and E. Viterbo, “The golden code: A 2 ×
2 full-rate space-time code with non-vanishing determinants,” IEEE
Trans. Inform. Theory, vol. 51, no. 4, pp. 1432-1436, Apr. 2005.

[11] B. A. Sethuraman, B. S. Rajan, and V. Shashidhar, “Full-diversity,
high-rate spacetime block codes from division algebras,” IEEE Trans.
Inform. Theory, vol. 49, no. 10, pp. 2596-2616, Oct. 2003.

2013 IEEE International Symposium on Information Theory

2248

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

