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Abstract—Lattices possess elegant mathematical properties
which have been previously used in the literature to show that
structured codes can be efficient in a variety of communication
scenarios. We consider the family of single-transmitter multiple-
receiver Gaussian channels where the source transmits a set of
common messages to all the receivers (multicast scenario), and
each receiver has coded side information, i.e., prior information
in the form of linear combinations of the messages. This channel
model is motivated by applications to multi-terminal networks
where the nodes may have access to coded versions of the
messages from previous signal hops or through orthogonal
channels. The capacity of this channel is known and follows from
the work of Tuncel (2006), which is based on random coding
arguments. In this paper, following the approach introduced
by Erez and Zamir, we show that lattice codes are capacity-
optimal for this family of channels. The structured coding scheme
proposed in this paper is derived from Construction A lattices
designed over prime fields, and utilizes algebraic binning at the
decoders to expurgate the channel code and obtain good lattice
subcodes, for every possible set of linear combinations available
as side information.

I. INTRODUCTION

Information-theoretic results often rely on random coding

arguments to prove the existence of good codes. Usually, the

codebook is constructed by randomly choosing the compo-

nents of each codeword independently and identically from

a judiciously chosen probability distribution. While this tech-

nique is powerful, the resulting codebooks do not exhibit any

structure that may be of practical interest. One such desirable

structure is linearity, which allows complexity reductions at the

encoder and decoder by utilizing efficient algebraic processing

techniques. Further, in certain communication scenarios, cod-

ing schemes based on linear codes yield a larger achievable

rate region than random code ensembles, as was shown by

Körner and Marton [1] for a distributed source coding prob-

lem. Structured coding schemes, such as those based on linear

codes and lattices, have been widely studied in the literature,

see [2], [3] and references therein. Lattice codes, in particular,

are known to be efficient for communication in the additive

white Gaussian noise (AWGN) channel [4]–[8], dirty-paper

coding [2], [9], Wyner-Ziv coding [2] and relay networks [10]–

[13], to name only a few.
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(a) Multiple-access phase (b) Multicast phase

Fig. 1. A relay network instance where one encounters a common message
broadcast channel with coded side information at the receivers.

In this paper we present capacity-achieving lattice strategies

for communication in common message Gaussian broadcast

channels, which we refer to as the multicast channel, where

receivers have prior side information about the messages being

transmitted. In particular, we assume that the transmitter is

multicasting K message symbols w1, . . . , wK from a finite

field Fp, of prime size p, to all the receivers, and each

receiver may have coded side information about the messages:

the prior knowledge of the values of (possibly multiple) Fp-

linear combinations of w1, . . . , wK . The number of linear

combinations available as side information and the coefficients

of these linear combinations can differ from one receiver to

the next. The capacity of this channel is known and follows

from the results of Tuncel [14], where the achievability part

utilizes an ensemble of codebooks generated using Gaussian

distribution. The channel model considered in this paper is

motivated by applications in multi-terminal communication

networks.

Example 1. Consider a wireless network with two base

stations BS1 and BS2, that hold message symbols w1 and w2,

respectively. The base stations are required to multicast w1 and

w2 to four user nodes U1, . . . ,U4 through the relay node R, see

Fig. 1. In the first phase of the protocol, BS1 and BS2 encode

the data symbols w1 and w2, and transmit the resulting code-

words simultaneously. In order to exploit the resulting signal

interference at U3, the base stations employ the encoding tech-

nique used in the compute-and-forward protocol [12]. Now,

U3 reliably decodes some linear combination s1w1 + s2w2,

s1, s2 ∈ Fp, from the received noisy superposition of the two

transmit signals. On the other hand, R has a higher signal-

to-noise ratio and successfully decodes both w1 and w2 by

behaving as a multiple-access receiver. Further, there is no

signal interference at U1 and U2, and these two nodes reliably

decode w1 and w2, respectively. We observe that the second

phase of the protocol is a common message broadcast channel
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with coded side information at the receivers: the relay needs

to multicast w1, w2 to four user nodes, the first three users

U1,U2,U3 have prior knowledge of the linear combinations

w1+0w2, 0w1+w2 and s1w1+ s2w2, respectively, while the

fourth user has no such side information.

Example 2. Assume a network of noiseless wired links in the

form of a directed acyclic graph, where the source node vs de-

sires to multicast K independent messages w1, . . . , wK ∈ Fp

to a set of destination nodes. The wireline network employs

a traditional (scalar) linear network code [15]–[17]. It is

known that the maximum number of linearly-independent

combinations of the K messages that can be made available

at a destination node vd is min{max-flow(vd),K}, where

max-flow(vd) is the maximum number of edge-disjoint paths

from vs to vd, see [17]. Hence multicasting is possible if and

only if max-flow(vd) ≥ K for every destination vd. Now

suppose there exist destination nodes with max-flow less than

K, i.e., the communication demands are beyond the wireline

network’s capacity. A solution to meet the demands is to

broadcast a wireless signal from the source to fill the capacity

deficiency of the wired network. At each destination, the Fp-

linear combinations obtained from the wireline network serve

as side information to decode the wireless broadcast signal.

A special case of coded side information is the Gaussian

multicast channel where each receiver has prior knowledge of

the values of some subset of the K messages. The known

capacity-achieving coding schemes for this special case are

based on random coding using i.i.d. (independent and iden-

tically distributed) codewords [14], [18]–[22]. Existence of

lattice based capacity-achieving coding schemes were proved

in [19], [23] for the special case where the number of messages

and receivers are two and each receiver has the knowledge of

one of the messages.

The objective of this paper is to prove that lattice codes

achieve the capacity of the common message Gaussian broad-

cast channels with coded side information. We use the

information-theoretic framework set by Erez and Zamir [5]

to this end. The proposed coding scheme uses an ensemble

of Construction A lattices and the decoding scheme involves

algebraic binning [2] where the receiver side information is

used to expurgate the channel code and obtain a lower rate sub-

code. The algebraic structure of the coding scheme facilitates

the performance analysis by decomposing the original channel

into multiple independent point-to-point AWGN channels –

one corresponding to each receiver – where each of the point-

to-point AWGN channels uses a (possibly) different lattice

code for communication. Unlike [5], where achievability in

a point-to-point AWGN channel was proved using error ex-

ponent analysis, our proof technique is based only on simple

counting arguments. Full proofs of all the results appearing in

this paper are available in [24].

II. CHANNEL MODEL AND LATTICE PRELIMINARIES

Channel Model: We consider a (non-fading) common mes-

sage Gaussian broadcast channel with a single transmitter and

finitely many receivers, where all terminals are equipped with

single antennas. The K independent messages w1, . . . , wK

assume values with a uniform probability distribution from

a prime finite field Fp. Each receiver desires to decode all

the K messages while having prior knowledge of the values

of some Fp-linear combinations of the messages w1, . . . , wK .

Consider a generic receiver that has access to the values um,

m = 1, . . . ,M , of the following set of M linear equations∑K
k=1 sm,kwk = um, m = 1, . . . ,M . We will denote this

side information configuration using the matrix SSS = [sm,k] ∈
F
M×K
p , where each row of SSS represents one linear equation.

Any row of SSS that is linearly dependent on the other rows

represents redundant information and can be discarded with

no loss to the receiver side information, and hence, with no

loss to system performance. Hence, without loss in generality,

we will assume that the rows of SSS are linearly independent

over Fp, i.e., rank(SSS) = M , and M < K. If the values

um of M linearly independent combinations of the variables

w1, . . . , wK are given, then the set of all possible solutions

of (w1, . . . , wK) is a coset of a (K −M) dimensional linear

subspace of FK
p , and hence, is of cardinality p(K−M).

Note that the values of SSS and M can be different across

the receivers. A receiver is completely characterized by its

(coded) side information matrix SSS and the variance σ2 of

the additive noise. If we assume that the average transmit

power at the source is 1, then the signal-to-noise ratio at

this receiver is SNR = 1/σ2. We will denote a receiver by

the tuple (SSS, σ2). Suppose (SSS1, σ
2
1), . . . , (SSSN , σ2

N ) are the N
receivers in the multicast channel. Following [14, Theorem 6],

it is straightforward to show that the maximum rate at which

each of the K messages can be reliably transmitted, i.e. the

(symmetric) capacity of the channel, is

C = min
i∈{1,...,N}

1

(K − rank(SSSi))

1

2
log

(
1 +

1

σ2
i

)
. (1)

Lattice Codes from Linear Codes over Fp: The lattice re-

lated terminology and notation used in this section is standard

material, and is mainly based on [5], [25]–[27]. Given an

n-dimensional lattice Λ ⊂ R
n, we denote its fundamental

Voronoi region by V(Λ), volume of the Voronoi region by

Vol(Λ), the closest lattice point quantizer by QΛ, and the

modulo-Λ operation by mod Λ. Covering and effective radii

of Λ are denoted by rcov(Λ) and reff(Λ), respectively. Note

that there exists a sequence of lattices of increasing dimension

n, said to be Rogers good, such that rcov/reff → 1. The closed

n-dimensional ball of radius r centered at sss ∈ R
n is denoted

by B(sss, r), and the volume of the unit ball B(000, 1) by Vn.

We will rely on the following methodology used in [5], [12]

to construct a pair of nested lattices Λc ⊂ Λ. Let g(·) denote

the natural map that embeds Fp = {0, 1, . . . , p − 1} into Z.

Let C ⊂ F
n
p be a linear code of rank L, 1 ≤ L ≤ n, C ={

GwGwGw |www ∈ F
L
p

}
, where GGG is the n× L generator matrix with

full column rank. The set g(C ) + pZn is the Construction A
lattice of the linear code C [25]. We obtain the fine lattice Λ
by scaling the Construction A lattice by p−1 and transforming
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it by the generator matrix BBBc of the coarse lattice Λc

Λ = BBBcp
−1 (g(C ) + pZn) = BBBcp

−1g(C ) + Λc.

The following key property of the (nested) lattice code

Λ/Λc = Λ∩V(Λc) will be useful in proving our main theorem.

Lemma 1. The map www → [
BBBc p

−1g (GwGwGw)
]
mod Λc is a

bijection between F
L
p and Λ/Λc.

III. MAIN THEOREM AND THE LATTICE CODING SCHEME

In order to rigorously state the main result, we consider a

non-zero tolerance ε > 0 that determines the gap to capacity.

Theorem 1 (Main theorem). Let the number of messages
K, design rate R and tolerance ε > 0 be given. For every
sufficiently large prime integer p, there exists a sequence of
lattice codes of increasing dimension n that encode K message
vectors over Fp such that the rate of transmission of each
message is at least (R− ε) b/dim and the probability of error
at a receiver (SSS, σ2) decays exponentially in n if

1

(K − rank(SSS))
· 1
2
log

(
1 +

1

σ2

)
≥ (R+ ε). (2)

Note that our coding scheme considers the scenario where

the K messages are to be transmitted at the same rate R,

resulting in sum rate KR. Combining Theorem 1 with a simple

union bound argument, we immediately deduce that lattice

codes achieve the symmetric capacity (1) of the common mes-

sage Gaussian broadcast channel with coded side information

if the number of receivers is finite and the prime p is large

enough. Also, when K = 1 and rank(SSS) = 0, we observe that

the proposed coding scheme is capacity-optimal for the single-

user AWGN channel with no receiver side information.

We now describe the construction of lattice code ensemble,

encoder and decoder used to prove Theorem 1. A sketch of

the proof of Theorem 1 is given in Section IV.

A. Random lattice code ensemble

Given the design rate R, number of messages K and

tolerance ε > 0, let p be any prime integer satisfying

p ≥ max
{
22KR, (2

ε/4 − 1)−12−R
}

. Note that this implies

p ≥ (2
ε/4 − 1)−12−(R+ε)(K−M) for any 0 ≤ M ≤ K − 1.

Rearranging the terms in this inequality we obtain

(
p 2(R+ε)(K−M)

)−1
+ 1 ≤ 2

ε/4. (3)

Once p is fixed, we choose � as the largest integer that satisfies

�/n log p ≤ R. (4)

The left-hand side in the above inequality is the actual rate

at which the lattice code encodes each message, while R is

the design rate. The difference between the two is at the most
log p/n which converges to 0 as n → ∞. It follows that the

code rate �/n log2 p ≥ R− ε for all sufficiently large n.

We will choose a Rogers-good lattice of sufficiently large di-

mension n as Λc with rcov(Λc)/reff(Λc) ≤ 2ε/4, and to satisfy

the transmit power constraint scale it so that rcov(Λc) =
√
n.

It follows that reff(Λc) ≥ 2−ε/4 rcov(Λc) = 2−ε/4
√
n. Using

the definition of the effective radius,

Vol(Λc) = Vn r
n
eff(Λc) ≥ Vn n

n/2 2−nε/4. (5)

To construct the fine lattice Λ, we consider a linear code

C of length n and rank L = K�, which is the number of

message symbols to be encoded by the lattice code. Note that

this requires that K� < n be true. Using (4) and the property

p ≥ 22KR, we have K� ≤ nKR/log p ≤ nKR/2KR = n/2,

which ensures that K� < n. We then set Λ = BBBcp
−1g(C ) +

Λc. We will choose GGG uniformly random over the set of all

n × K� matrices of Fp, resulting in a random ensemble of

fine lattices Λ. Probability that GGG is not full-rank is at the

most p−(n−K�) [12]. This in turn is upper bounded by 2−n/2

since K� ≤ n/2 and p ≥ 2.

Finally, we will assume that the dither ddd is distributed

uniformly in V(Λc) and is chosen independently of GGG.

B. Encoding

The encoder first concatenates K length-� message vectors

www1, . . . ,wwwK ∈ F
�
p into the vector www =

(
wwwᵀ

1 , · · · ,wwwᵀ
K

)ᵀ
, maps

it to a point ttt ∈ R
n using Construction A as follows

ttt =
[
BBBc p

−1g (GwGwGw)
]
mod Λc. (6)

From the discussion in Section III-A, we know that

BBBcp
−1g(GwGwGw) ∈ Λ, and hence, ttt ∈ Λ/Λc, i.e., the lattice code

Λ∩V(Λc). The transmit codeword xxx is generated by dithering,

xxx = [ttt− ddd] mod Λc =
[
BBBc p

−1g (GwGwGw)− ddd
]
mod Λc. (7)

Since rcov(Λc) =
√
n, the power constraint ‖xxx‖2 ≤

r2cov(Λc) = n is satisfied. From Lemma 1, no two distinct

message tuples are mapped to the same codeword if GGG is full-

rank. We already observed in Section III-A that the probability

that GGG is not full-rank is exponentially small in n.

C. Decoding

The receiver employs a two stage decoder: in the first

stage the receiver identifies the subcode of the lattice code

corresponding to the available side information. And in the

second stage it decodes the channel output to a point in this

subcode using the standard MMSE scaling and infinite lattice

decoding [5].

Expurgation using Side Information: The side information

at (SSS, σ2) over a block of � realizations of the K messages

is of the form
∑K

k=1 sm,kwwwk = uuum, m = 1, . . . ,M . Using

the notation uuu =
(
uuuᵀ
1 , · · · ,uuuᵀ

M

)ᵀ ∈ F
M�
p , the side information

can be rewritten compactly as

(SSS ⊗ III�)www = uuu, (8)

where ⊗ denotes the Kronecker product of matrices and

III� is the � × � identity matrix over Fp. Let ASASAS be any

K�× (K −M)� matrix whose columns form a basis of the

null space of SSS ⊗ III�. Observe that (8) is an under-determined

system of linear equations, and the set of solutions is a coset

of the null space of SSS ⊗ III�. The set of all solutions to (8)

2017 IEEE International Symposium on Information Theory (ISIT)

1835



is vvv + {ASw̃ASw̃ASw̃ | w̃̃w̃w ∈ F
(K−M)�
p }, where vvv is the coset leader.

From (6), the undithered codeword must be of the form

ttt=
[
BBBcp

−1g (GvGvGv +GASw̃GASw̃GASw̃)
]
mod Λc, w̃̃w̃w ∈ F

(K−M)�
p . (9)

Note that for any aaa,bbb ∈ F
n
p , g(aaa + bbb) = g(aaa) + g(bbb) mod p.

Therefore, g(GvGvGv + GASw̃GASw̃GASw̃) = g(GvGvGv) + g(GASw̃GASw̃GASw̃) + pccc for

some ccc ∈ Z
n. Using this and the fact BBBcccc ∈ Λc in (9),

ttt =
[
BBBcp

−1g (GvGvGv) +BBBcp
−1g (GASw̃GASw̃GASw̃) +BBBcccc

]
mod Λc

=
[
BBBcp

−1g (GvGvGv) +
[
BBBcp

−1g (GASw̃GASw̃GASw̃)
]
mod Λc

]
mod Λc. (10)

Since the receiver knows vvv, the component of ttt unavailable

from the side information is

t̃̃t̃t =
[
BBBcp

−1g (GASw̃GASw̃GASw̃)
]
mod Λc. (11)

Let CSSS ⊂ F
n
p be the subcode of C with generator matrix

GASGASGAS , and ΛSSS = BBBcp
−1g(CSSS)+Λc. Using GASGASGAS instead of GGG

in Lemma 1, we see that t̃̃t̃t ∈ ΛSSS/Λc and that (11) is a one-to-

one correspondence between w̃̃w̃w ∈ F
(K−M)�
p and t̃̃t̃t ∈ ΛSSS/Λc if

GASGASGAS is full rank. The decoding problem at the second stage

is to estimate t̃̃t̃t, or equivalently w̃̃w̃w, from the channel output.

MMSE Scaling and Lattice Decoding: Let the channel out-

put at the receiver (SSS, σ2) be yyy = xxx+nnn, where nnn is a Gaussian

vector with zero mean and variance σ2 per dimension. Scaling

the received vector by the MMSE coefficient α = 1/(1+σ2),

αyyy = αxxx+ αnnn = xxx+ αnnn− (1− α)xxx = xxx+ zzz,

where zzz = αnnn− (1− α)xxx is the effective noise term. Using

the facts that nnn is independent of xxx and ‖xxx‖ ≤ n, it is easy

to show that the power E ‖zzz‖2/n of the effective noise zzz is at

the most σ2/(1+σ2). Denoting σ2/(1+σ2) by σ2
zzz , the lower

bound (2) on signal-to-noise ratio can be rewritten as

σ2
zzz ≤ 2−2(R+ε)(K−M). (12)

From (7), (10) and (11), xxx = t̃̃t̃t+BBBcp
−1g(GvGvGv)−ddd+λλλc for

some λλλc ∈ Λc. After MMSE scaling, the decoder removes the

contributions of ddd and BBBcp
−1g(GvGvGv) from αyyy to obtain

y′y′y′ = αyyy −BBBcp
−1g(GvGvGv) + ddd = t̃̃t̃t+ λλλc + zzz.

The decoder proceeds by quantizing y′y′y′ to the lattice ΛSSS

and reducing the result modulo Λc. If the noise zzz is suffi-

ciently ‘small’, then this sequence of operations will yield[
QΛSSS

(t̃̃t̃t+ λλλc + zzz)
]
mod Λc =

[
t̃̃t̃t+ λλλc

]
mod Λc = t̃̃t̃t. Given

t̃̃t̃t, the receiver uses (10) to obtain the undithered code-

word ttt, and hence the message vector (wwwᵀ
1 , . . . ,www

ᵀ
K)ᵀ as

ttt =
[
BBBcp

−1g(GvGvGv) + t̃̃t̃t
]
mod Λc. To conclude, the decoder

obtains the estimate of the undithered codeword ttt from the

received vector yyy as

t̂̂t̂t =
[ [
QΛSSS

(y′y′y′)
]
mod Λc +BBBcp

−1g(GvGvGv)
]
mod Λc.

Note that a decoding error occurs if and only if zzz is closer to

a point in ΛSSS\Λc than any other vector in the coarse lattice

Λc, i.e., if and only if the following event occurs

E : QΛSSS
(zzz) ∈ ΛSSS\Λc. (13)

IV. PROOF OF MAIN THEOREM

We first present two lemmas which will be used to show

that the error probability at a given fixed receiver (SSS, σ2)
is small. We then complete the proof by showing that the

error probability at every receiver of the multicast channel

is simultaneously small. The first lemma, which is a direct

generalization of [6, Lemma 1] and [7, Lemma 2.3], bounds

the number of lattice points lying inside a ball.

Lemma 2. For any sss ∈ R
n, r > 0 and any n-dimensional

lattice Λc, |Λc ∩ B(sss, r)| ≤ (rcov(Λc) + r)
n
Vn/Vol(Λc),

where Vn is the volume of a unit ball in R
n.

As in [6], [7], [28], we will also rely on the following result

which shows that with very high probability, the norm of the

noise zzz is not much larger than
√
nσ2

zzz .

Lemma 3. Let xxx be uniformly distributed in V(Λc) and δ > 0.
Then the probability P

(‖zzz‖2 > nσ2
zzz(1 + δ)

)
is at the most

exp
(
−n(δ−ln(1+δ))

2

)
+ exp

(
−nσ2δ2

4

)
.

Error probability at a single receiver: We now derive an

upper bound on the error probability PSSS at (SSS, σ2) when

averaged over the ensemble of lattice codes. From the Crypto
lemma [5, Lemma 1], we know that ttt is statistically indepen-

dent of xxx = [ttt− ddd] mod Λc, and hence, the codeword ttt and

effective noise zzz = αnnn− (1−α)xxx are independent. Hence the

error event E in (13) is independent of the transmit message.

We assume that the decoder declares an error if GGG is not full-

rank since this implies that the encoding is not one-to-one. We

have already observed in Section III-A that the probability of

this event P (rank(GGG < K�)) ≤ 2−n/2. Now given the value

of ε, we set δ = 2
ε/2 − 1, rzzz =

√
n(1 + δ)σ2

zzz which is the

radius of the typical noise zzz, and Brzzz = B(000, rzzz). Then,

P(E)=P(zzz ∈ Brzzz ) P(E|zzz ∈ Brzzz ) + P(zzz /∈ Brzzz ) P(E|zzz /∈ Brzzz )

≤P(E|zzz ∈ Brzzz ) + P(zzz /∈ Brzzz ). (14)

Lemma 3 provides an exponential upper bound on P(zzz /∈ Brzzz ).
In the following theorem we show that P(E|zzz ∈ Brzzz ) is also

exponentially small in n. The proof of this result uses the

technique of [6], [7] to bound the number of lattice points

lying in an n-dimensional ball.

Theorem 2. For any receiver (SSS, σ2) that satisfies
1/2 log

(
1 + 1/σ2

)
> (R+ε) (K − rank(SSS)), and for all large

enough n, P(E|zzz ∈ Brzzz ) ≤ 2−nε/4 when averaged over the
ensemble of random lattice codes.

Proof Sketch: From (13), we note that the decoder is in

error when zzz is closer to some coset t′t′t′+Λc, with t′t′t′ ∈ ΛSSS/Λc

and t′t′t′ �= 000, than any point in Λc. The proof of Proposition 1

of [6] provides an upper bound on P(E|zzz ∈ Brzzz ) averaged

over the ensemble of the lattice codes, when the coarse lattice

is chosen as Z
n (the inequality preceeding (23) in [6]). An

adaptation of the steps in this proof to our choice of coarse

lattice Λc yields

P(E|zzz ∈ Brzzz )≤p−np(K−M)�
E
(|Λc ∩ B(pzzz, przzz)|

∣∣zzz ∈ Brzzz

)
.
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Using Lemma 2, we can bound |Λc ∩ B(pzzz, przzz)|, and obtain

P(E|zzz ∈ Brzzz ) ≤ p−np(K−M)� Vn

Vol(Λc)
(rcov(Λc) + przzz)

n
.

Manipulating the above inequality using the identities

p(K−M)� ≤ 2nR(K−M), from (4); Vol(Λc) ≥ Vn n
n/2 2−nε/4,

from (5); σzzz ≤ 2−(R+ε)(K−M), from (12); rcov(Λc) =
√
n,

rzzz =
√
n(1 + δ)σ2

zzz , and 1 + δ = 2
ε/2, we obtain

P(E|zzz ∈ Brzzz ) ≤ 2−nε/2( (p 2(R+ε)(K−M))
−1

+ 1 )n.

Using (3) in the above inequality, P(E|zzz ∈ Brzzz ) ≤ 2−nε/4.

Using Lemma 3, Theorem 2, the bound P (rank(GGG) <
K�) ≤ 2−n/2 along with (14), we conclude that the error

probability at a given receiver (SSS, σ2) averaged over the code

ensemble is exponentially small in n, i.e., PSSS ≤ 2−nε for

some ε > 0. The constant ε is independent of SSS as long as

the receiver (SSS, σ2) satisfies the hypothesis (2) of Theorem 1.

Hence, there exists a choice of lattice code (which is chosen

for the given matrix SSS) with a small error probability at this

receiver. To prove Theorem 1, we must establish a slightly

stronger result, viz., there exists a lattice code such that the

decoding error probability for every possible side information

matrix SSS is small as long as the receiver SNR is large enough.

Completing the proof of the main theorem: Consider a

hypothetical multicast network that consists of one receiver for

each possible choice of SSS. The number of linearly independent

equations M available at the receivers can take values in the

set {0, 1, . . . ,K − 1}. Hence, the set of all possible values

of side information matrix SSS is S = ∪K−1
M=0F

M×K
p . Therefore

the number of receivers in the hypothetical multicast network

|S| = ∑K−1
M=0

∣∣FM×K
p

∣∣ = ∑K−1
M=0 p

MK ≤ KpK
2

. We assume

that each receiver (SSS, σ2), SSS ∈ S , satisfies the lower bound (2)

on SNR, and hence, has error probability PSSS ≤ 2−nε. We say

that the multicast network is in error if any of the receivers

commits a decoding error. By union bound, the network

error probability P(network error) ≤ |S| 2−nε ≤ KpK
2

2−nε,

is exponentially small in n since p and K are constants.

Hence, there exists a sequence of lattice codes such that the

decoding error probability at every receiver (SSS, σ2), SSS ∈ S , is

simultaneously exponentially small in the code length n.

V. CONCLUSION

The lattice coding schemes in [5]–[7], [12] (for single-user

AWGN and relay channels), which are based on Construc-

tion A, require the size p of the prime field to grow as a

function of the code length n. By using an error analysis

based on counting arguments and a Rogers good coarse lattice,

we showed that our lattice coding scheme provides reliable

communication for all sufficiently large prime p, which is

independent of the code length. However, our proof technique

still requires the field size p to depend on the gap to capacity ε.
Further work is required to devise good lattice strategies for

fixed small values of p intended for practical applications.

REFERENCES

[1] J. Körner and K. Marton, “How to encode the modulo-two sum of binary
sources (corresp.),” IEEE Trans. Inf. Theory, vol. 25, no. 2, pp. 219–221,
Mar. 1979.

[2] R. Zamir, S. Shamai, and U. Erez, “Nested linear/lattice codes for
structured multiterminal binning,” IEEE Trans. Inf. Theory, vol. 48,
no. 6, pp. 1250–1276, Jun. 2002.

[3] B. Nazer and M. Gastpar, “The case for structured random codes in
network capacity theorems,” European Transactions on Telecommuni-
cations, vol. 19, no. 4, pp. 455–474, 2008.

[4] R. Urbanke and B. Rimoldi, “Lattice codes can achieve capacity on the
AWGN channel,” IEEE Trans. Inf. Theory, vol. 44, no. 1, pp. 273–278,
Jan. 1998.

[5] U. Erez and R. Zamir, “Achieving 1
2
log(1 + SNR) on the AWGN

channel with lattice encoding and decoding,” IEEE Trans. Inf. Theory,
vol. 50, no. 10, pp. 2293–2314, Oct 2004.

[6] O. Ordentlich and U. Erez, “A simple proof for the existence of “good”
pairs of nested lattices,” in Electrical Electronics Engineers in Israel
(IEEEI), 2012 IEEE 27th Convention of, Nov. 2012, pp. 1–12.

[7] N. Di Pietro, “On infinite and finite lattice constellations for the additive
white Gaussian Noise Channel,” Theses, Université de Bordeaux, Jan.
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