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Abstract—Multicasting K independent messages via multiple-

input multiple-output (MIMO) channels to multiple users where

each user already has a subset of messages as side information

is studied. A general framework of constructing layered space-
time index coding (LSTIC) from a large class of space-time

block codes (STBCs), including perfect STBCs, is proposed. We

analyze the proposed LSTIC technique and show that it provides

minimum determinant gains that are exponential in the amount

of information contained in the side information for any possible
side information at the receivers. When constructed over a perfect

STBC, the proposed LSTIC is itself a perfect STBC and hence

enjoys many desired properties.

Index Terms—Index coding, broadcast channels, side informa-

tion, space-time block codes, MIMO channel.

I. INTRODUCTION

The index coding problem [1], [2] studies the problem of

optimally broadcasting independent messages via noiseless

links to multiple receivers where each receiver demands a

subset of messages and already has another subset of mes-

sages as side information. The side information at a receiver

is described by an index set and could be obtained from

various means depending on the application. For example, in

retransmissions in broadcast channel [1], the side information

is decoded from the previous received signals; in the coded

caching technique [3], the side information is prefetched into

users’ local cache memories during off-peak hours; and in

wireless relay networks [4], [5], the side information is the

users’ own data and/or is decoded/overheard from the previous

sessions.

At the physical layer, the index coding problem can in fact

be modeled as the noisy broadcast channel with receiver side

information. This problem has recently been investigated from

two different perspectives and most of the prior works can be

categorized accordingly into two groups. The first one focuses

on characterizing the capacity region of the AWGN broadcast

channel with message side information [6]. However, since the

number of possible index sets increases exponentially with the

number of users in the network, the problem quickly becomes

intractable as the number of users increases.

The second category considers designing codes that possess

some desired properties in the finite dimension regime. The
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main objective is to design codes such that the probability

of error will decrease by an amount that is proportional to

the amount of information contained in the side information.

A series of work within this category ([7]–[9]), which seam-

lessly scales to any number of users, considers the scenario

where the transmitter is oblivious of the index sets. This

enables to handle large numbers of users, when the index

sets to feedback to the transmitter require excessive resources

and/or the complexity of designing the specific index code

becomes excessive. The objective then becomes designing

coding schemes that are fair to every possible index set. As

a starting point, only the multicasting case is considered in

[7]–[9] where all the receivers demand all the messages.

In [7], Natarajan et al. study code design for the AWGN

broadcast channel where minimum distance is one of the most

crucial parameters to be maximized. Exploiting the algebraic

structure induced by the Chinese remainder theorem (CRT),

a novel coding scheme, lattice index coding, is proposed in

[7] to accommodate any number of messages with message

sizes relatively prime to each other. The lattice index coding

is shown to provide gains in minimum distance exponential

with the rate of the side information, for any index set.

In [8], Huang considers the same multicasting problem

with message side information, where each link experiences

a Rayleigh fading channel on top of the AWGN noise. The

lattice index coding scheme proposed in [8] generalizes the

idea of [7] to design codes over any ring of algebraic integers.

It is shown that codes thus constructed over rings of algebraic

integers of totally real number fields provide gains in minimum

product distance that is exponential with the rate of the side

information for any index set. The multicasting problem with

message side information is then considered in [9] under the

2 × 2 MIMO setting where the transmitter and the receivers

are equipped with two antennas. Since CRT does not hold

for non-commutative rings such as cyclic division algebras

where most known space-time codes are constructed over, the

technique used in [7] and [8] does not work here in general. In

[9], we successfully constructed Golden-coded index coding

from Golden code, a subclass of perfect codes for the 2 × 2
MIMO channel, by exploiting the bijective mapping between

the Golden algebra and a commutative ring.

In this work, we consider the problem of multicasting over

MIMO channel with message side information for arbitrary

number of transmit antennas. We propose layered space-time

index coding (LSTIC), a general framework of constructing

lattice space-time index codes from algebraic space-time block
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codes (STBCs) based on cyclic division algebras [10]–[12].

We exploit the algebraic structure of these codes to encode the

different messages into subcodes, which preserve all the good

properties of the STBC, such as non-vanishing determinant

and power efficiency.

Any receiver that has some of the messages as side in-

formation will be decoding a subcode that has an improved

performance in terms of error probability. We provide a lower

bound on the side information gain for any side information

configuration. The side information gain essentially measures

that for achieving a given probability of error in the low prob-

ability of error regime, how much SNR reduction (normalized

by the rate of the side information) is achieved by revealing

the side information. This lower bound implies an exponential

increase of minimum determinant and is universal in the sense

that it holds for any possible side information index set.

Throughout the paper, the following notations are used.

Matrices are written in capital boldface, for example X. Let

θ , 1+
√
5

2 , θ̄ , 1−
√
5

2 , i ,
√
−1, and ω , ei2π/3 be

the primitive cube root of unity. We denote by Z, Z[i] ,

{a + bi|a, b ∈ Z}, and Z[ω] , {a + bω|a, b ∈ Z} the ring

of integers, the ring of Gaussian integers, and the ring of

Eisenstein integers, respectively. Also, we denote by Q, R,

and C the field of rational numbers, the field of real numbers,

and the field of complex numbers, respectively.

II. PROBLEM STATEMENT

Consider the network shown in Fig. 1 where there is a base

station broadcasting messages to L users. The base station is

equipped with nt antennas and each user is equipped with nr

antennas. There are K independent messages {w1, . . . , wK}
collocated at the base station and each wk is uniformly

distributed over {1, . . . ,Mk}. Each user demands all the K

messages and already has a subset of the messages as side

information. For user ℓ, we denote by Sℓ ⊆ {1, . . . , K} the

index set and the side information at the user is wSℓ
,

{ws|s ∈ Sℓ}. The base station encodes the messages across

space (nt antennas) and time (T symbol durations) into an

nt×T codeword matrix X where each entry xjt ∈ C and the

codeword is subject to the power constraint E[‖X‖2] = ntT .

In an algebraic space-time code, each codeword X is used

to transmit r information-bearing real symbols. i.e., r is the

dimension of the space-time code when viewed as a lattice

code. We denote by Rk = log2(Mk)/r the rate of the

message wk measured in bits per real symbol. The signal

model between the base station and the user ℓ is given by

Yℓ = HℓX+ Zℓ,

where Yℓ is of size nr×T , Hℓ is a random nr×nt matrix with

each element i.i.d. ∼ CN (0, 1), and Zℓ is a random nr × T

matrix with each element i.i.d. ∼ CN (0, σ2
l ). Each user is

assumed to know the channel matrix Hℓ associated with its

received signal, i.e., channel state information at the receiver

is assumed. The signal-to-noise power ratio (SNR) is defined

as SNRℓ ,
nt

σ2

ℓ
.

X
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...

Fig. 1. Multicasting {w1, . . . , wK} over MIMO channel to L receivers
where each receiver ℓ ∈ {1, . . . , L} has a subset of messages wSℓ

as side
information.

Let φ be a bijective encoding function that maps the mes-

sages (w1, . . . , wK) to the transmitted signal X. The codebook

C is the collection of codewords given by

C = {X = φ(w1, . . . , wK)|wk ∈ {1, . . . ,Mk}, ∀k} .
Based on the received signal Yℓ and side information wSℓ

,

the user ℓ forms {ŵ(ℓ)
1 , . . . , ŵ

(ℓ)
K } (or equivalently X̂

(ℓ)) an

estimate of {w1, . . . , wK} (or equivalently X). The probability

of error is defined as

p(ℓ)e , Pr{(w1, . . . , wK) 6= (ŵ
(ℓ)
1 , . . . , ŵ

(ℓ)
K )} = Pr{X 6= X̂

(ℓ)},
where the second expression is often called the codeword error

rate (CER). We emphasize here that the index set Sℓ can be

any subset of {1, . . . , K} and is oblivious to the base station.

We therefore focus on a generic user and drop the subscript

(superscript in some cases) ℓ.

We note that with the knowledge of side information ws =
vs, ∀s ∈ S, the generic user can expurgate all the codewords

that do not correspond to this side information. The codebook

then becomes

CS ,

{

X = φ(d1, . . . , dK)

∣

∣

∣

∣

dk = vk, k ∈ S;

dk ∈ {1, . . . ,Mk}, k /∈ S.

}

,

a subcode of C. To measure how much SNR one can save

for achieving a target pe by knowing wS , the authors in [9]

derived the SNR gain as follows,

1

ntnr
10 log10

(

NC
NCS

)

+
1

nt
10 log10

(

δ(CS)
δ(C)

)

, (1)

where δ(C) is the minimum determinant of C and NC is

the averaged number of nearest neighbors in terms of min-

imum determinant. Moreover, as mentioned in [9] and many

other work in the space-time code literature, it is in general

not an easy task to keep tracking both NCS
and δ(CS)

for lattice codes; we thereby focus solely on δ(CS) as our

design guideline and define the side information gain as

10 log10 (δ(CS)/δ(C))1/nt dB. To get a fair comparison for

every possible side information, we then normalize this side

information gain by the rate of the side information and define

the normalized side information gain as

Γ(C,S) ,
10 log10

(

δ(CS )
δ(C)

)

ntRS
, (2)
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where the rate of the side information is defined as RS ,
∑

s∈S Rs and is measured in bits per real symbol, which

makes the normalized side information gain having the unit

“dB/bits per real symbol”. The side information gain essen-

tially serves as an approximation of the SNR gain provided

by side information wS , normalized by the rate of wS . We

note that involving the first term of (1) into the definition of

side information gain results in a better approximation. Hence,

although we use (2) as the design guideline throughout the

paper, (1) is also used to confirm the simulation results.

III. BACKGROUND

In this section, we provide minimum background knowledge

on cyclic division algebra and its connection to lattice STBC.

For details, please refer, for example, to [12].

Let L/K be a field extension of K = Q(i) or Q(ω) of

degree n whose Galois group is a cyclic group generated by

σ. One can construct A = (L/K, σ, γ) a cyclic algebra

A =
{

x0 + x1e+ . . .+ xn−1e
n−1|x0, . . . , xn−1 ∈ L

}

,

where e
n = γ ∈ K and λe = eσ(λ) for λ ∈ L. A is said

to be a division algebra if every non-zero element of A is

invertible. A cyclic division algebra is a cyclic algebra that is

at the same time a division algebra. In the space-time coding

literature [12], a cyclic division algebra is usually constructed

from a cyclic algebra A = (L/K, σ, γ) with carefully chosen γ

such that none of γ, γ2, . . . , γn−1 are norms of some element

of L.

Consider nt = nr = T = n, an n× n STBC carved from

A corresponds to a finite subset of

ĀI =
{

x0 + x1e+ . . .+ xn−1e
n−1|x0, . . . , xn−1 ∈ I

}

, (3)

where I is an ideal in OL the ring of integers of L. More

specifically, an n×n STBC thus constructed is obtained from

the following matrix representation of ĀI

CI = (4)




























x0 x1 . . . xn−1

γσ(xn−1) σ(x0) σ(xn−2)
...

. . .
...

γσn−1(x1) γσn−1(x2) . . . σn−1(x0)











∣

∣

∣

∣

∣

∣

∣

∣

∣

xℓ ∈ I



















.

A layer ℓ ∈ {0, . . . , n − 1} of a codeword in CI consists of

all the entries of the codeword matrix that are functions of

the same xℓ ∈ I. Here, we use the subscript I in ĀI and CI
to emphasize that the elements xℓ for all ℓ are restricted to

the ideal I. For transmission with finite input power constraint,

one carves a subset from (a possibly shifted and scaled version

of) CI to form the codebook. In [11], it is shown that within

this class of codes, there are codes that are particularly good,

called perfect codes defined as follows.

Definition 1. A n × n STBC is called a perfect STBC if

i) it is full-rate; ii) it is fully diverse and has non-vanishing

determinant (NVD) property; iii) the energy used to send the

coded symbols on each layer is equal to that for sending the

uncoded symbols themselves; and iv) all the coded symbols

have the same average energy.

IV. PROPOSED LAYERED SPACE-TIME INDEX CODING

In this section, we propose the LSTIC scheme and show

that for any side information index set, it can provide an

SNR gain that is proportional to the information contained

in the side information. In the proposed scheme, instead of

directly tackling ĀOL
as done in [9], we recognize the layered

structure of STBCs based on cyclic division algebras and

perform encoding layer by layer. More specifically, we split

each message wk, k ∈ {1, . . . , K}, into n sub-messages,

namely wk,ℓ for ℓ ∈ {0, . . . , n−1}, and encode w1,ℓ, . . . , wK,ℓ

into xℓ in the layer ℓ.

In what follows, we split the discussion into two parts

depending on whether I is principal or not.

A. LSTIC with principal I

Without loss of generality, we assume that I is generated

by some α ∈ OL, i.e., I = αOL. Then, (3) becomes

ĀI =
{

x0 + x1e+ . . .+ xn−1e
n−1|x0, x1, . . . , xn−1 ∈ αOL

}

,

=
{

αx0 + αx1e+ . . .+ αxn−1e
n−1|x0, x1, . . . , xn−1 ∈ OL

}

,

and each codeword matrix in (4) becomes

D(α) ·











x0 x1 . . . xn−1

γσ(xn−1) σ(x0) σ(xn−2)
...

. . .
...

γσn−1(x1) γσn−1(x2) . . . σn−1(x0)











, (5)

where D(α) ,











α 0 . . . 0
0 σ(α) . . . 0
...

...
. . .

...

0 0 . . . σn−1(α)











.

We can now use the technique in [8] to partition OL. Let

q1, . . . , qK be K ideals in OL that are relatively prime and

have the (ideal) norm N(qk) = qk, k ∈ {1, . . . , K}. Note that

qks are not necessarily prime ideals and qks are not necessarily

prime. We have q1 ∩ . . .∩ qK = q1 · . . . · qK , q. From CRT,

we have

OL/q ∼= OL/q1 × . . .×OL/qK ∼= Bq1 × . . .× BqK ,

where Bqk = OL/qk is a commutative ring1 with size qk.

Let M be a ring isomorphism that maps Bq1 × . . . × BqK

to a complete set of coset leaders of OL/q having minimum

energy.

Now, for k ∈ {1, . . . , K}, let wk ∈ Bn
qk which can be

represented as wk = (wk,0, . . . , wk,n−1) where each wk,ℓ ∈
Bqk . The encoder collects w1,ℓ, . . . , wK,ℓ to form the signal

of the layer ℓ ∈ {0, . . . , n− 1} as

xℓ = M(w1,ℓ, . . . , wK,ℓ) ∈ OL/q, ℓ ∈ {0, . . . , n− 1}.
1Depending on the ideal qk , this ring could be a finite field, a product of

finite fields, a product of finite rings and finite fields, or others. Throughout
the paper, we do not use the ring property of the messages and therefore, we
do not emphasize which type of ring it is.
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The overall codebook is the matrix representation of

Ā =
{

αx0 + . . .+ αxn−1e
n−1|x0, . . . , xn−1 ∈ OL/q

}

,

a subset of ĀI, and has the matrix form as that in (5) with

x0, . . . , xn−1 ∈ OL/q.

Note that for α and OL such that perfect STBCs exist,

the overall code Ā is itself a perfect STBC since the per-

fect STBCs in [11] and Ā share the same form but with

x0, . . . , xn−1 restricted to OL, a superset of OL/q in Ā.

Theorem 2. For any S ⊂ {1, . . . , K}, the proposed LSTIC

with principal I provides a side information gain at least 6
dB/bits per real symbol, i.e., Γ(C,S) ≥ 6 dB/bits per real

symbol. Moreover, if all qk, k ∈ {1, . . . , K}, are principal,

then Γ(C,S) = 6 dB/bits per real symbol.

Proof. We first note that the rate of the message wk is

Rk =
1

2n2
log2(q

n
k ) =

1

2n
log2(qk), bits/real symbol. (6)

Consider a generic receiver with index set S, let the mes-

sages be ws = vs for s ∈ S. This means that ws,ℓ = vs,ℓ
for all ℓ ∈ {0, . . . , n − 1} are known at the receiver. Us-

ing the fact that M is an isomorphism, we can show that

xS
ℓ = ξSℓ + x̃S

ℓ , where x̃S
ℓ = M(u1,,ℓ, . . . , uK,ℓ)+ζSℓ , ζSℓ ∈ q,

and ξSℓ , M(d1,ℓ, . . . , dK,ℓ) with

dk,ℓ =

{

vk,ℓ, k ∈ S;

0, k ∈ Sc,
and uk,ℓ =

{

0, k ∈ S;

wk,ℓ, k ∈ Sc.

Note that uk,ℓ corresponds to the unknown message and ξSℓ is

known at the receiver. We now have
(

xS
ℓ − ξSℓ

)

mod qs = 0, for all s ∈ S,
which shows that xS

ℓ belongs to a shifted version of ∩s∈Sqs =
Πs∈Sqs. Therefore, after revealing wS , the code CS corre-

sponds to α(ξS0 + . . .+ ξSn−1e
n−1)+α(x̃S

0 + . . .+ x̃S
n−1e

n−1)
where x̃S

0 , . . . , x̃
S
n−1 ∈ Πs∈Sqs. Hence, thanks to σ being a

homomorphism, each codeword X ∈ CS has the matrix form

given by X = V
S + X̃

S , where

V
S = D(α) ·











ξS0 ξS1 . . . ξSn−1

γσ(ξSn−1) σ(ξS0 ) σ(ξSn−2)
...

. . .
...

γσn−1(ξS1 ) γσn−1(ξS2 ) . . . σn−1(ξS0 )











,

and

X̃
S = D(α)·











x̃S
0 x̃S

1 . . . x̃S
n−1

γσ(x̃S
n−1) σ(x̃S

0 ) σ(x̃S
n−2)

...
. . .

...

γσn−1(x̃S
1 ) γσn−1(x̃S

2 ) . . . σn−1(x̃S
0 )











.

Note that the second matrix factor of X̃
S in the previous

equation is a codeword of the code

CΠs∈Sqs =




























x0 x1 . . . xn−1

γσ(xn−1) σ(x0) σ(xn−2)
...

. . .
...

γσn−1(x1) γσn−1(x2) . . . σn−1(x0)











∣

∣

∣

∣

∣

∣

∣

∣

∣

xℓ ∈Π
s∈S

qs



















whose minimum determinant can be bounded by [11, Corol-

lary 3] as follows,

δ(CΠs∈Sqs) ≥ N(Πs∈Sqs). (7)

Since the known offset VS can be subtracted at the receiver,

the minimum determinant of CS is

δ(CS) = | det(D(α))|2δ(CΠs∈Sqs) = |NL/K(α)|2δ(CΠs∈Sqs)

(a)
= N(α)δ(CΠs∈Sqs)

(b)

≥ N(α)N(Πs∈Sqs)

= N(α)Πs∈SN(qs) = N(α)Πs∈Sqs, (8)

where (a) is due to the fact that K = Q(i) or Q(ω) is

a quadratic extension and (b) follows from (7). Moreover,

without revealing any side information, the overall codebook

would have

δ(C) = N(α)N(1) = N(α). (9)

Combining (6), (8), and (9) results in

Γ(C,S) ≥ 10 log10(Πs∈Sqs)

n 1
2n

∑

s∈S log2(qs)
= 6 dB/bits per real symbol.

To prove the second statement, we note that if the ideal

Πs∈Sqs is principal, then we can indeed find elements in the

ideal such that the inequality in (7) (and thus (b) in (8)) holds

with equality.

B. LSTIC with non-principal I

We now construct LSTIC from a STBC based on a cyclic

division algebra A = (L/K, σ, γ) and a non-principal ideal I

in OL. Let q1, . . . , qK be K ideals in OL that are relatively

prime and have norm N(qk) = qk, k ∈ {1, . . . , K}. We again

let q1 · . . . ·qK = q. We further assume that each qk and I are

relatively prime, which also implies that q and I are relatively

prime. From the second isomorphism theorem [13, Theorem

2.12] and CRT, we have

I/Iq
(a)
= I/I ∩ q

(b)∼= (I+ q)/q
(c)
= OL/q

(d)∼= OL/q1 × . . .×OL/qK ∼= Bq1 × . . .× BqK ,

where both (a) and (c) are due to the fact that q and I are

relatively prime, (b) follows from the second isomorphism

theorem, and (d) follows from CRT. We use Bqk to denote

the quotient ring that is isomorphic to OL/qk which has

size qk. Let M be an isomorphism that maps elements in

Bq1 × . . .× BqK to a complete set of coset leaders of I/Iq.

For k ∈ {1, . . . , K}, we again enforce wk =
(wk,0, . . . , wk,n−1) ∈ Bn

qk
where each ℓ ∈ {0, . . . , n − 1}.

The sub-messages w1,ℓ, . . . , wK,ℓ are collected and encoded

into xℓ the signal of the ℓ ∈ {0, . . . , n− 1} layer as

xℓ = M(w1,ℓ, . . . , wK,ℓ) ∈ I/Iq, ℓ ∈ {0, . . . , n− 1}.
The overall codebook now corresponds to {x0 + x1e+ . . .+
xn−1e

n−1|x0, . . . , xn−1 ∈ I/Iq} a subset of ĀI and has the

matrix form as that in (4) with x0, . . . , xn−1 ∈ I/Iq. Note

again that when I and OL are such that perfect STBCs exist,

the overall code is itself a perfect STBC.
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Theorem 3. For any S ⊂ {1, . . . , K}, the side information

gain achieved by the proposed LSTIC with non-principal ideal

I is lower bounded as Γ(C,S) ≥ 6 + γI dB/bits per real

symbol, where γI = 20 log10

(

N(I)
minx∈I NL/Q(x)

)

, is negative

and is only a function of I and is independent of S.

This theorem can be proved in the similar vein to that of

Theorem 2. Please refer to [14] for the proof.

C. Design examples for nt = 2 and K = 2

Simulation results for the proposed LSTIC with Golden

algebra for the 2×2 MIMO channel are provided in Fig. 2. In

this figure, three sets of simulations are performed. In the first

one, we constructed LSTIC with two principal ideals generated

by β1 = (θ̄ − iθ) and β2 = (θ̄ + iθ), respectively, which both

have norm equal to 32 = 9. Thus, each message wk ∈ B2
9.

Since 3OL = β1β2OL, the overall codebook corresponds to

x0, x1 ∈ OL/3OL and hence has the cubic shape. Simulation

results in Fig. 2 show that revealing either message to the

receiver provides roughly 7.3 dB of SNR gain. This conforms

with the analysis using (1) that when reveal either message, we

expect to achieve SNR gain 1
410 log10

(

118
10

)

+ 1
210 log10 (9) ≈

7.45 dB, where 118 and 10 inside the first logarithm are NC
and NCS

, respectively and the 9 inside the second logarithm

is the ratio of δ(CS) and δ(C).
In the second set of simulations, the two principal ideals

are replaced by those generated by β1 = (1 + iθ̄)2 and β2 =
(1− iθ̄)2, respectively. β1OL and β2OL both have norm equal

to 52 = 25. Moreover, 5OL = β1β2OL; thereby, the overall

codebook corresponds to x0, x1 ∈ OL/5OL and hence has the

cubic shape. Simulation results in Fig. 2 show that revealing

either message to the receiver provides roughly 10 dB of SNR

gain. This again coincides with the analysis which says that

by revealing one side information, we can expect an SNR gain

of 1
410 log10

(

656
32

)

+ 1
210 log10 (25) ≈ 10.27 dB, where 656

and 32 inside the first logarithm are NC and NCS
, respectively.

In the last set of simulations, the two prime ideals generated

by β1 =
(

(1 + θ) + i(1 + θ̄)
)

and β2 =
(

(1 + θ)− i(1 + θ̄)
)

with β1β2 = 7OL are considered. Simulation results show that

a roughly 12.1 dB SNR gain can be obtained by revealing

either of the message. This again can be well predicted by the

analysis which indicates that we can expect an SNR gain of
1
410 log10

(

2042
41

)

+ 1
210 log10 (49) ≈ 12.69 dB.

We end this section by noting that as we show in [14,

Remark 11], when specialized to Golden algebra, the proposed

LSTIC is not a special case of the Golden-coded index coding

in [9] and vice versa. Moreover, the framework proposed in

this paper works for any algebraic lattice STBC. More design

examples including the 3× 3, 4× 4, and 6× 6 perfect codes

are available in [14].

V. CONCLUSIONS

In this paper, we have studied the problem of multicasting

K independent messages via MIMO links to multiple receivers

where each of them already has a subset of messages as side

information. A novel scheme, LSTIC, constructed using the

framework of cyclic division algebras has been proposed for
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Fig. 2. CER performance for the proposed LSTIC.

exploiting receiver side information without prior knowledge

of the side information configuration at the transmitter. It has

been shown that the proposed LSTIC possesses the desirable

property that for any possible side information the minimum

determinant increases exponentially as the rate of the side

information increases. Moreover, when constructed over a

perfect STBC, the perfect STBC properties are preserved by

our construction and the LSTIC is itself a perfect STBC.
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