
1

978-1-5386-7048-4/18/$31.00 ©2018 IEEE

2018 IEEE 10th International Symposium on Turbo Codes & Iterative Information Processing

Stepped List Decoding for Polar Codes
Mohammad Rowshan, Student Member, IEEE and Emanuele Viterbo, Fellow, IEEE

ECSE Department, Monash University, Melbourne, VIC 3800, Australia*
Email: {mohammad.rowshan, emanuele.viterbo}@monash.edu

Abstract—In the successive cancellation list (SCL) decoding
of polar codes, as the list size increases, the error correction
performance improves. However, a large list size results in high
computational complexity and large memory requirement.

In this paper, we investigate the list decoding process by
introducing a new parameter named path metric range (PMR)
to elucidate the properties of the evolution of the path metrics
(PMs) within the list throughout the decoding process. Then,
we advocate that the list size can change stepwise depending on
PMR. As a result, we propose a stepped list decoding scheme
in which the error correction performance of the conventional
list decoding is preserved while the path memory may reduce
by 75%, the size of the internal LLR memory and partial sums
memory can drop by 50%, and the computational complexity
may halve. The reduction in complexity is SNR-independent and
achieved without introducing any computational overhead.

Index Terms—Polar codes, successive cancellation list decod-
ing, computational complexity, memory requirement.

I. INTRODUCTION

The polar codes proposed by Arikan [1] have good proper-
ties such as capacity-achieving, and availability of efficient
encoding and decoding algorithms. Nevertheless, the polar
codes under successive cancellation (SC) decoding suffer from
poor error correction performance for short and medium block-
lengths. To address this issue, the SCL decoding and CRC-
aided SCL decoding were proposed [2].

Although the CRC-aided SCL decoder provides a competi-
tive performance, its main drawbacks are high computational
complexity and large memory requirement. To reduce the size
of storage and processing elements in a hardware implemen-
tation, the internal soft messages were changed from log-
likelihood (LL) to LLR in [3]. However, the total memory
area still accounts for 40%-45% of the total silicon area.

In another attempt, the tree/list pruning method was pro-
posed to reduce the complexity. In this method, the path list
is pruned using a threshold obtained either online or offline
[4], [5]. Although this method introduces a computational
overhead in list pruning procedure, it can reduce the overall
computational complexity substantially. In [6], the compu-
tational complexity was reduced by dropping the frequently
split paths from the list. Additionally, a counter was used
to recognize the correct path and then it was switched to
SC decoder for decoding the rest of the bits. Nevertheless,
this method cannot provide the performance of CRC-aided
decoder. Also, similar to the tree pruning method, it requires
the conventional (memory-intensive) SCL decoding.

* This research work is supported by the Australian Research Council under
Discovery Project ARC DP160100528.

Segmenting or partitioning based on multi-CRC schemes
proposed in [7], [8] is another method in which the memory
requirement reduces. In this method, every partition estimates
a sub-block of the code by performing CRC-aided SCL
decoding and then the estimated bits are passed to the next
partition. Although this method saves the memory significantly
and contributes slightly in the complexity reduction, it requires
to employ several short CRCs at the cost of increase in
the effective code rate, which consequently affects the error
correction performance. For instance, 4 × 8 = 32 bits are
used for CRCs in 4-partition scheme, compared with 16 bits
in conventional CRC-aided SCL decoding.

This work investigates the evolution of path metrics within
the list throughout the decoding process and suggests to
employ a new parameter named path metric range (PMR)
to elucidate the properties of different partitions. Then, it
is proposed that the list size can change stepwise from one
partition to another depending on the average PMR (PMRavg).
This stepwise change in the list size (L) throughout decoding
is the reason for naming this scheme stepped list decoding.
The stepped list decoding results in a substantial reduction in
memory requirement, as well as the computational complexity
of (CRC-aided) SCL decoder. Most notably, these improve-
ments are obtained without sacrificing the error correction
performance or introducing an overhead.

Paper Outline: The rest of the paper is organized as
follows. Section II introduces the notation for the polar
codes and describes the SC and SCL decoding. Section III
analyzes the list decoding process and proposes the stepped
list decoding scheme. In Section IV, the memory requirement
and computation complexity of the stepped list decoder are
analyzed. In Section V, the implementation results are shown.
Finally Section V makes concluding remarks.

II. PRELIMINARIES
For a polar code PC(N,K,A) where N = 2n is the

block-length, K is the number of information bits and A is
the index set of the unfrozen bits, the generator matrix is
GN = BNG⊗n

2 , where G2
∆
=

[
1 0
1 1

]
, BN is an N × N

bit-reversal permutation matrix, and (·)⊗n denotes the n-th
Kronecker power [1].

Let uN−1
0 = (u0, u1, ..., uN−1) denote the vector to be

encoded, including frozen and unfrozen bits, and xN−1
0 =

(x0, x1, ..., xN−1) represent the vector of coded bits given that
xN−1
0 = uN−1

0 GN , while yN−1
0 = (y0, y1, ..., yN−1) denotes

the channel output vector in a binary discrete memoryless
channel.

2

2018 IEEE 10th International Symposium on Turbo Codes & Iterative Information Processing

+
+

+

+
=

= =

=

0
u

1
u

2
u

3
u

j=1 j=2j=0

Final
LLRs

Channel
LLRs

Least
Reliable

bit

Most
Reliable

bit

20

21

22

23

10

11

12

13

00

01

02

03

P1

P2

β

β11

Figure 1. The factor graph of SC decoder for N = 4

In SC decoding, the unfrozen bits are estimated successively
based on the final LLR via a one-time-pass through the factor
graph in Fig. 1 which makes the SC solution sub-optimal.
When decoding the i-th bit, if i /∈ A, ûi = 0, as ui is a frozen
bit. Otherwise, bit ui is decided by binary quantizer function
h(λi

0) in (1), which depends on the estimation of previous bits,
i.e. û0, ..., ûi−1.

ûi = h(λi
0) =

0 λi

0 = ln
P (Y,ûi−1

0 |ûi=0)

P (Y,ûi−1
0 |ûi=1)

> 0,

1 otherwise
(1)

Unlike SC decoding which follows a certain path at each
decision step, successive cancellation list (SCL) decoding
follows two paths ui = 0 and ui = 1, when deciding each
bit thus SCL considers both possible values 0 and 1. In SCL
decoding, the L most reliable paths are preserved at each
decoding step. Let ûi[l] denote the estimate of ui in the l-th
path, where l∈{1, 2, . . . , L}. In [3] unlike [2], a path metric
based on LLR magnitudes is used to measure the reliability
of the paths. The path metric at ûi[l] is approximated by

PM
(i)
l =

{
PM

(i−1)
l + |λi

0[l]| if ûi[l] �= 1
2
(1−sgn(λi

0[l]))

PM
(i−1)
l otherwise

(2)

where PM
(−1)
l = 0.

As (2) shows, the path of the less likely bit value is
penalized by λi

0 of that bit. The L paths with smallest path
metrics are chosen from 2L paths at the i-th step and stored
in ascending order from PM

(i)
1 to PM

(i)
L . After decoding the

N -th bit, the path with the smallest path metric PM
(N)
1 is

selected as the estimated codeword.
As shown in [2], when the SCL decoder fails, the correct

path might still be in the list, when the list size is sufficiently
large (e.g., L = 32). Adding an r-bit CRC as outer code
to the information bits can assist the decoder in finding the
correct path among the L paths. However, this concatenation
increases the polar code rate to (K + r)/N causing a small
performance degradation. This degradation is compensated by
the gain obtained at higher SNRs.

III. STEPPED LIST DECODING

A. Analysis of List Decoding

In this section, we investigate the behavior of the list
decoder with respect to the evolution of the path metrics within
the list throughout decoding a codeword. The relation between
this evolution and the likelihood of an error occurrence is
empirically analyzed. Then, we will advocate that a fixed
list size is not essential, and it can change throughout the
decoding process, from one partition to another, depending
on the properties of such partitions.

Definition 1. Partitions [8] are defined as the sub-trees of the
decoding tree, associated with code’s sub-blocks of length 2m,
m < n, that divides the codewords into 2n−m equal-length
sub-blocks. The j-th partition and its associated sub-block are
denoted by Pj , for 0 ≤ j ≤ 2n−m − 1.

In order to characterize the partitions with respect to likeli-
hood of an error occurrence in the list decoding, we introduce
a new parameter that helps us to understand the evolution of
path metrics throughout the decoding process:

Definition 2. Path metric range for the i-th decoding step is
defined as PMRi = PM

(i)
L −PM

(i)
1 , where 0 ≤ i ≤ N − 1,

assuming that the path metrics are sorted in ascending order,
i.e. PM

(i)
1 <PM

(i)
2 < · · · <PM

(i)
L .

Fig. 2 shows the changes of PMR throughout the decoding
process for PC(1024, 820) (orange curve), along with final
LLRs (blue bars) and the frozen bits (red bars). As can be seen,
the PMR curve elucidates the evolution of the path metrics
within the list. Note that the path metric range scales with L;
thus, PMR reduces if a smaller list size is used.

Now, to analyze the changes in PMR value with respect to
LLRs, the following lemma is introduced.

Lemma 1. If ui is an unfrozen bit, i.e. i∈A, and |λi
0[l]| <

PMRi−1 for all l then PMRi < PMRi−1.

Proof. Assuming PM
(i−1)
1 < ... < PM

(i−1)
L . After split-

ting the paths at step/bit i, the 2L path metrics are
PM

(i−1)
1 , PM

(i−1)
1 +|λi

0[1]|, ... , PM
(i−1)
L , PM

(i−1)
L +|λi

0[L]|.
The relation PM

(i−1)
l < PM

(i−1)
l + |λi

0[l]| holds for
l = 1, 2, ..., L. Thus, considering |λi

0[l]| < PMRi−1, then
PM

(i−1)
1 +|λi

0[1]| < PM
(i−1)
L . Therefore all the paths greater

or equal to PM
(i−1)
L are pruned in order to make room

for at least the new path PM
(i−1)
1 + |λi

0[1]|. As a result,
PM

(i)
L <PM

(i−1)
L , then PMRi < PMRi−1. �

As a result of Lemma 1, a subsequence of k bits such that
|λm

0 [l]| < PMRm−1, for all l and m = i . . . i + k leads to a
sharp drop of the PM range i.e. PMRi+k � PMRi.

Here, let us distinguish the bit-channels causing the PMR
drop by the following definition:

Definition 3. Crucial bits are defined as the unfrozen bits with
|λi

0[l]| < PMRi−1. Sj denotes the set of indices of crucial bits
in the j-th partition.

3

2018 IEEE 10th International Symposium on Turbo Codes & Iterative Information Processing

100 200 300 400 500 600 700 800 900 1000

Bit index in decoding order

0

200

400

600

800

1000

1200

F
in

a
l
L

L
R

,
|

i0
|

0

2

4

6

8

L
is

t
R

a
n

g
e

,
L

R
i

P1 P4P3P2

Figure 2. Absolute values (average in 100 iterations) of bit-channel LLRs |λi
0| and path metric range (LRi), in natural decoding order for PC(1024,820)

The local minima on the PMR curve (orange) in Fig. 2
appear after a series of crucial bits (see circled sections in
Fig. 2) where most of the errors are observed.

From Lemma 1 and its following discussion, one can
infer that if ui and uj are crucial bits (possibly in different
partitions) and PMRi � PMRj , there exists a list size L′,
L′ <L, so that |λj

0[l]|<PMR′
j still holds for all l. Note that

since PMR scales with L, then PMR′
j<PMRj . Here, L is the

initial list size and PMR′ is the new path metric range obtained
after reducing the list size to L′. This leads us to the conclusion
that reducing the list size in the partition with higher minimum
PMR does not affect the error correction performance, if the
new list size for that partition is chosen optimally.

As a practical method, the inverse of the average PMR over
the crucial bits in j-th partition PMR(j)

avg can be employed to
determine the local list size Lj , i.e.

log2(Lj) ∝
1

PMR(j)
avg

=
|Sj |∑

Sj PMRi
.

For instance, the 4-tuple of average PMR (rounded) over
crucial bits in the four partitions of the example shown
in Fig. 2 is (PMR(j)

avg)1≤j≤4 = (2, 3, 4, 4). Thus, the list
size for the four partitions are obtained by the mapping
(2, 3, 4, 4) → (2t, 2t−1, 2t−2, 2t−2), where the maximum list
size (L = 2t) is assigned to the partition with the smallest
PMRavg . Alternatively, if we use the PMR curve as a graphical
tool, the maximum list size is assigned to the partition in which
the global minimum of PMR curve is located. The list size
for the rest of the partitions are assigned with respect to the
local minima of PMR. Note that the PMR curve changes for
different code lengths and code rates.

Now, we describe the impact of PMR on the possibility of
error occurrence. Assuming lc denotes the index of the correct
path. In the list decoding process, the correct path may not
always correspond to the smallest path metric PM

(i)
1 . Due to

the penalties, it may have a larger path metric PM
(i)
lc

>PM
(i)
1 .

Fig. 3 shows different scenarios for the movement of the
correct path (with index lc) within the list throughout list
decoding. The frequent penalty scenario mainly occurs in the
partition(s) in which the local PMRavg is smaller. The olive
and orange curves in Fig. 3 show the changes in lc in the

indices below 300 which are located in P1 and P2. In the
scenario shown by olive curve, the correct path is pruned after
several penalties, while the orange curve shows the scenario
where the correct path remains in the list.These scenarios show
that the list size in P1 should be large enough to retain the
correct path within the list in case of bearing frequent penalties
while in the subsequent partitions P2 and P3 where PMRavgs
corresponding to crucial bits gradually increases, the list size
can be reduced without any significant effect on the error
correction performance.

In the last partition, since PMR(4)
avg is relatively large, if

the correct path is penalized over some crucial bits, the path
will remain in the list due to low number of crucial bits in
that partition and consequently low probability of frequent
penalties. Note that the index of penalized path does not
increase significantly when L is large. The blue curve in Fig.
3 illustrates this scenario.

100 200 300 400 500 600 700 800 900 1000

Index of unfrozen bits in natural decoding order

2

4

6

8

10

12

14

16

In
d
e
x
 o

f
c
o
rr

e
c
t
p
a
th

,
l

c

Detected by CRC

Remained in the list after 3+2 penalties

Failure: Pruned after 4 penalties

1

Pruned
Failure

Figure 3. Some sampled movements of correct path in the list, representing
different scenarios, for PC(1024,820) and L = 16

B. The Stepped List Decoding

Since the average path metric range (PMRavg) varies from
one partition to another, the fixed list size (L) in conventional
list decoding is mainly effective on the partition(s) with the
relatively small PMRavg . In the partition(s) with significantly
larger PMRavg , the potential of the L is not fully used. Hence,
we can allocate different list sizes to different partitions based
on PMRavg . In this scheme, the list size changes stepwise

4

2018 IEEE 10th International Symposium on Turbo Codes & Iterative Information Processing

from one partition to another and that is the reason for calling
it stepped list decoding. The effective list size for partitions are
allocated based on PMRavg . The computed PMRavg for all the
partitions are clustered with respect to a significant difference
among them. For instance, the 4-tuple of rounded PMRavg for
four partitions of PC(1024,256) at 1dB is (-,38,23,24), where
23 and 24 will be in one cluster and therefore an identical
list size will be assigned to both P3 and P4. Thus, the list
size mapping could be (−, 38, 23, 24) → (2, 2t−1, 2t, 2t). As
another example, since the 4-tuple of rounded PMRavg for four
partitions of PC(1024,512) at 1.4dB is (8,6,6,9), the list sizes
could be allocated as (2t−1, 2t, 2t, 2t−2). It will be seen in
section V that by proper allocation of list sizes to the partitions,
the error correction performance will not degrade.

Note that in this paper, although the examples are based on
four partitions, the number of partitions could be larger.

Although the memory requirement differs from one code
rate to another in stepped list decoding, the largest memory
requirement can be used in multi-mode scheme, where differ-
ent settings are employed by changing the code parameters.

0→−1

−1
0→2−1−2

4→

2−1[1 →

4]

−2
0→4−1[1 →

2]

−2
0→4−1

−2

4→

2−1[1 →

2]

−1
0→2−1[1 →

4]

−1

2→−1[1 →

4]

−1

2→−1[1 →

4]

SCL(

2)

SCL(

4)

SCL()

L

Stagesnn-1n-2

Figure 4. Stepped list decoding tree for PC(1024,820)

IV. ANALYSIS OF COMPUTATIONAL COMPLEXITY AND
MEMORY REQUIREMENT

The stepped list decoding proposed in section III requires
significantly less memory space and less computations than
conventional (CRC-aided) SC List decoding process. In this
section, we investigate the impact of the stepped list decoding
on computational complexity and memory requirement for
two examples discussed in the previous section, PC(1024,820)
and PC(1024,820), where the 4-tuples of the list sizes for
four partitions are (L,L/2, L/4, L/4) and (L/2, L, L, L/4),
respectively, instead of fixed list size L for all the partitions.

A. Computational Complexity
Consider the computational complexity of the conventional

list decoding, L ·N log2 N . Since the list size in the stepped

LL/2L/41

bi
t i
nd

ex

List size

N

N/2

N/4

Figure 5. Sketch of path memory in stepped list decoding of PC(1024,820)

list decoding changes, the computational complexity changes
to (3), showing that the complexity reduces 50% in 3-step
scheme (Fig. 4).

L
N

4
log2 N︸ ︷︷ ︸

1st partition

+
L

2

N

4
log2 N︸ ︷︷ ︸

2nd partition

+
L

4

N

2
log2 N︸ ︷︷ ︸

3rd/4th partition

=
1

2
LN log2 N (3)

Similarly, the computational complexity for PC(1024,512)
with the 4-tuple of list sizes (L/2, L, L, L/4) can be derived
as 21

32LN log2 N , which is 34% less than conventional list
decoding process.

Note that the reduction in complexity is SNR-independent
unlike the tree/list pruning techniques.

B. Memory Requirement for Candidate Paths

Similar to computational complexity, the memory required
for storing the estimated bits of the candidate paths is directly
proportional to L. The partitioning helps to allocate the path
memory efficiently. As the decoding proceeds from the last
bit of one partition to the first bit of the next partition, since
L is halved, half of the allocated memory is freed, as shown
in Fig. 5. This freed space can be used for the next partition.

As a result, the memory reduction for the proposed 3-step
scheme for PC(1024,820) is L ·N−L/4 ·N bits or 75%.

Similarly, the path memory requirement for PC(1024,512)
with the 4-tuple of list sizes (L/2, L, L, L/4) can be derived
as 3

4LN , which is 33% less than conventional list decoding.

C. Memory Requirement for LLRs and Partial Sums

The memories required for internal LLRs and partial sums
are proportional to the list size, similar to the path memory.
In the conventional list decoding, the internal LLRs, λ0→N−1

0→n−1 ,
need (N−1)·L·Q bits and the partial sums, β0→N−1

0→n−1 , require
(N − 1) · L bits [9]. We know that N/2 · L and N/4 · L
out of (N − 1) · L memory elements are allocated to stage
n − 1 and stage n − 2, respectively. However, in the stepped
list decoding for PC(1024,820), since the list size in every
subsequent partition is halved, only half of the partial sums
of preceding stage are sent backward. The aforementioned

5

2018 IEEE 10th International Symposium on Turbo Codes & Iterative Information Processing

process is depicted in Fig. 4 by an index range in the bracket.
Note that no bracketed index ranges have been added to λn−1

of bit-channels 0 to N
2 −1 and λn−2 of bit-channels 0 to N

4 −1
because they are not dependent on partial sums; therefore, they
are the same for all paths in the list.

According to the above discussion for PC(1024,820), the
memory requirement for LLRs and partial sums can reduce
from (4) in the conventional list decoding, to (5) in the stepped
list decoding.

MSCL= L(N−1)Qi︸ ︷︷ ︸
Internal LLRs

+L(N−1)︸ ︷︷ ︸
Partial sums

(4)

MSCL−Stepped=
(
L(

N

4
−1) +

L

2
(
N

4
) +

L

4
(
N

2
)
)
Qi

︸ ︷︷ ︸
Internal LLRs

+
(
L(

N

4
−1) +

L

2
(
N

4
) +

L

4
(
N

2
)
)

︸ ︷︷ ︸
Partial sums

= L(
1

2
N−1)Qi

︸ ︷︷ ︸
Internal LLRs

+L(
1

2
N−1)

︸ ︷︷ ︸
Partial sums

(5)

where Qi is the number of bits used in quantization of
internal LLRs. Note that in all cases, channel LLRs require an
additional memory of NQch bits, where Qch is the number
of quantization bits for channel LLRs. This is omitted from
the above equations for simplicity.

By comparing (5) with (4), it is concluded that the memory
reduction using stepped list decoding is 50% in the proposed
3-step scheme for PC(1024,820).

Similarly, the memory required for internal LLRs and
partial sums of PC(1024,512) with the 4-tuple of list sizes
(L/2, L, L, L/4) can be derived as L(2132N−1)Qi+L(2132N−1),
which is 34% less than the conventional list decoding.

V. SIMULATION RESULTS

The LLR-based stepped CA-SCL decoder is implemented
for polar codes of N=210 and the code rates R = K/N = 0.8
and 0.5 over AWGN channel. The polar codes are constructed
using Bhattacharya parameter (heuristic) method and opti-
mized for high SNRs. The 16-bit CRC generator polynomial
g(x) = x16+x12+x5+1 is used for correct path detection. For
step list decoding of PC(1024,820) and PC(1024,512), the list
size 4-tuples (32, 16, 8, 8) and (16, 32, 32, 8), respectively, are
used for the partitions. Fig. 6 compares the performance of
conventional CRC-aided SCL decoder with the proposed one.
The proposed stepped list decoding preserves the performance
of conventional list decoding with fixed list size in various
code rates.

VI. CONCLUSION

In this paper, we analyze the list decoding process by
introducing a new parameter named path metric range and
tracking the correct path within the list with respect to value
of this parameter. Then, we propose a complexity-reduced
memory-efficient list decoder in which the list size changes
in the subsequent partitions of the decoding tree. The results
of simulations for polar codes of length 1Kb and R = 0.5 and

3.2 3.4 3.6 3.8 4 4.2 4.4

E
b
/N

0
 [dB]

10-6

10-5

10-4

10-3

10-2

10-1

100

F
E

R

PC(1024,820), R
eff

=0.816

CA-SCL, L=32

Stepped CA-SCL, L={32,16,8,8}

1.4 1.6 1.8 2 2.2 2.4 2.6

E
b
/N

0
 [dB]

10-6

10-5

10-4

10-3

10-2

10-1

PC(1024,512), R
eff

=0.516

CA-SCL, L=32

Stepped CA-SCL, L={16,32,32,8}

Figure 6. Performance of the Stepped CA-SCL vs CA-SCL Decoding

0.8 show that the performance of the conventional list decoder
in the stepped list decoding scheme is preserved. However, the
stepped SCL decoding maximally can reduce the path memory
by 75% and LLRs memory and partial sums memory as well as
computational complexity by 50%. The stepped list decoding
can be used in the partitioned SCL decoding to reduce the
complexity, and in tree-pruning schemes to lower the memory
requirement.

ACKNOWLEDGMENT

The authors would like to thank Dr. Lilian Khaw and Fariba
Abbasi for their comments on the paper.

REFERENCES

[1] E. Arikan, “Channel polarization: A method for constructing capacity-
achieving codes for symmetric binary-input memoryless channels,” IEEE
Trans. Inf. Theory, vol. 55, no. 7, pp. 3051-3073, Jul. 2009.

[2] I. Tal and A. Vardy, “List decoding of polar codes,” IEEE Int. Symp. on
Information Theory, St. Petersburg, Russia, Jul. 2011, pp. 1–5.

[3] A. Balatsoukas-Stimming, M. Bastani Parizi, and A. Burg, “LLR-based
successive cancellation list decoding of polar codes,” IEEE Trans. Signal
Processing, vol. 63, no. 19, pp. 5165-5179, Oct 2015.

[4] K. Chen, B. Li, H. Shen, J. Jin, and D. Tse, “Reduce the complexity of
list decoding of polar codes by tree-pruning,” IEEE Commun. Lett., vol.
20, no. 2, pp. 204-207, Feb. 2016.

[5] J. Chen, Y.Z. Fan, C.Y. Xia, C.Y. Tsui, J. Jin, K. Chen, and B. Li, “Low-
Complexity List Successive-Cancellation Decoding of Polar Codes Using
List Pruning,” IEEE Global Communications Conference, Washington
DC, USA, Dec. 2016, pp. 1-6.

[6] Z. Zhang, L. Zhang, X. Wang, C. Zhong, H. V. Poor, “A split-reduced
successive cancellation list decoder for polar codes,” IEEE J. Select. Areas
Commun., vol. 34, no. 2, pp. 292-302, Feb. 2015.

[7] J. Guo, Z. Shi, Z. Liu, Z. Zhang, Q. Liu, “Multi-CRC polar codes and
their applications,” Commun. Lett., vol. 20, no. 2, pp. 212-215, Feb. 2016.

[8] S. A. Hashemi, A. Balatsoukas-Stimming†, P. Giard, C. Thibeault,
and W. J. Gross, “Partitioned Successive-Cancellation List Decoding of
Polar Codes,” IEEE Inter. Conf. on Acoustics Speech and Sig. Process.
(ICASSP), Shanghai, China, March 2016, pp. 957-960.

[9] C. Leroux, A. J. Raymond, G. Sarkis, and W. J. Gross, “A semi-parallel
successive-cancellation decoder for polar codes,” IEEE Trans. Signal
Process., vol. 61, no. 2, pp. 289-299, Jan. 2013.

