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Abstract—We consider a slow fading multiple-input mul-
tiple-output (MIMO) system with channel state information
at both the transmitter and receiver. A well-known precoding
scheme is based upon the singular value decomposition (SVD) of
the channel matrix, which transforms the MIMO channel into
parallel subchannels. Despite having low maximum likelihood de-
coding (MLD) complexity, this SVD precoding scheme provides a
diversity gain which is limited by the diversity gain of the weakest
subchannel. We therefore propose X- and Y-Codes, which improve
the diversity gain of the SVD precoding scheme but maintain the
low MLD complexity, by jointly coding information across a pair
of subchannels. In particular, subchannels with high diversity
gain are paired with those having low diversity gain. A pair of
subchannels is jointly encoded using a 2 2 real matrix, which is
fixed a priori and does not change with each channel realization.
For X-Codes, these rotation matrices are parameterized by a
single angle, while for Y-Codes, these matrices are left triangular
matrices. Moreover, we propose X-, Y-Precoders with the same
structure as X-, Y-Codes, but with encoding matrices adapted to
each channel realization. We observed that X-Codes/Precoders
are good for well-conditioned channels, while Y-Codes/Precoders
are good for ill-conditioned channels.

Index Terms—Condition number, diversity, error probability,
MIMO, precoding, singular value decomposition.

I. INTRODUCTION

W E consider slow fading multiple-input mul-
tiple-output (MIMO) systems, where channel state in-

formation (CSI) is fully available both at transmitter and re-
ceiver. Channels in such systems are subject to block fading,
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and therefore, reliability is a major concern. It is known that
precoding techniques can provide large performance improve-
ments in such scenarios by enhancing the communication relia-
bility, which is typically quantified in terms of the diversity gain
achieved by the precoding scheme.

Some state of the art precoding techniques are discussed next.
The most straightforward precoding approach is based on di-
rect channel inversion and also known as zero-forcing (ZF) pre-
coding [4]. However, it suffers from a loss of power efficiency.
Nonlinear precoding such as Tomlinson-Harashima (TH) pre-
coding [5], [6] was exploited in [7]. Linear precoders, which
involve simple linear pre- and post-processing, have been pro-
posed in [8], [9] and references therein. Despite having low en-
coding and decoding complexity, the linear precoding schemes
and the TH precoder have low diversity gain. Precoders based
on lattice reduction techniques [10] and vector perturbation [11]
can achieve high diversity gain, but at the cost of high com-
plexity. We therefore see a tradeoff between diversity gain and
encoding/decoding complexity. This motivates us to design pre-
coding schemes which for a given rate of transmission (in bits
communicated per channel use), achieve high diversity at low
encoding/decoding complexities.

In this paper, we consider SVD precoding for MIMO systems,
which is based on the SVD decomposition of the channel gain
matrix, and which transforms the MIMO channel into parallel
subchannels/streams [1], [2]. At the receiver, maximum likeli-
hood decoding (MLD) of the transmitted information symbol
vector reduces to separate ML decoding for the information
symbol transmitted on each subchannel, thereby resulting in low
ML detection complexity. The diversity gain achieved by the
SVD precoding scheme is, however, limited by the subchannel
with the lowest diversity gain. In some cases, like in Rayleigh
fading MIMO channels with , no diversity gain is
achieved with this simple precoding scheme.

The diversity gain of a SVD precoded system can be im-
proved by performing joint coding and joint ML detection
across a group of subchannels, as with signal space diversity
techniques in SISO Rayleigh fading channels, where multidi-
mensional lattice coding is applied to a group of independently
fading channel uses [19], [20]. Unfortunately, the complexity
of joint ML detection increases exponentially as the number of
subchannels which are jointly coded increases. Nevertheless,
we show in this paper that we can get large improvements in
achievable diversity gain by jointly coding only over pairs of
subchannels as long as they are appropriately chosen. This
approach results in a very low joint ML detection complexity,
which only increases linearly with the number of pairs.
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In this paper, we therefore propose codes named as X- and
Y-Codes, due to the structure of the encoder matrix, which en-
able flexible pairing1 of subchannels with different diversity or-
ders. Specifically, the subchannels with low diversity orders can
be paired together with those having high diversity orders, so
that the overall diversity order is improved. The main contribu-
tions in this paper are as follows.

1) X-Codes: X-Codes are inspired by the signal space di-
versity techniques proposed in [20], based on rotated
constellations. As shown in Figs. 1(a) and 2(a), in case no
coding is performed across the two channel components
(represented by the horizontal and the vertical axes),
a deep fade along any one subchannel can result in an
arbitrarily small minimum distance between the received
codewords and hence the word error probability would
increase. This problem is effectively resolved by rotating
the 2-D codewords [see Figs. 1(b) and 2(b)]. Here, the
minimum distance between the received codewords of
a rotated constellation is larger and not vanishing even
when there is a deep fade along one of the component
subchannel. We therefore design 2-D real orthogonal rota-
tion matrices, which are used to jointly code over pairs of
subchannels, without increasing the transmit power. Since
these matrices are effectively parameterized with a single
angle, the design of X-Codes primarily involves choosing
the optimal angle for each pair of subchannels. The angles
are chosen a priori and do not change with each channel
realization. This is why we use the term “Code” instead of
“Precoder”. The optimization of angles is based upon min-
imizing the average word error probability (i.e., averaged
over the channel fading statistics) of the transmitted infor-
mation symbol vector. At the receiver, we show that the
MLD can be easily accomplished using low complexity
2-D real ML decoders. Consider a pair of subchannels
with subchannel gains . It is shown that
when a pair of subchannels is well conditioned (i.e.,
close to 1), X-Codes have better error probability perfor-
mance than that of other precoders. However, the error
probability performance of X-Codes worsens when the
pair of subchannels is ill conditioned (i.e., ).
This can be explained as follows. When the subchannel
pair is ill-conditioned, the error probability performance
for the pair is determined primarily by the minimum
Euclidean distance between the received codewords along
the stronger subchannel component . However, with
the rotated constellation, the minimum received codeword
distance along the stronger subchannel component may
not be large enough, resulting in degradation of error
performance in ill-conditioned channels. This along with
the aim of further reducing the ML detection complexity,
motivates the idea of Y-Codes.

2) Y-Codes: In a SVD precoded MIMO channel, the sub-
channel gains are the ordered singular values of the SVD
decomposition of the MIMO channel gain matrix. By
pairing these subchannels, it is obvious that in each pair,
one of the subchannels is stronger than the other. It is

1Pairing of two subchannels refers to joint coding of information symbols
across the two subchannels.

therefore intuitive that, the codewords be chosen so that
the minimum Euclidean distance between the received
codewords along the stronger subchannel component is
larger than the minimum Euclidean distance along the
weaker subchannel component. By doing so, the code de-
sign can make use of the total constrained transmit power
to achieve a minimum received codeword Euclidean dis-
tance greater than that achieved with rotated constellations
used in X-Codes. Y-Codes are designed based on this
intuition, with the codewords forming a subset of a 2-D
real skewed lattice [see Fig. 1(c)]. It can be seen that
for the same rate (i.e., same number of equi-probable
codewords), same transmit power constraint and
subchannel gains , Y-Codes achieve a
greater minimum Euclidean distance between the received
codewords when compared to X-Codes. Also, through
simulations, we show that in ill-conditioned channels,
Y-Codes have better error performance when compared to
X-Codes. Y-Codes are parameterized with two parameters
related to power allocated to the two subchannels. These
parameters are computed so as to minimize the average
error probability. The MLD complexity is the same as that
of the scalar subchannels in linear precoders [8], [9] and
is less than that of the X-Codes, while the performance of
Y-Codes is better than that of X-Codes for ill-conditioned
channel pairs.

3) X-, Y-Precoders: The X- and Y-Precoders employ the same
pairing structure as that in X-, Y-Codes. However, the code
generator matrix for each pair of subchannels is adaptively
chosen for each channel realization. Through simulations
it is observed that the average error performance of X-
and Y-Precoders is marginally better than that of X- and
Y-Codes.

Through average error probability analysis we show that,
indeed, pairing of MIMO subchannels results in significant
improvement in the overall diversity gain. The analytical results
are also supported by numerical simulation. The simulation
results have been reported in Section VI, from where it is clear
that pairing of subchannels does indeed result in a higher diver-
sity gain, when compared to the simple SVD precoding scheme
(e.g., in Fig. 8, the error probability slope of the proposed
X-,Y-Precoders is higher than the first order slope (no diversity
gain) achieved by the linear precoders). Further, in Section VI,
the error probability performance of X-,Y-Codes/Precoders has
been shown to be better when compared to that of the other
precoders reported in literature.

Pairing of good and bad (in terms of achievable diversity gain)
subchannels has also been proposed in [12]. Despite having the
same pairing structure, the proposed X- and Y-Codes/Precoders
differ significantly from the E-dmin precoder proposed in [12]
due to the fact that i) The encoder matrices for each pair are
real-valued in case of X-,Y-Codes, as compared to being com-
plex valued in the E-dmin precoder. This results in the ML de-
tection for each pair to be over a 4-D real search space in case
of the E-dmin precoder, as compared to only a 2-D real search
for the proposed X- and Y-Codes, ii) The E-dmin precoder pro-
posed in [12] was optimally designed only for 4-QAM. In [12],
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Fig. 1. Signal space of four 2-D codewords used to jointly code across two
subchannels (horizontal and vertical). The average transmit power constraint is
� � �. The codewords are represented by solid dots.

the optimal precoder design for higher order QAM could not be
performed due to prohibitive complexity. In contrast, the pro-
posed X- and Y-Codes are not designed for a specific modu-
lation alphabet size, and are therefore more general than the
E-dmin precoder, and iii) Through simulations it is observed
that, with 4-QAM as the modulation alphabet, Y-Precoders have
a similar bit error probability performance as the optimally de-
signed E-dmin precoder. With higher order modulation alpha-
bets (i.e., which achieve a rate higher than what is achieved with
4-QAM), Y-Precoders have a bit error probability performance
significantly better than the E-dmin precoder.

The rest of the paper is organized as follows. Section II in-
troduces the system model and SVD precoding. In Section III,
we present the pairing of subchannels as a general coding
strategy to achieve higher diversity order in fading channels. In
Section IV, we propose the X-Codes and the X-Precoders. We
show that ML decoding can be achieved with 2-D real ML
decoders. We also analyze the error probability performance
and present the design of optimal X-Codes and X-Precoders.

Fig. 2. Signal space of the received 2-D codewords. The gains of the hortizontal
and vertical subchannels are � � � and � � ��� respectively. � is the
minimum Euclidean distance between any two received codewords. The code
parameters for X and Y-Code are optimized w.r.t. maximizing � .

In Section V, we propose the Y-Codes and Y-Precoders. We
show that they have very low decoding complexity. We ana-
lyze the error probability performance and derive expressions
for the optimal Y-Codes and Y-Precoders. Section VI shows
the simulation results and comparisons with other precoders.
Section VII discusses the complexity of the X-, Y-Codes/Pre-
coders in comparison with other precoders. Conclusions are
drawn in Section VIII.

Notations: Superscripts , and denote transposition,
Hermitian transposition, and complex conjugation, respec-
tively. The identity matrix is denoted by , and the
zero matrix is denoted by . is the expectation operator,

denotes the Euclidean norm, and denotes the absolute
value of a complex number. The set of complex numbers, real
numbers, nonnegative real numbers, and integers are denoted
by and respectively. Furthermore, denotes the
largest integer not greater than . Finally, we let and
denote the real and imaginary parts of a complex argument.
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II. SYSTEM MODEL AND SVD PRECODING

We consider a slow fading MIMO , where
the channel state information (CSI) is known perfectly at both
the transmitter and receiver. Let be the
vector of symbols transmitted by the transmit antennas in one
channel use, and let ,
be the channel coefficient matrix, with as the com-
plex channel gain between the -th transmit antenna and the
-th receive antenna. The standard Rayleigh flat fading model

is assumed with , i.e., i.i.d. complex Gaussian
random variables with zero mean and unit variance. Rayleigh
fading is one of the most common fading statistic used for the
performance analysis of fading wireless channels. Nevertheless,
improving diversity gain by pairing subchannels can be applied
to any fading channel irrespective of its statistic. The received
vector from the receive antennas is given by

(1)

where is a spatially uncorrelated Gaussian noise vector such
that .

Let the number of information symbols transmitted per
channel use be . For every channel use, infor-
mation bits are first mapped to the information symbol vector

, which is then mapped to the data
symbol vector using a
encoding matrix

(2)

where is a displacement vector used to reduce the
average transmitted power.

Let be the precoding matrix which is applied to
the data symbol vector to yield the transmitted vector

(3)

It is obvious that the error performance is dependent on the
precoding scheme (i.e., choice of and ). Therefore for
optimal error performance, and are generally derived
from the knowledge of available at the transmitter. The trans-
mission power constraint is given by

(4)

and we define the SNR as

For the precoding schemes discussed in this paper, the rate
and diversity gains are defined as follows. The rate is defined
as the number of information bits transmitted every channel use
(bits-per-channel-use or bpcu). Since exactly bits are trans-
mitted every channel use, it is obvious that bpcu. For
defining the achieved diversity gain/order , let be the
word error probability of for a given channel realization
and a given SNR. Further, the average word error probability,
i.e., word error probability of averaged over the channel fading

statistics is . The diversity gain/order is
defined as

(5)

Note that this is the classical definition of diversity order, where
the rate is fixed for increasing SNR. This definition of rate
and diversity is therefore different from that of Zheng and Tse
[3]2.

Remark 1: Since we consider slow fading MIMO channels,
transmissions are subject to block fading, and therefore diversity
gain is the relevant metric to be considered. In case of fast fading
MIMO channels, ergodic capacity is the relevant metric. In [21],
we have demonstrated the superiority of X-Codes based pre-
coder, in achieving a higher capacity than Mercury/waterfilling
when information symbols belong to a discrete alphabet.

The proposed X-, Y-Codes can be used to improve the
error probability performance of the SVD precoding tech-
nique, which is based on the singular value decomposition
of the channel matrix , where

, such that
and is the diagonal matrix of singular
values, with [1], [2].

Let be the submatrix with the first rows of
. The standard SVD precoder uses

(6)

and the receiver gets

(7)

Let be the submatrix with the first columns of
. The receiver computes

(8)

where is still an uncorrelated Gaussian noise vector
with , and

. The SVD precoder therefore transforms
the MIMO channel into parallel subchannels/streams

(9)

with nonnegative fading coefficients .
The channel gain of the -th subchannel is the -th singular

value of the channel matrix denoted by .
Due to the ordering of the singular values during SVD decom-
position, it is assumed that . For the SVD
precoder, it is also known that the diversity order achieved by the

-th stream alone (i.e., asymptotic slope of the averaged error
probability for the information symbol w.r.t. ) is dependent
upon how the probability density function (p.d.f.) of behaves

2Since the rate � is fixed with increasing � , this actually corresponds to the
point on the diversity multiplexing gain tradeoff curve with the multiplexing
gain as zero.
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around [14], [15]. In both [14] and [15], it is shown
that if the p.d.f. of is
for , then would be the diversity order of the -th
stream3 For an i.i.d. Rayleigh faded MIMO channel,
the p.d.f. of the -th singular value (around ) is

[14].
Therefore, the diversity order achieved by the -th stream is

. Hence, the lowest diversity
order is achieved by the -th stream. Similar results are
also reported in [16].

When viewed as a single transmission system rather than mul-
tiple subchannels/streams, the overall4 average word error prob-
ability of the information symbol vector is dominated by the
weakest subchannel [17], [18]. Due to the ordering of the sin-
gular values, it follows that the -th subchannel is the weakest.
Hence the overall diversity order achieved by the SVD precoder
is . Further it is known that, the the-
oretical limit on the achievable overall diversity order is .
The SVD precoding scheme can achieve this limit only when

. This would, however, imply that, in order to achieve a
target rate of bpcu, the only transmitted symbol (since

) must belong to some discrete signal set with complex
symbols and an average symbol energy of . In contrast, with

, the overall diversity order is much lower
than the theoretical limit5, but at the same time each informa-
tion symbol is constrained to belong to some signal set with only

complex symbols with an average energy of . For
the SVD precoding scheme, even though full MIMO diversity is
achieved with , it is expected that at moderate SNR, the
error probability performance achieved with
is better than the error probability performance achieved with

. A simple example with square QAM modulation sym-
bols can illustrate this intuition. The error probability at mod-
erate to high SNR is dependent upon the minimum Euclidean
distance between the received codewords, which is related to
the minimum Euclidean distance between the transmitted code-
words. We therefore compare the minimum Euclidean distance
between the transmitted codewords, for both the transmission
scenarios (i.e., and ), for a given
rate and average transmit power . With , only one
square complex -QAM information symbol is transmitted,
and therefore the minimum Euclidean distance is .
On the other hand, with square
complex -QAM symbols are transmitted per channel use,
and the minimum Euclidean distance between the transmitted
codewords is . For and

, and therefore it follows that
. Hence, at moderate

SNR, the SVD precoding scheme with is ex-
pected to have an error probability performance better than the
SVD precoding scheme with . Through simulations we
have observed that, indeed at moderate SNR, the SVD precoding
scheme with achieves a better error prob-
ability performance compared to the SVD precoding scheme

3Any function ���� in a single variable � is said to be ������� i.e., ���� �
������� if � � as �� �.

4In this paper, the word “overall” used in which ever context, applies to the
whole information symbol vector �.

5Note that when � � � � � , the diversity order achieved is only 1.

with . Based on the above discussion, it can be conjec-
tured that, the SVD precoder is not the best precoder in terms of
being both power efficient and achieving high diversity gain at
the same time.

We next formally discuss as to how to compare different pre-
coding schemes, and the same shall be used throughout this
paper. Let and be two precoding schemes. If the diver-
sity order achieved by these two precoding schemes is different,
then it is obvious that the precoding scheme which achieves a
higher diversity order will obviously have a lower error proba-
bility asymptotically as . Therefore at high SNR, the non
trivial scenario is when both the precoding schemes achieve the
same diversity order. For a given fixed target rate of bpcu, and
an overall diversity order of , denoted by the pair
and achievable by both precoders, let the asymptotic coding gain
in the error performance of w.r.t. that of be defined as

(10)

In (10), refers to the word error probability of the
precoder at a SNR of . A similar definition holds true
for . If , the precoder is said
to be better than for the given . This also means that
the precoding scheme is more power efficient than scheme

for the given . For a given achievable by both the
precoders, if for all possible values of , then
precoder is said to be universally better than precoder
for the given diversity order . For a given diversity order ,
we can then define the best precoder to be the one which is
universally better than all the other precoders with the same
diversity order of .

It would be of theoretical interest to find the best precoder for
a given achievable diversity order . Though in theory, the max-
imum possible achievable diversity order is , it is likely that
the precoders achieving , would also require highly
complex ML detection at the receiver. With Rayleigh fading, at
SNR values of interest, we have observed that even for moderate
values of , the error probability slope corresponding to
the maximum diversity order is only marginally better
than that of a precoding scheme which achieves a diversity order
slightly less than . For example, with , it
is observed that the error probability slopes for the first and
second subchannels (with gains and ) are almost similar at
SNR values of interest. Therefore from a practical standpoint, it
would be of interest to design precoding schemes which have a
low complexity ML detector, can achieve sufficiently high di-
versity order, and which are almost as power efficient as the
best precoder. In this paper, we present two precoders, X- and
Y-Codes, both of which are shown to achieve high diversity
order with low complexity ML detection. Y-Codes have an even
lower ML detection complexity and better error probability per-
formance than X-Codes.

III. PAIRING GOOD AND BAD SUBCHANNELS

Without loss of generality, we consider the SVD precoding
scheme with even and = . In this section, we moti-
vate the pairing of subchannels as a low complexity technique
to improve the overall diversity order. This pairing is inspired
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from the use of rotated constellations in SISO fading channels
to achieve modulation coding diversity [19], [20]. The idea is to
jointly code over a set of information symbols, and transmit
the coded information symbols over different channel realiza-
tions (in frequency or time). This coding scheme guarantees a
nonzero minimum distance between the transmitted codewords
along any of the component channels even in case of deep
fades. Since the additive noise is Gaussian, a ML detection error
would only happen when the minimum Euclidean distance be-
tween the received codewords is small. Due to a nonzero min-
imum Euclidean distance between the received codewords along
any component channel, the minimum Euclidean distance be-
tween the received codewords is small only when all the com-
ponent channels experience deep fade. Since the event of all the

component channels undergoing deep fade is less probable
than a single channel undergoing deep fade, it can be concluded
that the joint coding scheme with ML detection would result
in improvement of the diversity order. Note that with the joint
coding scheme, an -fold diversity gain is fully achieved with
ML detection whose complexity increases rapidly with [19].

In order to keep the ML detection complexity low, we restrict
to , and perform joint coding over pairs of subchannels
of the MIMO channel. In particular, a pair of information sym-
bols is jointly coded, and one of the two coded symbol is be
transmitted on the stronger subchannel whereas the other coded
symbol is be transmitted on the weaker subchannel.

With a MIMO channel, since the subchannel gains are not
i.i.d., the system is different from the SISO scenario discussed
in [19], [20]. With MIMO subchannels, due to the ordering of
the singular values, in any given pair of subchannels, one of
the subchannels is always stronger than the other one. Due to
this fact, an error will always happen if there is a deep fade in
the stronger channel (since this automatically implies that the
weaker channel is also in deep fade). This then implies that the
maximum possible diversity order that can be achieved, when
coding over a pair of MIMO subchannels, is indeed the diver-
sity order achieved by transmitting only on the stronger sub-
channel6. Therefore when pairing MIMO subchannels, as long
as the minimum distance between the transmitted 2-D code-
words is nonzero along the stronger subchannel component, the
joint coding scheme is guaranteed to achieve the maximum pos-
sible diversity. This is different from the case of SISO Rayleigh
fading channels, where in order to achieve maximal diversity,
the minimum distance between the codewords must be nonzero
along all component channels [19], [20].

The pairing of subchannels is achieved as follows. The matrix
is used to pair different subchannels in order to

improve the overall diversity order. The precoding matrix
and the transmitted vector are given by

(11)

Let the list of pairings be
and . On the -th pair, consisting of sub-

channels and , the information symbols and are
jointly coded using a 2 2 matrix . In order to reduce the

6In the case of i.i.d. SISO channels, it is possible to achieve a diversity order
greater than the diversity order of any of the component channels.

ML decoding complexity, we restrict the entries of to be
real valued. Each , is a submatrix of
the code matrix as follows:

(12)

where is the entry of in the -th row and -th column.
Both the proposed X- and Y-Codes achieve diversity im-

provement by jointly coding over a pair of subchannels. The
only difference is in the structure of the linear code generator
matrix for the -th pair. In the case of X-Codes, 2-D real
rotation matrices are used, whereas for Y-Codes, the code
generator matrix has a upper left triangular structure. Also,
there are finitely many ways to pair the subchannels, and as
we shall show later, one pairing which is optimal in terms
of the achievable overall diversity, is to pair the -th and the

-th subchannel. When this pairing is represented
in matrix form, the code matrix has a cross-form structure,
and hence the name X-Codes. With Y-Codes, the right bottom
entries of the code generator matrices for each pair is 0,
and hence appears like the letter “Y”.

For example, with , the X-Code structure is given by

(13)

and the Y-Code structure is given by

(14)

Let denote the -th information pair. Due
to the transmit power constraint in (4), and uniform transmit
power allocation between the pairs, the encoder matrices

must satisfy

(15)

The expectation in (15) is over the distribution of the infor-
mation symbol vector and is the subvector of the dis-
placement vector for the -th pair. The matrices for X-
and Y-Codes can be either fixed a priori or can change with
every channel realization. The latter case leads to the X- and
Y-Precoders.

A. ML Decoding

Given the received vector , the receiver computes

(16)
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Since is a deterministic function of the channel state, it is
known to both the transmitter and receiver. Using (1) and (11),
we can rewrite (16) as

(17)

where is the effective channel matrix and
is a noise vector with the same statistics as . Further, we let

Let denote the 2 2 submatrix of consisting
of entries in the and rows and columns. Then (17) can be
equivalently written as

(18)

Also, let , where is a finite signal set in
the 2-D real space.

The rate is then given by

(19)

Also, let be the Cartesian
product of the finite signal sets , then

.
From (18), it is also clear that the ML decoder for reduces

to independent ML decoders for each . Further, the ML de-
coding for the -th pair can be separated into independent ML
decoding of the real and imaginary components of , i.e.,

(20)

(21)

where is the output of the ML detector for
the -th pair.

Further, let denote the detected infor-
mation symbol vector . The entries of are composed of the

ML detector outputs , as follows.

(22)

B. Performance Analysis

For a given channel realization , the word error probability
(WEP) for the -th transmitted information symbol pair is given
by

(23)

The overall average word error probability for the information
symbol vector is given by

(24)

For a given channel realization , the transmitted informa-
tion vector is not in error if and only if none of the pairs of
information symbols are in error. Fur-
ther, since the additive receiver noise for each pair is indepen-
dent, we have

(25)

The overall word error probability for the information symbol
vector , averaged over the channel fading statistics, is given by

(26)

Similarly, the average word error probability for the -th pair is
given by

(27)

From (20) and (21), we see that for a given channel realiza-
tion , the WEPs for the real and the imaginary components of
the -th pair are the same. Therefore, without loss of generality
we can analyze the WEP only for the real component, which is
given by

(28)

Since the additive receiver noise on the real and imaginary
components of each pair are i.i.d., it follows that

. Let
, then the average word error probability of

the real component of is then given by

(29)

where has to be evaluated differently for X-,
Y-Codes and X-, Y-Precoders. To explain this difference we
need the following definitions.

For a given channel realization, and therefore deter-
ministic values of and for the -th pair, we let

denote the error probability of ML
detection for the real component of the -th channel, given that
the information symbol was transmitted on the -th pair.
For X-, Y-Codes, the matrices are fixed a priori and are not
functions of the deterministic value of subchannel gains, and
therefore, is given by

(30)
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We observe that is actually a function of and
therefore the optimal error performance is obtained by mini-
mizing (29) over . Thus, the optimal matrix for the -th pair
is given by

(31)

The minimization in (31) is constrained over matrices
which satisfy (15). The corresponding optimal average word
error probability for the real component of the -th pair is given
by

(32)

For the X-, Y-Precoder, the matrices are chosen adap-
tively every time the channel changes. For optimal error perfor-
mance, the matrices are chosen so as to minimize the error
probability for a given channel realization . The op-
timal encoding matrix for the -th pair is then given by

(33)

The minimization in (33) is constrained over matrices which
satisfy (15). Therefore, with X- and Y-Precoders, the optimal
average word error probability for the real component of the

-th pair is given by (34), as shown at the bottom of the page.
Comparing (34) and (32), we immediately observe that the op-
timal error performance of X-, Y-Precoders is better than that
of X-, Y-Codes.

Our next goal is to derive an analytic expression for . We
shall only discuss the derivation for X-, Y-Codes, since the error
performance of X-, Y-Precoders is better than X-, Y-Codes and
therefore they achieve at least as much diversity order as X-,
Y-Codes.

Getting an exact analytic expression for is difficult, and
therefore we try to get tight upper bounds using the union bound.

Let denote the pairwise error event that,
given was transmitted on the -th pair, the real part of the ML
detector for the -th pair decodes in favor of some other vector

. Further, let us denote the corresponding pairwise error
probability (PEP) by . Using the union
bounding technique, can be upper bounded by the
sum of all the possible pairwise error probabilities. From (29),
it is clear that this upper bound on induces an upper
bound on , which is given by

(35)

Due to Gaussian noise, this can be further written as shown in
(36), found at the bottom of the page, where

(37)

(38)

The expectation in (36) is over the joint distribution of the
channel gains . The joint p.d.f. of the ordered
eigenvalues of is given by the well-known Wishart
distribution [13]. However, evaluating the expectation over

in (36) is still a difficult problem except for trivial
cases (like ). We therefore try to lower bound

with a quantity depending only on .
Since , using the definition of and , we
have

(39)

where we define the generalized pairwise distance between the
vectors and as

(40)

(41)

and we let denote the first component of the 2-D vector .
We further define the generalized minimum distance as follows:

(42)

The following theorem gives an upper bound to based on the
union bounding technique discussed above.

(34)

(36)
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Theorem 1: An upper bound to as is given by

(43)

where

and the coefficients are defined
in [15].

Proof: See Appendix A.

The diversity order achievable by the -th pair is given by

(44)

As . Therefore,
. Using this fact and (43), the diversity order achiev-

able by the -th pair is lower bounded as

(45)

Let the overall diversity order be defined as

(46)

The following theorem gives a lower bound on the overall
achievable diversity order.

Theorem 2: A lower bound on the overall achievable diversity
order is given by

(47)

Proof: See Appendix B.

Remark 2: A similar fact has been stated without proof
in [17], where it is mentioned that with multiple subchan-
nels/streams, the overall error probability at high SNR is
dominated by the error probability of the subchannel having
the lowest diversity gain. It is then concluded that the overall
diversity order is equal to the diversity order of the subchannel
having the lowest diversity gain.

The bound on the overall diversity order , given by (47),
also holds for the X-, Y-Precoders. This is so because, for each
channel realization , X- and Y-Precoders could choose the
encoding matrices to be the same as the matrices designed for
X-,Y-Codes.

C. Design of Optimal Pairing

From the lower bound on (given by (47)) it is clear that
the following pairing of subchannels

(48)

achieves the following best lower bound:

(49)

Remark 3: Note that this corresponds to a cross-form gen-
erator matrix , and is not the only pairing for the best lower
bound. Also, we note that the overall diversity order improves
significantly, when compared to the case of no pairing. As an ex-
ample, with , the overall diversity order achieved
with the proposed pairing structure is as compared
to an overall diversity order of only 1, when no pairing of sub-
channels is performed. It can be shown that, if only ( even)
out of the subchannels are used for transmission, the lower
bound on the overall achievable diversity order with the pro-
posed pairing structure is .

For X- and Y-Codes, although it is hard to compute
in (31), we can compute the best , denoted by , which
minimizes the upper bound on in (43). We then have

(50)

Using (43), (48), and (50), we obtain

(51)

where .

IV. X-CODES AND X-PRECODERS

A. X-Codes and X-Precoders: Encoding and Decoding

For X-Codes, each symbol in takes values from a reg-
ular -QAM constellation, which consists of the Cartesian
product of two -PAM constellations

used on the real or the imagi-
nary components of two subchannels (i.e., for

). The scaling factor is defined as

is the average symbol energy for each information symbol in
the vector . Gray mapping is used to map the bits separately
to the real and imaginary component of the symbols in . We
impose an orthogonality constraint on each (in (12)) and
conveniently parameterize it with a single angle

(52)

where . We notice that 1) since is orthogonal,
is also orthogonal; 2) for X-Codes we fix the angles a

priori, whereas for the X-Precoders we change the angles for
each channel realization; 3) we can fix in (2) to be the zero
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Fig. 3. One quadrant of the set for � � �� � (4,16-QAM modulation). The critical angles where performance degrades severely are shown to coincide with
��� ������.

vector, since to the orthogonality of preserves the QAM shape
of the signal set.

From (20) and (21), it is obvious that two 2-D real ML de-
coders are needed for each pair. Since there are pairs,
the total decoding complexity is 2-D real ML decoders. For
X-Codes, the matrices in (20) and (21) are given by

(53)

B. Optimal Design of X-Codes

In order to find the best angle for the -th pair, we at-
tempt to maximize the generalized minimum distance
(defined in (42)) under the transmit power constraints.

For X-Codes, the difference vector between the real compo-
nents of any two information vectors and for the

-th pair is given by

(54)

where

The set for (4-QAM) and (16-QAM) is
shown in Fig. 3. Using (54) in (40), the generalized pairwise
distance between and is given by

(55)

Since is parameterizable with a single angle , we shall
rename the generalized minimum distance in (42) by

(56)

where

Using (50), the best , denoted by , is given by

(57)

Following (51), the best achievable upper bound for is given
by

(58)

Remark 4: It is easily shown by the symmetry of the set
that it suffices to consider for the maximization in
(57). The min-max optimization problem does not have explicit
analytical solutions except for small values of , for example

. But since the encoder matrices are fixed a priori, these
computations can be performed off-line only once.
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Fig. 4. Union bound for word error probability. � � � � � and � � � (4-QAM) modulation.

For small MIMO systems, such as 2 2, it is possible to get
a tighter upper bound by evaluating the expectation in (36) over
both singular values. is then upper bounded as

(59)

where is the angle used for the only pair. For larger MIMO
systems, it is preferable to use the inequality in (39) involving
only one singular value, since evaluating the expectation con-
taining two singular values becomes very tedious. In Fig. 4, we
compare the word error probability of a 2 2 MIMO system
with that given by (59), and observe that the union bound is in-
deed tight at high SNR.

In Fig. 5, we plot the variation of the upper bound to the
WEP in (59) w.r.t. the angle for the 2 2 MIMO system
with 4-QAM and 16-QAM modulation. We observe that WEP
is indeed sensitive to the rotation angle. With 4-QAM modu-
lation, the WEP worsens as the angle approaches either 0 or
45 degrees. With 16-QAM modulation, the performance is even
more sensitive to the rotation angle. Moreover, in addition to 0
and 45 degrees, we observe that the performance is poor, also
when the angles are chosen near 18.5, 26.6 and 33.7 degrees,
corresponding to , and , respectively. We explain
this as follows. From (36), it is clear that the error performance
at high SNR is determined by the minimum value of the distance

(60)

and we obtain as

when runs over the set . If , i.e.,
for some , then the minimum

distance is independent of and depends only upon . This
implies a loss of diversity order since the diversity order of the
square fading coefficient is less than that of . For the case
of , this would mean a reduction of diversity order
from 4 to 1. The set and the critical angles are illustrated in
Fig. 3.

C. Optimal Design of X-Precoder

For X-Precoders, the optimal rotation angle is tedious to com-
pute due to lack of exact expressions for the word error proba-
bility . Just like X-Codes, the union bound to is
given by

(61)

However, unlike the analysis for X-Codes, we do not further
upper bound this union bound by using (39), since by doing so
we would have lost information about . Instead, in the pair-
wise sum in (61), we look for the term with the highest contri-
bution to the union bound and try to minimize it. The best angle
for the -th pair is then given by

(62)

where is given by (60). Just like X-Codes, it can be
shown that for the maximization in (62), it suffices to consider
the range for , instead of the entire range . The
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Fig. 5. Sensitivity of word error probability w.r.t � . � � � � � and � � �� � (4,16-QAM) modulation.

optimization problem in (62) is analytically tractable only for
small values of . Also, the minimization over
need not be over the full set containing
elements. In fact, it can be shown that the number of elements
to be searched is at most . For example, for

(16-QAM), we need to search only five elements instead
of the full set of 48 elements.

Theorem 3: For (4-QAM), the exact is
given by

(63)

where is the condition number for the -th pair.
Proof: See Appendix C.

Further let

(64)

then using (64) and (61), the truncatedunion bound to is
given by

(65)

The expectation in (65) is over the joint distribution of
and is difficult to compute analytically. We therefore use Monte-
Carlo simulations to evaluate the exact error probability .

V. Y-CODES AND Y-PRECODER

A. Motivation

As we will see in Section VI (see Fig. 6), the bit error proba-
bility performance of X-Codes is better than the one of the other
precoders when the condition number for a pair of subchan-
nels is small. However, the bit error probability performance
of X-Codes degrades with increasing condition number. Since,
typical fading channels are ill conditioned7 with high proba-
bility, it is necessary to design precoders which are robust to
ill-conditioned channels. Also, ML detection for X-Codes in-
volves a 2-D search, which is slightly more complex than the
linear precoders reported in [7], [8] and [9], for which ML de-
tection involves only a 1-D search.

Therefore, we have two important problems to be solved: i)
improvement in error performance for ill conditioned channels
and ii) reduction in ML detection complexity. We firstly address
the issue of performance improvement in ill conditioned chan-
nels. Towards this end, we ask ourselves the following question:
“For a given transmit power constraint and rate , what is
the best possible code design in terms of achieving the minimum
average bit/symbol/word error rate?”. It is not easy to find the
best possible code in closed form, but based upon analysis we

7A � � � MIMO channel �� � � � is said to be ill conditioned if its
condition number is large, i.e., � �� � �.
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Fig. 6. Effect of the channel condition number on error performance of various precoders for a 2� 2 system with target rate � � � bpcu.

can definitely gain insight into the properties that a good code
must have.

It is observed that the error performance at high SNR is
dependent on the minimum value of the pairwise distance

[see (37)] over all possible information
vectors . Using the definition, we have

(66)

where .
Let be the condition number for the -th pair

as defined in Theorem 3, then we have , since .
For the special case of is pro-
portional to , which is the Euclidean distance between the
code vectors and . Therefore, for , the
design of good codes is independent of the subchannel gains

. However, the design of good codes becomes harder
for values of . We immediately observe that, since

, the effective Euclidean distance in (66) gives more weight
to the term , which is the squared difference of the vec-
tors along the stronger subchannel component. Since the total
transmit power is constrained, codes should be designed such
that the minimum possible separation between any two code
vectors is larger along the stronger subchannel as compared to
the minimum possible separation along the weaker subchannel.

Hence, it is obvious that X-Codes (based on 2-D rotation ma-
trices) may not be a good code design for ill conditioned sub-
channels, where . This is because, with rotated QAM

constellations, the codewords achieve the same nonzero min-
imum distance along both the stronger as well as the weaker
subchannel. Specially in cases where the condition number is
large, it is intuitive that a code design which achieves maximal
nonzero minimum distance along the stronger subchannel and
zero minimal distance along the weaker subchannel, would per-
form better than the best rotated constellation. This has been
illustrated in Figs. (1) and (2), where it can be seen that, when
compared to X-Codes, Y-Codes achieve a larger minimum dis-
tance between the received codewords.

This insight leads us to design codes, which have a zero
minimum distance along the weaker subchannel so that, under
a fixed transmit power constraint, more separation between the
codewords can be achieved along the stronger subchannel. A
simple design is to have the code vectors belong to a subset
of some skewed 2-D lattice, an example of which is shown
in Fig. 7 (there are totally eight code vectors represented by
small filled circles). Since the code vectors belong to a lattice,
they can be expressed as a linear transformation of a subset of

. The simple structure of the code results in a very simple
ML detector for each subchannel pair, which has a detection
complexity of the same order as that of a 1-dimensional scalar
channel (like the linear precoders in [8] and [9]). It is also noted
that, for a code with vectors, the transmitted code vector
assumes only two possible amplitude values along the weaker
subchannel component, and different values along the
stronger subchannel component. This is in fact a simple rate
allocation scheme, where only 1 information bit is transmitted
through the weaker subchannel, and the remaining bits are
transmitted through the stronger subchannel. More complex
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Fig. 7. Received signal space for the real component of the �-th pair. With Y-Codes �� � ��, we have 5 regions separated by vertical dashed lines. The scaled
codebook vectors are represented by small filled circles along with their corresponding codebook index number. Dotted lines demarcate the boundary between the
ML decision regions.

rate allocation schemes are possible, but would result in more
complex ML detectors.

B. Y-Codes and Y-Precoders: Encoding

For Y-Codes and Y-Precoders, the matrices have the
structure

(67)

where . For Y-Codes/Precoders, the set is given
by the Cartesian product

(68)

For example, with , the set is given by

(69)

The real and imaginary components of the displacement
vector for the -th pair, are given by

(70)

We consider the 2-D codebook of cardinality generated by
applying to the elements of and adding the displacement
vector. The code vectors of the 2-D codebook are given by

(71)

where .
With the codebook notation, refers to the index of the code

vector in the codebook. Further, let the codebook indices
of the vectors, to be transmitted on the real and imaginary com-
ponents of the -th pair be and respectively. The compo-
nents of the data symbol vector are then given by

(72)

where .
Due to the transmit power constraint in (15), and must

satisfy

(73)

The only difference between Y-Codes and Y-Precoders is
that, for Y-Codes, the parameters and are fixed a priori,
whereas, for the Y-Precoders, these are chosen every time the
channel changes.
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C. Y-Codes and Y-Precoders: ML Decoding

Using our codebook notation in (71), the ML decoding rule
in (20) and (21), can be equivalently written as

(74)

where and are ML estimates of the codeword indices
transmitted on the real and imaginary components for the -th
pair.

We next discuss a low complexity solution for the detection
problem in (74). The algorithm is the same for all pairs, and the
same for both the real and imaginary components of each pair.
Therefore, we only discuss the algorithm for the real component
of the -th pair. We first partition the 2-D received signal space

into regions as follows:

(75)

where .
In Fig. 7, we illustrate the five regions with for the

real component of the -th pair. The first step of the decoding
algorithm is to find the region to which the received vector be-
longs. Let

The received vector belongs to the region , where is ex-
plicitly given by

(76)

For example, in Fig. 7, the received vectors , and
belong to , and , respectively. It can be shown that,
once the received vector is decoded to the region , the ML
code vector is one among a reduced set of at most 3 code vectors.
Therefore, at most 3 Euclidean distances need to be computed
to solve the ML detection problem in (74), as compared to com-
puting all the Euclidean distances in case of a brute force
search. For example, in Fig. 7, for the received vector ,
the ML code vector is among or .

However, once we know the region of the received vector,
it is possible to directly find the ML code vector even without
computing the three Euclidean distances. This involves just
checking at most 3 linear relations between the two components
of the received vector. Therefore, the ML decoding complexity

of Y-Codes is the same as that of a scalar channel. For example,
in Fig. 7, the received vector is to the right of the perpendic-
ular bisector between and . The vector is also
above the perpendicular bisector between and .
From these two checks, it can be easily concluded that the ML
code vector is . Due to the structure of the codebook,
the ML decision regions can be very easily outlined. In Fig. 7,
the dotted lines demarcate the boundary of the ML decision
regions. The hatched region illustrates the ML decision region
of .

D. Optimal Design of Y-Codes

Given the optimal pairing in (48), the next step towards de-
signing optimal Y-Codes is to find the optimal value of ,
which minimizes the average error probability for the -th
pair. For Y-Codes, once chosen, are fixed and do not
change with every channel realization. Since the ML decision
regions are known precisely, it is possible to calculate the exact
error probability . With our codebook notation, we identify
code vectors by their index in the codebook. For the -th pair,
the average word error probability of the real component can
therefore be expressed in terms of the code vector indices as

(77)

where is the av-
erage probability of error when the code vector is trans-
mitted and it is given by

(78)

where all the expectations are over the joint distribution of
. Let

The functions and are given by

(79)

To compute the optimal , we have to minimize w.r.t.
subject to the transmit power constraint in (73). How-

ever, it is difficult to get closed form expressions for the op-
timal due to the intractability of the integrals in (79).
This difficulty is further compounded due to the evaluation of
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expectation over the joint distribution of . However,
since are fixed a priori, it is always possible to approx-
imately compute the optimal off-line, using Monte-
Carlo techniques.

E. Optimal Design of Y-Precoder

For the Y-Precoder, finding the optimal which min-
imizes for a given channel realization is again diffi-
cult due to the intractability of the integrals in (79). In the case
of Y-Codes these could be computed off-line since are
fixed a priori. However, for Y-Precoders these cannot be com-
puted off-line, since the optimal have to be computed
every time the channel changes.

To reduce the complexity of computing adaptively
as the channel changes, we resort to simpler bounds on the
error probability for which the optimal require
minimal computation. One such bound is given by the union
bounding technique, which was also used in the analysis of the
error performance for X-Precoders. For Y-Precoders, the union
bound to is given by

(80)

where is given by

(81)

where and are distinct indices of the codebook. A good
choice of is obtained by minimizing the union bound
for in (80) w.r.t , subject to the transmit power
constraints in (73). From (80), this choice of , denoted
by , maximizes for the fixed channel gain
of . The next theorem gives the closed form analytical
expression for .

Theorem 4: A good choice of defined as

(82)

is given by (83), as shown at the bottom of the page, where
.

The corresponding optimal value of is given
by

(84)

Proof: See Appendix D.

If we now look back at the codebook for Y-Precoders, we
notice that there is power allocation on the two subchannels
through the parameters and , which can be chosen opti-
mally based upon the knowledge of channel gains. From (83),
we observe that the Y-Precoders use only the stronger sub-
channel, when channel condition number is high .
For good channel condition , power is distributed
between the two channels depending on the channel condi-
tion. This adaptive power allocation between the stronger and
the weaker subchannels, enables Y-Precoders to achieve an
error performance better than X-Precoders in ill conditioned
channels. Y-Codes/Y-Precoders also have a fixed-rate alloca-
tion between the two subchannels of a pair, since out of the

bits, one bit can be used to decide whether the vector
in the codebook is at even index (corresponding to the second
component being equal to ) or at odd index (corresponding
to the second component being equal to ). The remaining
bits are then used to appropriately choose among the vectors at
even or odd indices. Therefore, in a way, the proposed Y-Codes
always transmits 1 bit of information on the weaker subchannel
and bits on the stronger subchannel. This rate
allocation may not be the best and therefore even better code
books can be constructed, but may result in higher ML detection
complexity. The ML decoding complexity for the proposed
Y-Codes/Y-Precoders is low and is independent of .

VI. SIMULATION RESULTS

In this section, we compare the error probability performance
of X-, Y-Codes and X-, Y-Precoders with other precoders pro-
posed in literature. For all the simulations, we assume

. Throughout this section, the subchannel pairing used for
X-,Y-Codes/Precoders is given by (48).

For X- and Y-Codes, the encoding matrices for each pair,
are fixed a priori. In case of X-Codes,

the fixed rotation angles are given by (57). For Y-Codes, the
value of for the -th pair of subchannels, is computed,
by minimizing in (77) w.r.t. . Note that the expec-
tation in (78), is carried out using Monte-Carlo techniques, as-
suming a Rayleigh flat fading MIMO channel.

For X-,Y-Precoders, the encoding matrices for each pair,
are not fixed, and are computed every

time the channel changes. For X-Precoders, the rotation angle
for each of the subchannel pairs is given by (62). For
Y-Precoders, for the -th pair of subchannels is given
by Theorem 4.

Error performance comparison of the proposed X-,Y-Codes/
Precoders is made with 1) the E-dmin (equal dmin precoder
proposed in [12]), 2) the Arithmetic mean BER precoder
(ARITH-MBER) proposed in [8], 3) the Equal Error linear
precoder (EE) (based upon optimizing the minimum eigenvalue

(83)



3558 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 57, NO. 6, JUNE 2011

for a given transmit power constraint [9]), 4) the TH precoder
(based upon the idea of Tomlinson-Harashima precoding ap-
plied in the MIMO context [7]), and 5) the channel inversion
(CI) precoder, also known as the Zero Forcing precoder [4].

A. Effect of Channel Condition Number on Error Performance

In Fig. 6, we plot the bit error probability/rate (BER) of
all precoding schemes for a 2 2 MIMO at dB,
as a function of the condition number . We fix
the total channel gain to be 1, i.e., , and
the target rate to be bpcu. For a given , the BER
of all precoders is evaluated through Monte-Carlo simula-
tions, for a fixed 2 2 MIMO channel with channel matrix,

.
We briefly discuss the precoding schemes which are com-

pared to the proposed X-,Y-Codes/Precoders. ARITH-MBER
transmits symbols, each from a QAM modulation
alphabet. For the ARITH-MBER precoder, when ,
every channel use, a 256-QAM modulation symbol (16-PAM
on the real and imaginary component) is transmitted on the
stronger subchannel and the weaker subchannel is not used for
transmission (note that for a 2 2 system, there are only two
subchannels, i.e., only 1 pair of subchannels). When ,
two 16-QAM modulation symbols are transmitted, one on
each subchannel. E-dmin is a precoding scheme in which the
complex linear precoding matrix is adapted to each channel
realization, but both the subchannels are always used for trans-
mission (i.e., ). With E-dmin, the modulation alphabet
used is 16-QAM.

In Fig. 6, we notice that schemes which are fixed and do not
adapt their transmission with the varying channel, have good
BER performance for small values of . The BER performance
is, however, poor with increasing . BER performance of
X-Codes is also seen to deteriorate with increasing . The only
exceptions are Y-Codes and ARITH-MBER . For
ARITH-MBER with , only the stronger subchannel
is used for transmission, and therefore its BER improves
with increasing , because, with (i.e.,
the stronger subchannel gain) increases with increasing .
Compared to X-Codes/X-Precoders, the BER performance of
Y-Codes/Y-Precoders is more stable with increasing due to
the fact that the codebook is designed in order to maximize
the minimum codeword distance along the stronger subchannel
component without caring about the separation on the weaker
subchannel component.

It is also observed that, the Y-Precoders/Y-Codes perform
better than X-Precoders/X-Codes for large , and hence for
channels which are ill conditioned, Y-Precoders/Y-Codes have
a better error performance compared to X-Precoders/X-Codes.
We shall see later that, indeed for the Rayleigh fading
channel, Y-Precoders/Y-Codes perform better than X-Pre-
coders/X-Codes. This justifies the fact that precoders for ill
conditioned channels should be designed to achieve more sep-
aration in the minimum Euclidean distance (between received
codewords) along the component corresponding to the stronger
subchannel. It can also be seen that, despite the suboptimal

choice of encoding matrices (based upon the union bound
to the error probability of ), X-Precoders perform better than
X-Codes, and Y-Precoders perform better than Y-Codes.

B. Diversity Order Comparison

We next discuss the overall diversity order achieved by the
various precoding schemes with a Rayleigh flat fading MIMO
channel. Let the number of subchannels used for transmission
be . The diversity order achieved by the linear
precoders (EE and ARITH-MBER) and THP is

and respectively, whereas the
diversity order achieved by E-dmin and X-, Y-Codes/Precoders
is . The CI scheme achieves infinite
diversity, but it suffers from power enhancement at the trans-
mitter. Among all the other schemes (except CI), we observe
that E-dmin and X-, Y-Codes/Precoders have the best overall
diversity order.

The subsequent simulation results assume a MIMO channel
with Rayleigh flat fading statistics. All BER performance re-
ported are averaged over the channel fading statistics through
Monte-Carlo simulations.

C. Comparison of BER Performance

In Fig. 8, we plot the BER performance of all precoders for
and a target rate of bpcu. The

proposed X, Y-Precoders and E-dmin have the best error per-
formance. The increased diversity order achieved by the pairing
scheme is obvious from the higher diversity slope of the error
probability for the X, Y-Precoders compared to a diversity slope
of order 1 for the linear precoder ARITH-MBER and THP. This
observation supports the analytical result on the improvement
of diversity order of the error performance by pairing of MIMO
subchannels (see Sections III-B, III-C). The performance of CI
is inferior due to enhanced transmit power requirement arising
from the bad conditioning of the channel. It is observed that
the proposed Y-Precoders perform the best for ,
with E-dmin only 0.5 dB away at a BER of . For

, E-dmin performs better than Y-Precoders by 0.4 dB
at a BER of . However, E-dmin has this performance gain
at a higher encoding and decoding complexity compared to the
Y-Precoder.

D. Comparison of BER Performance for

In this section, we report the observations made on the sim-
ulated BER performance of various precoding schemes for a
given target rate of bpcu and achievable overall diversity gain

. This diversity gain is achieved by X-,Y-Pre-
coder and E-dmin with information symbols trans-
mitted every channel use, and by the linear precoders (EE and
ARITH-MBER) with information symbols trans-
mitted every channel use. Therefore, for the same target rate

, the information symbols transmitted by the linear precoders
must belong to a modulation alphabet with elements (we
select and such that is an integer), as compared to a

element modulation alphabet set required for X-,Y-Pre-
coder and E-dmin.
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Fig. 8. BER comparison between various precoders for � � � � � � �� � and � � � (4-QAM) modulation. Target rate is � � �� bpcu.

Fig. 9. BER comparison between various precoders for � � � � � and target rate � � �� � bpcu.

In Fig. 9, we plot the BER for , and a target
rate of bpcu. It is observed that the best perfor-
mance is achieved by the proposed Y-Precoder. For a target
rate of bpcu, ARITH-MBER (16-QAM) also has a
similar performance. However, for a rate of bpcu,
the performance of ARITH-MBER (256-QAM) is worse than
that of Y-Precoders by about 2.8 dB at a BER of .
This is because, to achieve a diversity order same as that

achieved by X-,Y-Precoder and E-dmin, linear precoders use
only half of the available subchannels for transmission (i.e.,

). Hence, to achieve the same
target rate , they have to use higher order QAM, which re-
sults in loss of power efficiency. Based along the lines of the
discussion in Section II and observations made in Fig. 9, it
can be said that for a 2 2 Rayleigh faded MIMO channel,
with a target rate of bpcu and an overall diversity
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Fig. 10. BER comparison between various precoders for � � � � � and target rate � � �� �� bpcu.

order of , Y-Precoders are better compared to the
other considered precoders.

In Fig. 10, we plot the BER for , and a target
rate of bpcu. For a rate of bpcu, E-dmin
and ARITH-MBER (16-QAM) have the best error performance.
Y-Precoders perform only about 0.5 dB away at a BER of .
However, for a target rate of bpcu, Y-Precoders perform
the best. ARITH-MBER with 256-QAM modulation
on both subchannels performs 2.6 dB worse than Y-Precoders
at a BER of . E-dmin performs the worst and is about 3.5
dB away from Y-Precoders at a BER of . E-dmin has poor
performance since the precoder proposed in [12] has been opti-
mized for 4-QAM, and therefore it does not perform that well
when the target rate is higher than bpcu.

E. X-Codes Versus Y-Codes

In Fig. 11, we compare the BER performance of the pro-
posed X and Y-Codes for a system with a target
rate of bpcu. It is observed that Y-Codes have a sig-
nificant performance gain over X-Codes. For a target rate of
both and bpcu, Y-Codes perform better than
X-Codes by about 1.5 dB at a BER of . This is primarily
due to the novel skewed lattice constellation structure of the pro-
posed Y-Codes (as compared to the simple rotation encoder for
X-Codes), which ensures that the minimal distance between re-
ceived codewords does not become too small when channel is
ill conditioned. In Fig. 12, we compare the BER performance
of the proposed X and Y-Codes for a system
with a rate of bpcu. Y-Codes again perform better
than X-Codes by about 0.7 dB for a rate of bpcu, and by
about 1.5 dB for a rate of bpcu.

F. X-, Y-Codes vs. X-, Y-Precoders

In this section, we discuss the performance gain achieved by
adaptively choosing the encoder matrices for each channel
realization, as compared to having them fixed a priori.

In Fig. 11, we compare the performance of the X-, Y-Pre-
coders with that of X-, Y-Codes for with
bpcu. For bpcu, X-, Y-Precoders perform marginally
better than X-, Y-Codes (by only about 0.2 dB at BER of ).
However, for bpcu, the X-Precoder performs better than
X-Codes by about 1.0 dB, whereas Y-Precoders perform better
than Y-Codes by about 0.2 dB at a BER of . Therefore,
adapting the encoder matrices with channel realization is bene-
ficial for X-Codes. However, compared to the performance gain
of X-Precoders over X-Codes, it is observed that Y-Precoders
do not have as much gain in performance over Y-Codes.

For , it is observed from Fig. 12 that for
bpcu, X-, Y-Precoders have almost similar performance as X-,
Y-Codes. However, for bpcu, X-Precoders perform
better than X-Codes by about 0.7 dB, whereas Y-Precoders per-
form better than Y-Codes by about 0.3 dB at a BER of .

The performance gain of X-Precoders over X-Codes is much
more significant as compared to the performance gain of Y-Pre-
coders over Y-Codes. Also, for X-Precoders, this performance
gain is significant only with higher order QAM. This is due to
the fact that the error performance is much more sensitive to the
rotation angle for higher order QAM (see Fig. 5), and therefore
adjusting the rotation angle with respect to the varying channel
is expected to result in performance improvement.

On the other hand Y-Precoders are only marginally better
than Y-Codes irrespective of the transmission rate . This is
attributed to the fact that for the Y-Precoders we optimize an
upper bound to the probability of error , rather than the
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Fig. 11. BER comparison between the proposed X-Codes and Y-Codes for � � � � � with rate � � �� � bpcu.

Fig. 12. BER comparison between the proposed X-Codes and Y-Codes for � � � � � with rate � � �� �� bpcu.

exact error probability. We do this, because of the high encoding
complexity which in turn is due to the analytical intractability
of optimizing the exact error probability expressions. This leads
to a suboptimal choice of the encoder matrices, and therefore a
suboptimal error performance.

This fact is also obvious from Fig. 13, where we plot the exact
optimal average word error probability for Y-Precoders in com-
parison with the average word error probability of the proposed

suboptimal Y-Precoder. The exact optimal word error proba-
bility (i.e., error probability with the optimal choice of encoder
matrices as given by (34)) is computed through Monte Carlo
techniques. The exact optimal average word error probability is
better than the average word error probability of the proposed
suboptimal Y-Precoder by about 1.8 dB for a
system, and is better by about 1.0 dB for a
system at a word error probability of and a target rate of
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Fig. 13. Word error probability comparison between the proposed suboptimal Y-Precoders and exact optimal Y-Precoders for � � � � �� �with rate� � ��

bpcu.

bpcu. This therefore suggests the existence of better
Y-Precoders compared to what has been proposed in this paper.

VII. COMPLEXITY

In this section, we discuss the computational complexity of
X-, Y-Codes and compare it with other precoding schemes. In
terms of the encoding complexity, all the schemes have a sim-
ilar order of complexity, , which is due to the transmit
preprocessing filter. In terms of detection complexity, Y-Codes,
CI, THP and ARITH-MBER/EE have a similar detection com-
plexity, which is equivalent to symbol by symbol ML detection.
ML detection for X-Codes employs search over a finite subset
of some 2-D real search space. E-dmin has the worst ML detec-
tion complexity, due to a 4-D real search space. Y-Codes have a
detection complexity even lower than X-Codes, since the search
is essentially one dimensional (just checking at most three linear
relations between the two components of the received signal
vector, see Section V-C).

VIII. CONCLUSION

We proposed X-, Y-Codes/Precoders which can achieve high
rate and high diversity at low complexity by pairing the MIMO
subchannels prior to SVD precoding. It is observed that in-
deed pairing of channels can significantly improve the overall
diversity. Among all possible pairings, pairing the -th sub-
channel with the -th subchannel was found to be
optimal in terms of achieving the best overall diversity order.
One way of pairing the subchannels is by using rotation based
encoding, as was proposed for X-Codes/Precoders. The pro-
posed X-Codes/Precoders have good performance for well con-
ditioned channels. For ill-conditioned channels, we then pro-

posed Y-Codes/Precoders. It is shown by simulation and anal-
ysis that Y-Codes/Precoders achieve better error performance
at very low complexity, when compared to other precoders in
the literature. In practice, in order to improve the overall error
performance, it is possible to adaptively switch between X- and
Y-Codes/Precoders depending on the channel condition.

APPENDIX A
PROOF OF THEOREM 1

Towards proving Theorem 1, we shall find the following
Lemma useful (see [15, Prop. 1] for the proof).

Lemma 1: Consider a real scalar channel modeled by
, where . Let

, for be the cdf (cumulative density func-
tion) of , where is a constant and is a positive integer. Let

be the SNR. Then the probability of error is given
by , and the asymptotic error probability
for is given by

The proof of Theorem 1 is as follows. Since is a mono-
tonically decreasing function with increasing argument, we can
further upper bound (36) using (39) and (42) as follows:

(85)
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For a Rayleigh faded channel, the marginal pdf of the -th eigen-
value (for ) is given by [14]

(86)

where and
is a constant given in [14]. Using the pdf in (86), the cdf

(for ) is given by

(87)

Using Lemma 1 and (87), the bound in (85) can be further
written as

(88)

where and
.

APPENDIX B
PROOF OF THEOREM 2

The following lemma is useful towards proving Theorem 2.

Lemma 2: Given a set of probabilities
, it is true that

(89)

Proof: Expanding the product in , we
have

(90)

where is a symmetric multinomial in the
variables , and is defined as

(91)

In (91), the number of summands in the expansion of

is . Also, each such summand is a

product of probabilities, and therefore the value of each such
summand is bounded from above by 1. Therefore, an upper
bound to is given by

(92)

Taking only the positive terms in

into consideration, we have

(93)

Further, using the definition of in (91), each symmetric
multinomial can be upper bounded as

(94)

Applying (92), since, for , we have

(95)

Since and , we obtain

(96)

Using (96) in (93), we have

(97)

Further

(98)

Using this equality in (97) we have

(99)

This proves the lemma.

The proof of Theorem 2 now follows. For , there is
only one pair, and therefore the overall diversity order is the
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same as the diversity order of this pair. For , since
, applying Lemma 2, we have

(100)

Averaging over the channel fading statistics, we have

(101)

Based on (43), it can be argued that, for each there exists some
, such that for , it is true that ,

where is some positive constant independent of . Further,
let . Let and be defined as

(102)

Note that is the index of the pair which has the lowest
achievable diversity order among all the pairs. Since
there are finitely many pairs, there does exist a critical

SNR value, , beyond which

. Using this fact, and (101) it there-
fore follows that for

(103)

From (103), it is clear that

APPENDIX C
PROOF OF THEOREM 3

Let , where
is defined in (60). The objective is to find the

optimal which maximizes . The set for
4-QAM contains exactly 8 elements. Also due to sign symmetry
of this set (i.e., if then so do and

), there are actually only 4 distances to be computed.
For a given angle these distances are enumerated as follows:

Therefore, can be expressed in terms of these
distances as

It can be shown that for the maximization in (62), it suffices
to only consider the range of to be . Due to the or-
dering of singular values in the SVD decomposition, .
Hence, it can be concluded that

and therefore

Let

Then, is the minimum if the following condition is satisfied.

(104)

where

It can be seen that over the interval is a con-
tinuous and monotonically increasing function. The maximum
value of over this interval is . Therefore, we now con-
sider two situations depending upon whether is greater than
or less than .

If , then . Since is always less than

, we can conclude that the condition in (104) is never satisfied
and therefore is the minimum. Further, since
is a monotonically increasing function of and therefore the
solution to (62) is .

If , then . Since is a monotoni-
cally increasing function we observe that is the minimum
when or else is the minimum. Here is such that

and . Further, it is observed that is
a monotonically increasing function of whereas is mono-
tonically decreasing. Also, when . Therefore, it
can be concluded that is maximized when .
Hence for the solution to (62) is . We now solve for

from , which yields a quadratic equation in
, with one solution in given by

Combining, the optimal angles obtained for and
, we get the solution to the maximization problem in

Theorem 3.

APPENDIX D
PROOF OF THEOREM 4

We first get an expression for as defined in
(81). For any code vector at index which is even, the nearest
distance to any other code vector with even index is .
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The nearest distance to any code vector at odd index is
. The same holds true if is odd. Hence

is given by

(105)

Therefore, our objective is to solve the following constrained
min-max optimization problem:

(106)

In (106), we let , which is geometrically a straight
line w.r.t. passing through the origin and attaining a max-
imum value of

at

This is because, the transmit power constraint bounds the value
of as

In (106), we let . Since

we can express as

(107)

From (107), we observe that, if , then
represents a straight line with positive slope, having a value of

at and attaining a maximum value of

at

This maximum value is less than the maximum attained by .
Since both and have positive slope the minimum among

and is maximized at , which
implies that . The value of at is
the maximum value attained by . Therefore, when the channel
condition exceeds a certain threshold, it is optimal to allocate all
power to the stronger subchannel only.

On the other hand, if , then represents a
straight line with negative slope, whereas has positive slope,
and therefore the minimum between them is maximized when
they are both equal. Therefore, the optimal must satisfy

(108)

Using the fact that , the optimal
is given by

(109)

Using (109), the optimal value of for
is given by
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