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loss in code rate, the memory requirements would be drastically
improved. Specifically, the table siz& would be reduced to Ezio Biglieri, Fellow, IEEE John K. Karlof,Senior Member, IEEE
B = pt = p[4(k — d) — 1] where p is the precision of the and Emanuele Viterbayiember, IEEE
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direct, fixed-point implementation. Hence, this option offers evenAbstract—Given an abstract group ¢, an N-dimensional orthogonal
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set of vectorsGz. If G is a group of permutation matrices, the set
Gz is called a “permutation code.” For permutation codes a “stack
algorithm” decoder exists that, in the presence of low noise, produces
VIl. CONCLUSIONS the maximume-likelihood estimate of the transmitted vector by using far

We have introduced an enumeration scheme which encodes fewer computations than the standard decoder. In this correspondence, a
ve | u u : whi Al concept of equivalence of codes of different dimensions is presented

decodes high-efficiency runlength-limited permutation codes Witfhich is weaker than the usual definition of equivalent codes. We show
very low complexity. Unlike other enumerative techniques, the pethat every group code is (weakly) equivalent to a permutation code and
mutation codes offer error detection and correction capabilities ¥§ discuss the minimal degree of this permutation code.

well as a significant savings in storage requirements. As an exampl@ndex Terms—Gaussian channel, group codes, permutation codes.
a 99.2% efficient, rate 496/528), 6/3) code has been presented.
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abstract grouy with 4 elements, and an “initial vectot € R™, set of right cosets of{ in G. Then

R” the EuclideanV-dimensional space. A group codéis the orbit

of 2 underg, i.e., the set of vector&z. By assuming that the only g= U Hr

solution of the equatioiz = =, G € G, is G = I (the identity HreR

maitrix), the code¥’ hasAf elements. We say’ is an[M, N] group is the decomposition of into right cosets ofH. To everyg € G

code and denote, the code vector associated withe G. assign the permutation
When a codeword:, of X' is transmitted over the additive white )
Gaussian noise channel, the optimum (i.e., maximum-likelihood) my: R = R wherew,(Hr) = Hry.

decoder, upon receiving the noisy vector= z, + n, chooses as

. . . Th = Ghi ransitiv rmutation gr f r
the most likely transmitted vector the one that yields e sefl’ = {|g € U} is a transitive permutation group of degree

n = |G|/|H| and is the permutation representatiorahduced byH
[6]. Every transitive permutation representationdo€an be obtained
in this way. WhenH = {e}, the identity ofG, the representation
induced byH is called theright regular representatiorf G. The left

If G is not endowed with any special structure, decoding (i.e., tfpggmar representation can be defined in a similar way.

solution of (1)) is obtained by an exhaustive search among all theThe minimum » corresponds to the maximurf#{| such that
candidateg € G. This requires a number of calculations = NM  the representatiod” is faithful, i.e., such that the kernel of the
(in fact, M scalar products ofV terms each must be computed) a”qumomorphism ofg onto T is the identity. This kernel can be
a storage o/s = N M real numbers {/ vectors of V' components characterized as the maximal normal subgroupGo€ontained in
each). Define the number of bits per dimension carried by the [6, Ch. 7]. Consequently, if{' denotes the largest nonnormal
constellation as subgroup ofg that does not include normal subgroups@fother
than the identity, them is given by the ratio

. 2
min [[r — @5 |". @)

= log, M
N 9]

n = —-.

IH'|

then we haverc: = vs = N2™V, which shows that the complexity
of the decoder grows exponentially with the number of dimensions
and with the number of bits per dimension.p&rmutation codés a
group code obtained by applying to the initial vectoa groupG of G={(x,y. 22" =y> =" = (29)” = (y2)* = (22)° = 1).
permutations (i.e.7 is a group of permutation matrices). X is a
permutation code, then a less complex decoder that is equivalent’ften ¢ is a simple group of orde80. Let H = (x, y). Then, the
maximum likelihood is available. order of H is 12 and sinceG has no subgroups of order larger
Slepian [9] has studied permutation codes wgththe full sym- than 12, H is the largest nonnormal subgroup @fthat does not
metric groupS.,. In this case, a very simple decoder exists th&ontain any nontrivial normal subgroups @f Thusg is isomorphic
is equivalent to maximum likelihood. Karlof [4] has described & @ permutation groupl's, of degree5 and of order60. The
“stack algorithm” decoder for arbitrary permutation codes that, in trg€t of right cosets iR = {H, Hz, Hzy, Hzyx, Hzy2"} and
presence of low noise, produces the maximum-likelihood vector usihge = ((3. 4, 5), (2, 3)(4, 5), (1, 2)(4, 5)). For exampler. =
fewer calculations than the standard maximum-likelihood decoder(1. 2)(4. 5) since
Two [M, N] codesX; and X, are defined to besquivalentif )
there exists an orthogon& x N matrix O such thatOX; = A%. ?
Equivalent codes have congruent Voronoi regions and thus have the m(Hz) =Hz" =H
same error performance over the Gaussian channel. We extend the  7.(Hzy) =Hzyz = Hyzy = Hzy
)
)

Example 2.1—Icosahedral Group [7, p. 32]:et

definition of equivalence to codes in different dimensions with the . (37,
same number of elements. In this case, we say the two codes are
equivalent if they have the sangenfiguration matrixi.e., the Gram
matrix of their scalar products. Then the two codes have the same set
of distances between codewords as in the case of equivalent codd¥ow if & is Abelian or a Sylow-group then all its subgroups are
of the same dimension. We note that this definition is weaker th@grmal. So|H'| = 1, and hence: = |G|. If § = S, m = 3, or
the usual definition since the codes are not, in general, orthogohal> 5. then its only nontrivial normal subgroup is the alternating
transformations of each other. It what follows it should be clear fro@foupA.., while G does admit the subgrou,,—,. Hence
the context which definition of equivalence is being used. Sl

In this correspondence, using the fact that every group is isomor- n= 1Soi] =m.
phic to a permutation group, we find the minimum degree of this
permutation group, show that every group code is (weakly) equivalérus the close¢ is to an Abelian group, the larger is the valuenof

to a permutation code, and describe how to find the minimum degreerheorem 2.1: Suppose; is a finite abstract group with irreducible
of the equivalent permutation code.

real characters¢i, x2, ---, xp. Consider a faithful representation
p: G — G whereG is a group of orthogonalV x N matrices. Let
Il. FINDING AN EQUIVALENT PERMUTATION CODE X, be the character of and suppose
Let G be a group. Apermutation representationf degreen [6, P
Ch. 7] of G is a homomorphism of into S,,, or the image ofG Xp = Z @i Xi-
under the homomorphism. If the homomorphism is an isomorphism, =1

we say that the representationfathful.
In general, every groug; with order |G| is isomorphic to a
subgroup ofS|g|. Let H denote a subgroup & and letR be the X =Gz ={p(g)z: g € G}.

Letz € R" and form the group code
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SupposeH is a subgroup of and form the permutation represensepresentation may be prohibitively large. The procedure is greatly
tation ¢: G — T’ = {m4|lg € G} induced byH. Let y, be the simplified in the case that the image ©fis doubly transitive.

h ter ofy and . i,
character ole and Suppose Corollary 2.2: Supposed” is doubly transitive. Then

Yo = ib'v- 1) p is irreducible;
o pari 2) ¢ = 1&p (here, we usé to denote the identity representation
of G);

If ¢ is faithful andb; > a; Vi, thenT generates a permutation code
equivalent toX.

Proof: Let+); be the irreducible representation®fafforded by
xi. Without loss of generality assume that# 0 for 1 < i < m

3 n =N+1,
4) U is the identity matrix; and
5) V may be taken to be

anda; = 0 for i > m. Then there exists an orthogonal x N 7 v T v v
matrix U such that e n
. L . ) 0 B =2 0 -2 —72
Up(g)U” = &iZyaivi(g), Ygeg . . . . .
. . . . . 0 0 0 - Brn-1 —fn-1
(i.e.,p(g) is equivalent to the direct sum of copies of¢1(g) - - - am
copies ofy,, (¢)). Letz=Ux. ThenX and{ (T, a;¢;(9))T|g €G} whereny? =1, (n — j)vi + 87 =1, 8, — (n — j)v; = 0.
are equivalentV-dimensional codes. Proof: It is well known [3, p. 230] that a doubly transitive

We will considerI” as a group of: x n permutation matrix where permutation representation may be written as the direct sum of the
n = |G|/[H|. Then there exists an orthogonalx » matrix V' such identity representation and an irreducible representation. The matrix
that V is given in [2]. O

Vo)V = Biiaivi(g) @ (b — ai)vilg) @2,y bitilg), Given an irreducible representatign: G :— G, a method to

Vg € G. find an appropriaté® is to use a computer algebra system such
as MAGMA to print out all subgroups off of low index and
then, if necessary, use the charactersGoto find which of the
induced permutation representations contaifhis is illustrated in
the following example.

Let 2° be a zero-padded-dimensional version of (i.e., z° =
(@, 0---0)7). Then {(@r_,b:¢:(9))2"} and {¢(g)(VT %)} are
equivalentn-dimensional codes. Clearly, th&-dimensional code
{&™ a;4:(9)T} and the n-dimensional code{&?_ by, (g)a’}
have the same number of elements and the same configuration matrifsxample 2.3: Let G = the icosahedral group. This group has four
ThusT generates a permutation code equivalent'to O nontrivial irreducible orthogonal representations [7, p. 313], two of

. . degree3, one of degreel, and one of degreé. We label these

Corollqry 2.1: Every group code is equivalent to at least on%h p2, p3, pa and their characters,, vs. v, \4, respectively. We

permutation code. use MAGMA to find the low index subgroups ¢f. There are four

Proof: Let H = {e}. Then¢ is the right regular permutation ot jnqex 12 or less. They areH of index 5 from Example 2.1,
representation off, ¢(g) = O, bivi(g) whereb; = deg(vi) if 7 _ {y, z2*) of index 6, K = (x, z) of index 10, and £ = (xyz)
¢ is also irreducible over the complex field (i.e Isa c1:0n_1plex of index 12. Denote the induced permutation representations by
irreducible representation of the first kind) ahd= 5 or ; times

: ; ) on, O1, dx, and ¢, respectively. Onlygy and ¢z are doubly
deg (v;) otherwise. Ifa; > b;, then more copies af may be used] transitive. Thussy = 1 & ps andéz = 1 % ps and, by Corollary

Example 2.2: The 4-PSK signal set can be generated by th&2, any group codes generated/yor p, can be easily represented

following representation of the cyclic group of order four: by equivalent permutation codes.
To find permutation codes equivalent to group codes generated
0 1] [-1 0O(0 =111 0O . . .
{ 1 0} { 0 1} {1 0} {O 1} by p1 or p2, we investigate the images and characterssof and
a N ¢c which we denote byl'x, 'z, xx, and xc, respectively. The
using the initial vector = [1, 0]”. The irreducible real representa-orders of the five conjugacy classes @fare |C1| = 1, |C2| =

tions of this cyclic group are the representation above, denategh,  12: [Cs| = 12, [C4| = 15,, and|C5| = 20. The representatives of
the identity representation; (¢), associating+1 with all the groups the corresponding conjugacy classeslaf andT'c are
elements, and the alternating representation (¢), associating-1 (1), (1,2,8,10,6)(3,9,7,5, 4). (1,8,6,2,10)(3.7,4,9.5),
with the first and third elements @ and +1 with the second and .
2 [ = ¢ 5 ~
fourth elements. Consequently, letting denote the right regular i (3")(3’3)'(6’8)("9)‘(2; 3’3)_(4’ 7,6)(8,10,9)
representation, an orthogonal matfix exists such that and(1),(2,11,8,5,7)(3,10,12,4,9),(2,8,7,11,5)(3,12,9,10,4),
o 1.3)(2,4)(5,11)(6,8)(7,12)(9,10),
Lh(g)%’dlfl(g)@lﬂz(g):V(,b(g)vl. ( 3)( ) )(3 )(6,8)(‘, )(9 0),
(1.2.5)(3,7.9)(4,10,6)(8,12,11)

The matrixV' is found in [1
o respectively. The character table @fis

1 1 1 1

V= 1]1 -1 1 -1 Cq Co Cs Cy Cs
T20v2 0 —v2 o 1 1 1 1 1 1
0 V2 0 V2 i 3 1+V5  1-V5 g 0

By applyingV' T to the zero-padded version ef z° = [0, 0, 1, 0]7, 2 2
we get the initial vector of the permutation code equivalent to 4-PSK: v, 3 1-v5 14+5 -1 0

V2/2,0, —v2/2, 0] O 2 2
S - ) . . X3 4 -1 -1 0 1

In practice, it is often difficult to find the matricés andV" in the

proof of the previous theorem. Also, the degreef the permutation X4 5 0 0 ! -1
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Sincexx(g) andx 2 (g) equal the number of elements (¢) and  [4] J. K. Karlof, “Decoding spherical codes for the Gaussian chanieEE

6c(g) fix the following character inner products are easily computed  Trans. Inform. Theoryvol. 39, pp. 6065, Jan. 1993.
_, “Permutation codes for the Gaussian chann¢éEEE Trans.

1= 1 Z e (9)xs (9) Inform. Theory vol. 35, pp. 726-732, July 1989.
- |G] / XKAgIX3 Y [6] R. Kochenaiffer, Group Theory. London, U.K.: McGraw-Hill, 1965.
g€y [7] J. S. Lomont,Applications of Finite Groups. New York: Academic,
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1 (Ulm, Germany, June 29-July 4, 1997), p. 436.
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geG

Now, since every permutation representation contains the identity
representation we havex = 1@ ps @ ps andps = 1S p1 B p2 B pa. On Double-Byte Error-Correcting Codes
So we can represent group codes generatedppyand ps by
equivalent permutation codes but the degree wouldband the
matrix ¥ would have to be found. |

C.-L. Chen

We conclude with an example which summarizes the main resultAbstract—T his correspondence shows that there is a flaw in the results
of the correspondence presented in [1]. A large family of the codes constructed in [1] are not
' double-byte error-correcting codes as originally claimed.

Example 2.4: Let G be the icosahedral group. Consider the four-
dimensional group cod&’ = {ps(g)xz: g € G}. The image ofp;
can be found in [7, p. 313]. We use a madification of the algorithm
in (5) to find the optimal initial vector I. INTRODUCTION

Index Terms—bouble-byte error correction, error-correcting code.

@ = [0.68222, —0.49471, —0.44657, —0.30070] The authors in [1] claim that a class of double-byte error-correcting
codes over GIfg), ¢ a power of2, has been constructed. These codes
for this representation. The minimum squared Euclidean distancehave the parameters of code length= ¢™ and code redundancy
dZ.. = 0.447056. We are then under the hypothesis of Corollary < 2m + [%} + 1, for any integerm equal to or greater thaf.
2.1. We use the degree permutation representatiofy, = 1 4 p;  However, a close examination of the paper reveals a flaw in the proofs
and transform the zero-padded vector of theorems that renders the claim invalid. This correspondence is to
o . . o . point out the flaw in [1].
z" = [0, —0.68222, —0.49471, —0.44657, —0.30070] Five constructions of linear codes have been presented in [1]. Each
to the initial vector construction has been claimed to have a minimum distance of five and
thus have the ability to correct all double-byte errors. Constructions
V72" = [-0.61010, —0.27588, —0.06926, 0.26504, 0.69020] 3.2 and 5.1 are equivalent to cyclic codes extended by one byte.
. . The minimum distance of these codes can be shown to be five or
for the equivalent permutation code generated by more by counting multiple sets of consecutive roots in their generator
We finally note that in practice the code is transmitted over the

additive white Gaussian noise (AWGN) channel using the IO\I\P_olynomlals [2]. The codes constructed from ConstrucFlon 3.1 are
; . o - . shortened codes of those constructed from Construction 3.2. The
dimensional constellation in order to save on the spectral efficiency. . . - . .
. e S inimum distance of these codes is at least five. The large family of

The received vector is first zero-padded as for the initial vector

and then transformed intp = VZr®. Now, y can be maximum- codes constructed from Constructions 3.3 and 3.4 are not double-byte

likelihood (ML) decoded with the permutation code decoder. We no?éror correcting ches as cIaumed_ by the authors. Counter examples
. . . Will be presented in the next section to show that codes constructed

that this is an orthogonal transformation on the received vector whic . : . .
: o . - ccording to Constructions 3.3 and 3.4 contain codewords of weight
does not modify the additive noise statistics. In the above examplé - o
L . . : . . four and thus do not have a double-byte error-correcting ability.
the operation is particularly convenient since the code dimension'is

only increased by one. On the other hand, if we wanted to use the

three-dimensioanl codes generated by the representations p. Il. COUNTER EXAMPLES
we would need to use a degré2 permutation representation. The propositions of Theorems 3.3 and 3.4 in [1] state that the
codes obtained from Constructions 3.3 and 3.4 in [1] have a min-
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