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Abstract—In this paper we introduce the two-modular Fourier
transform of a binary function f : R → R defined over a finite
commutative ring R = F2[X]/ϕ(X), where F2[X] is the ring of
polynomials with binary coefficients and ϕ(X) is a polynomial
of degree n, which is not a multiple of X . We also introduce
the corresponding inverse Fourier transform. We then prove the
corresponding convolution theorem.

Index Terms—two-modular Fourier transform, binary func-
tions, binary groups

I. INTRODUCTION

Harmonic analysis of binary functions is a powerful tool
which allows to derive deep results in computational com-
plexity (cf. the PCP problem in [1, Chap. 22]). When the
function takes scalar binary values, then, this scalar value can
be mapped to the set {+1,−1} and we get a classical problem
of harmonic analysis of complex-valued functions. When the
function takes values in a binary vector space, then we can
no more use the same method and we have to find a Fourier
transform which complies with the characteristics 2.

The Fourier transforms of functions over finite abelian
groups f : G → C (complex field) or f : G → Z (ring
of integers) have been extensively studied [3]. For complex
valued functions, and when the group is cyclic, the Fourier
transform is the well-known discrete Fourier Transform [3].
For complex valued functions, and if the group G is Cn

2

where C2 is the cyclic group of order 2, the Fourier transform
is the well known Hadamard transform, commonly used for
analysing Boolean functions [2].

A less common case occurs for f : G → R, where R
is a ring of characteristics p. For any prime p co-prime with
the order of G, the p-modular Fourier transform is defined
in a way similar to the case where f is complex-valued.
However, when p is not coprime with the order of the group,
and especially in the case of p = 2 and the order of G is 2n,
the Fourier transform cannot be handled in the same way.

In this paper, we introduce the two-modular Fourier trans-
form of a binary function f : R → R defined over a
finite commutative ring R = F2[X]/ϕ(X), where F2[X] is
the ring of polynomials with binary coefficients and ϕ(X)
is a polynomial of degree n, which is not a multiple of X .
The function f can be viewed as a binary function over the
elements of the additive group of R, i.e., f : G → R, where
G = Cn

2 = C2 × · · · × C2 is the direct product of n copies

of C2. We then introduce the corresponding inverse Fourier
transform, and prove the corresponding convolution theorem.

Our two-modular Fourier transform is based on the two-
modular indecomposable representations of the group C2 in
dimension two and defines n + 1 “spectral coefficients” as
matrices over R of size 2k × 2k, for k = 0 . . . , n. Our two-
modular Fourier transform preserves the structure of the ring
R, which is lost if the characteristic zero Fourier transform
were used. This Fourier transform may have broad applications
to problems, where binary functions need to be reliably
computed or for classification of binary functions.

II. BACKGROUND

A. Fourier Transform of f : G→ C

The classical notion of Fourier transform over arbitrary
finite groups is based on the degree-n representations of
group elements by complex n × n matrices in GL(n,C). It
generalizes the well known discrete Fourier transform, which
is naturally defined over a cyclic group, which has n distinct
scalar representations ρk, given by the powers of the n-th roots
of unity

ρk = {exp(i2πkℓ/n), ℓ = 0, . . . n− 1}

for k = 0, . . . n−1. In the general case where G is not cyclic,
the group representations are matrices and we have

Definition 1: ([3]) Given a finite group G, the Fourier
transform of a function f : G → C evaluated for a given
representation ρ : G → GL(dρ,C) of G, of degree dρ, is
given by the dρ × dρ matrix

f̂(ρ) =
∑
a∈G

f(a)ρ(a)

The complete Fourier transform is obtained by considering the
set {ρk} of all inequivalent representations of G. The matrix
entries of ρk are mutually orthogonal matrix functions over
G and {ρk} form the Fourier basis. Since the dimension of
the ‘frequency domain’ space is equal to the dimension of the
‘time domain’ space we have∑

k

d2ρk
= |G|



Definition 2: ([3]) The inverse Fourier transform evaluated
at a ∈ G is given by

f(a) =
1

|G|
∑
k

dρk
Tr

(
ρk(a

−1)f̂(ρk)
)

where Tr(·) is the trace of the matrix.
The above Fourier transform is well defined for complex

valued functions over finite groups G and can be used to
transform convolution in the ‘time-domain’ defined as [3]

(f1 ∗ f2)(a) =
∑
b∈G

f1(ab
−1)f2(b) (1)

into the product in the ‘frequency domain’ i.e., [3]

̂(f1 ∗ f2)(ρ) = f̂1(ρ)f̂2(ρ)

B. Fourier Transform of f : G→ K

If we are interested in computing the Fourier transform of
functions over a finite group G taking values in a finite field K
of prime characteristic p we need to modify the Definition 1
and work with p-modular representations of the group G. The
representations ρ(a) are now in GL(n,K) i.e., n×n matrices
with entries in K.

Definition 3: A p-modular representation of a group G
over a field K of prime characteristic p is a group homomor-
phism π which associates group elements to k × k matrices
over K, i.e., π : G 7→ GL(k,K), such that the addition of
two group elements corresponds to the matrix multiplication
of the corresponding representation matrices. �
The case where K = C has characteristic zero and yields
the well known representation theory [4]. Definitions 1 and 2
provide the Fourier transform pair only if p is co-prime with
|G|.

III. THE TWO-MODULAR FOURIER TRANSFORM

In this paper, we focus on binary functions f : R → R
defined over a finite commutative ring R = F2[X]/ϕ(X),
where ϕ(X) is a polynomial of degree n, which is not a
multiple of X . The elements of R can be represented as
binary coefficient polynomials of degree less than n, where
the ring operations are polynomial addition and multiplication
mod ϕ(X).

Note that G = C2 × · · · × C2 (the direct product of n
copies cyclic groups of order two) coincides with the additive
group of R, where the elements can also be represented as
binary vectors b of length n with mod two addition (or bitwise
exclusive-OR). This means that we are actually working with
functions f : G → R. In the special case where ϕ(X) is an
irreducible polynomial R is the finite field K = F2n .

Here, we consider the two-modular representation of C2 =
{0, 1} as 2 × 2 binary matrices, i.e., π1(C2) = {E0, E1},
where

π1(0) = E0 =

(
1 0
0 1

)
and π1(1) = E1 =

(
1 1
0 1

)

Then, we can represent the n-fold direct product G = C2 ×
· · · ×C2 = Cn

2 as tensor product of the representations of C2

[4], i.e.,

πn(G) , π1(C2)⊗· · ·⊗π1(C2) = πn−1(C
n−1
2 )⊗π1(C2) (2)

Note that the elements of G are n-bit binary vectors b and the
group operation ⊕ is bitwise exclusive-OR. The corresponding
representation matrix of an element b = (b1, . . . , bn) is ([4])

Eb , π1(b1)⊗ · · · ⊗ π1(bn) . (3)

We also define the representation of the trivial group {0} as
π0({0}) , 1.

Lemma 1: The representations πk for k = 0, . . . , n are
faithful. �
Proof: For k = 0 and 1 it is straightforward. For k ≥ 2
we prove it by induction using the recursion (2). Thus it is
enough to consider the case k = 2 and show that π2 is a
group homomorphism between C2

2 and π2(C2
2 ), i.e., that

π2(b1 ⊕ c1, b2 ⊕ c2) = π2(b1b2) · π2(c1c2)

or equivalently,

Eb1⊕c1,b2⊕c2 = Eb1b2 · Ec1c2 .

From (2) we have π2 = π1 ⊗ π1 then

Eb1b2 · Ec1c2 = (Eb1 ⊗ Eb2) · (Ec1 ⊗ Ec2)

= (Eb1Ec1)⊗ (Eb2Ec2)

= Eb1⊕c1,b2⊕c2 (4)

�
We can think of the the Fourier transform as a unitary

transformation of a vector representing the values of the
function f on a given ordered set of elements of G. In the
following, we assume that such order is determined by the
decimal representation D(g) ∈ {0, . . . , |G|−1} corresponding
to the binary representation of g ∈ G.

Next, we specialize the definition of convolution in (1) for
the case of additive groups.

Definition 4: Given a pair of functions f1 and f2 : G→ R
we define the convolution product f3 : G→ R as

f3(g) = f1(g) ∗ f2(g) =
∑
u∈G

f1(u+ g)f2(u)

�
It can be easily shown that the convolution product is com-
mutative.

The aim is to project the function f : G→ R on a specific
‘Fourier basis’ {ψk} where k is the ‘frequency index’. The
Fourier basis vectors are made up of all the two-modular
representations (2k×2k matrices) of the elements of the nested
subgroups of G = Cn

2 , (n = log2 |G|), namely

{0}▹H1 ▹ · · ·▹Hk ▹ · · ·▹Hn−1 ▹G

where H1 = C2, H2 = C2 × C2, H3 = C2 × C2 × C2, etc.



Thus we have

ψ0 = 1

ψ1 = {E0, E1}
ψ2 = {E00, E11, E01, E10}
ψ3 = {E000, E111, E001, E110, E010, E101, E011, E100}

...

where the scalar 1 is the representation of the trivial group
{0}. The projection of f on the k-th Fourier basis vector ψk,
for k = 0, . . . , n, gives the corresponding Fourier coefficient
f̂k.

Definition 5: We abstractly define the k-th Fourier coeffi-
cients as the 2k × 2k matrix

f̂k = ⟨f,ψk⟩ =
∑
g∈G

f(g)Eτk(g) (5)

where Eτk(g) is one of the elements in ψk selected by g
according to a surjective group homomorphism τk : G 7→ Hk

and Hk = Ck
2 are the nested subgroups of G = Gn = Cn

2 for
k = 0, . . . , n. �

We can represent the elements of Hk as n-bit vec-
tors with the first n − k bits set to zero i.e., Hk =
{(0, . . . , 0, bn−k+1, . . . , bn)|bi ∈ {0, 1}}. Then we consider
the quotient groups Gn/Hk whose elements are represented
as n-bit vectors with the last k bits set to zero i.e., Gn/Hk =
{(b1, . . . , bn−k, 0, . . . , 0)|bi ∈ {0, 1}}. Note that these repre-
sentations yield the well-known standard array of Gn as the
direct product of the subgroups Hk and Gn/Hk.

Let dk be the element of Gn with an n-bit binary repre-
sentation of the decimal number 2k−1 (i.e., the all-zero vector
with a 1 in the (n − k + 1)-th position). Let us consider the
binary subgroups C2 = ⟨dk⟩ = {0, dk} generated by dk. Then
we have the following decomposition

G︸︷︷︸
2n

≈ Hk/⟨dk⟩︸ ︷︷ ︸
2k−1

×⟨dk⟩︸︷︷︸
2

×G/Hk︸ ︷︷ ︸
2n−k

(6)

for k = 1, . . . , n− 1, where cardinalities of the subgroups are
indicated below each group. In the following we will represent
the elements of G = Cn

2 as the leafs of a binary tree of depth
n, where the 2n leafs are labeled with the n-bit binary vectors
following (6). The intermediate nodes at level k in the tree
can be labeled with the elements of the nested subgroups Hk.

In Definition 5, the k-th Fourier coefficients f̂k can be
explicitly computed by collecting the terms with the same
Eτk(g), i.e.,

f̂k =
∑

u∈Hk/⟨dk⟩


 ∑
g∈Gn/Hk

f(u+ g)

Eσk(u)

+

 ∑
g∈Gn/Hk

f(u+ dk + g)

E
σk(u)

 (7)

for k = 0, . . . , n, where σk(u) maps the elements u ∈
Hk/⟨dk⟩ to binary labels consisting of the last k bits of the n-
bit representation of u. The corresponding σk(u) is the binary
complement of the bits of σk(u).

Example 1: The Fourier coefficients for a function over
G3 = C3

2 can be computed using H1 = C2 and H2 = C2×C2

f̂0=
∑
g∈G3

f(g)ψ0 =
∑
g∈G3

f(g)

f̂1=
∑

g∈G3/H1

f((000)︸ ︷︷ ︸
u

+g)E0 + f((000)︸ ︷︷ ︸
u

+(001)︸ ︷︷ ︸
d1

+g)E1

f̂2=
∑

u∈H2/⟨d2⟩

∑
g∈G3/H2

f(u+g)Eσ2(u)+f(u+(010)+g)Eσ2(u)

f̂3=
∑

u∈G3/⟨d3⟩

f(u)Eσ3(u) + f(u+ (100))E
σ3(u)

Note that we can think of f̂0 as the ‘DC-component’ of f .
For convenience we index the elements of Gn with integers
from 0 to 2n − 1 derived from the binary representation, as
demonstrated in the tables below when n = 3. The tables also
list H1, H2, G3/H1, and G3/H2.

D(g) G3

0 000
1 001
2 010
3 011
4 101
5 101
6 110
7 111

H1

0 000
1 001

H2

0 000
1 001
2 010
3 011

G3/H1

0 000
2 010
4 100
6 110

G3/H2

0 000
4 100

Fig. 1 illustrates the binary tree for the Eb, where b is a
binary vector with k bits and k is the depth in the tree. This
tree is constructed as follows. A node labeled with Eb at level
k−1 (the number of bits in b) splits into two branches leading
to an upper node labeled by Eb,0 (append 0) and a lower node
labeled by Eb,1 (complement bits of b and append 1). This
pair of nodes with a common father correspond to Eσk(u) and
E

σk(u)
, respectively.

Fig. 2 illustrates the binary tree with nodes labeled with the
binary vectors corresponding to the subset of group elements,
where the function f is evaluated in (7). At depth k, in each
pair of the nodes with a common father, the upper binary
vector represents the u+g and the lower represents u+g+dk,
where g ∈ G3/Hk for a given u. This tree is used to compute
the sums over g ∈ Gn/Hk in (7).

Combining the labels from both trees, for each pair of nodes
at level k with the same father node at level k − 1, we are



{0} ▹ H1 ▹ H2 ▹ H3
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Fig. 1. Labeling tree the Fourier basis elements. The nodes level k are
labeled with the representations of the elements of the subgroup Hk .

able to compute ∑
g∈Gn/Hk

f(u+ g)

Eσk(u)

and  ∑
g∈Gn/Hk

f(u+ dk + g)

E
σk(u)

respectively, where Eσk(u) and E
σk(u)

are the labels from Fig.
1, while the arguments of f in the sums are the labels given
in Fig. 2. �

Example 2: The Fourier coefficients for a Dirac function
over G3, i.e., δ(0) = 1 and 0 otherwise, are given by

δ̂(g) = [1, E0, E00, E000]

�

IV. THE INVERSE TWO-MODULAR FOURIER TRANSFORM

In the case of binary functions considered in this paper,
Definition 2 cannot be used and we need to replace the
1

|G|Tr(·) operator with the following group homomorphism
Φk : πk(C

k
2 ) → F2 from the set of two-modular represen-

tations of Ck
2 to {0, 1}, for k = 1, . . . , n.

Definition 6: Let πk(g) = Eτk(g) = Eg be the 2k × 2k

representation of an element g ∈ Ck
2 then we define the

character of g as

Φk(Eg) , (Eg)(1,2k) ∈ {0, 1}

G3 ▹ G3/H1 ▹ G3/H2
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Fig. 2. Labeling tree of the arguments of f in the sums in (7) that multiply
the Fourier basis elements. The bit vector labels of the elements in G are
obtained by letting b1, b2, and b3 vary in {0, 1}.

i.e., Φ extracts the top-right corner element of the matrix Eg.
Note that only the representation of the all ones vector 1 yields
Φ(E1) = 1, while any other binary vector representation is
mapped to zero. �

Lemma 2: Let Eg1 , Eg2 be the 2k × 2k representation of
the elements g1, g2 ∈ Ck

2 , respectively. We have

Φk(Eg1 · Eg2) = Φk(Eg1⊕g2)

=

{
1 iff g1 ⊕ g2 = 1( or g1 = ḡ2)
0 otherwise (8)

�
Proof: The first equality descends directly from (4) and from

the fact that Φ is a group homomorphism, while the second
from Definition 6. �

Theorem 1: The inverse Fourier transform is given by

fj = f̂0 +
n−1∑
k=1

Φk

(
Ẽj,kf̂k

)
(9)

where j = 0, . . . , 2n − 1, and the Ẽj,k are given by

Ẽj,k =


Eσk(u) if j ∈ {D(u+ g) |

u ∈ Hk/⟨dk⟩, g ∈ Gn/Hk}
E

σk(u)
if j ∈ {D(u+ dk + g) |
u ∈ Hk/⟨dk⟩, g ∈ Gn/Hk}

(10)

�



Proof: Substituting (7) in (9) we have∑
g∈Gn

f(g) +

n−1∑
k=1

∑
u∈Hk/⟨dk⟩

 ∑
g∈Gn/Hk

f(u+ g)Φk

(
Ẽj,kEσk(u)

)

+
∑

g∈Gn/Hk

f(u+ dk + g)Φk

(
Ẽj,kEσk(u)

)
(11)

Using Lemma 2 and (10), either f(u + g) or f(u + dk + g)
remains in the inner sum of the second term in (11). For k =
1, . . . , n−2, by adding modulo two with the first term in (11)
yields, ∑

u∈Hk/⟨dk⟩

∑
g∈Gn/Hk

f(u+ g)

if
j ∈ {D(u+ g) | u ∈ Hk/⟨dk⟩, g ∈ Gn/Hk}

and ∑
u∈Hk/⟨dk⟩

∑
g∈Gn/Hk

f(u+ dk + g)

if

j ∈ {D(u+ dk + g) | u ∈ Hk/⟨dk⟩, g ∈ Gn/Hk} .

When k = n− 1, we have g = 0 and fj is given by

fj =


f(u) if j = D(u)

for some u ∈ Hn−1/⟨dn−1⟩
f(u+ dn−1) if j = D(u+ dn−1)

for some u ∈ Hn−1/⟨dn−1⟩
This completes the proof. �

V. THE CONVOLUTION THEOREM

Theorem 2: Given a pair of functions f and h : G → R
we obtain Fourier transform of the convolution product as

f̂ ∗ h = f̂ ⊙ ĥ

where ⊙ represents the component wise product of the corre-
sponding Fourier coefficient matrices. �

Proof: Using (5) we can simply write the product of the
k-th Fourier coefficient matrices of f and h as

f̂kĥk =
∑
g∈G

f(g)Eπk(g)

∑
g′∈G

h(g′)Eπk(g′)

Substituting w = g + g′, we obtain

f̂kĥk =
∑
w∈G

∑
g∈G

f(g)h(g + w)Eπk(g)Eπk(g+w)

=
∑
w∈G

∑
g∈G

f(g)h(g + w)Eπk(g)Eπk(g)+πk(w)

=
∑
w∈G

∑
g∈G

f(g)h(g + w)Eπk(w)

=
∑
w∈G

(f ∗ h)(w)Eπk(w) (12)

where Eπk(g)Eπk(g)+πk(w) = Eπk(w) is due to the group
homomorphism property. �

VI. CONCLUSIONS

In this paper we defined the two-modular Fourier transform
of a binary function f : R → R defined over a finite
commutative ring R = F2[X]/ϕ(X), where ϕ(X) is a
polynomial of degree n, which is not a multiple of X . We
also introduced the definition of the corresponding inverse
Fourier transform. The major difference from the traditional
modular inverse Fourier transform is that the trace is replaced
by a group homomorphism extracting the top right corner
element of a matrix. We finally proved the corresponding
convolution theorem. This Fourier transform may have broad
applications to problems where binary functions need to be
reliably computed or in classification of binary functions.
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