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Abstract— We consider a block coded modulation scheme for
a 2 × 2 MIMO system over slow fading channels, where the
inner code is the Golden Code. The scheme is based on a set
partitioning of the Golden Code using two-sided ideals. A lower
bound for the minimum determinant is given by the minimum
Hamming distance. Performance simulations show that our GC-
RS schemes achieve a significant gain over the uncoded Golden
Code.

I. INTRODUCTION

The wide diffusion of wireless communications has led to
a growing demand for high-capacity, highly reliable transmis-
sion schemes over fading channels.
In order to exploit fully the available diversity, a new class of
code designs, called Space-Time Block Codes, was developed.
In the coherent, block fading model, the fundamental criteria
for code design are the rank and determinant criteria [7].
Codes meeting these two criteria can be constructed using
tools from algebraic number theory. In the 2× 2 MIMO case,
Belfiore et al [1] designed the Golden Code G, a full-rate,
full-rank and information lossless code satisfying the non-
vanishing determinant condition.

In this paper we focus on the slow block fading channel,
where the fading coefficients are assumed to be constant for
a certain number of time blocks L. With slow fading the
ergodicity assumption must be dropped and the diversity of
the system is reduced, leading to a performance loss.
This loss can be compensated using coded modulation: in a
general setting, a full-rank space time block code is used as an
inner code to guarantee full diversity, and is combined with
an outer code which improves the minimum determinant.
We will take as our inner code the Golden Code: we focus on
the problem of designing a block code {X = (X1, . . . , XL)},
where each component Xi is a Golden codeword.
In order to increase the minimum determinant, one can con-
sider the ideals of G. In [4], Hong et al. describe a set
partitioning of the Golden Code, based on a chain of left
ideals Gk whose minimum determinant is 2k times that of G.
Their scheme combines two encoders: a trellis encoder whose
output belongs to the quotient Gk/Gk+1, and a lattice encoder
for Gk+1 (Trellis Coded Modulation).

The global minimum determinant for a block code is

∆min = min
X6=0

det

(
L∑

i=1

XiX
H
i

)
(1)

As we will see, the expression ∆min is difficult to handle
because it involves the Frobenius norm of the codewords
and the multiplicative structure of G. The codes described
in [4] are designed to maximize the approximate parameter
∆′

min = minX6=0

∑L
i=1 det

(
XiX

H
i

)
and so a priori they

might be suboptimal; we will here consider the mixed terms
and so obtain a tighter bound for ∆min.
A rough estimate of the coding gain for the block code comes
from its minimum “Hamming distance”, that is, the minimum
number of nonzero components. To increase the Hamming
weight, we will take as our outer code an error correcting
code over the quotient of G by one of its ideals.

The paper is organized as follows: in §II, we recall the
algebraic construction of the Golden Code and its properties.
In §III, we describe the general setting for Golden block codes
and the coding gain estimates; in §IV, we study the “good
ideals” of G for binary partitioning. In §V we introduce Reed-
Solomon block codes over G and discuss their performance
obtained through simulation results.

II. THE GOLDEN CODE

Since we are interested in the partitioning of the Golden
Code, we begin by recalling its algebraic construction.
The Golden Code G, introduced in [1], is optimal for the case
of 2 transmit and 2 or more receive antennas. It is constructed
using the cyclic division algebra A = (Q(i, θ)/Q(i), σ, γ)
over the number field Q(i, θ), where θ =

√
5+1
2 is the golden

number.
The set A is the Q(i, θ)-vector space Q(i, θ)⊕Q(i, θ)j, where
j is such that j2 = γ ∈ Q(i)∗, xj = jx̄ ∀x ∈ Q(i, θ).
Here we denote by σ the canonical conjugacy sending an
element x = a + bθ ∈ Q(i, θ) to x̄ = a + bθ̄, where
θ̄ = 1− θ = 1−√5

2 , θθ̄ = −1.
As its degree over its center Q(i) is 4, A is also called a
quaternion algebra.
If we choose γ = i, γ is not a norm in Q(i, θ)/Q(i), and this
implies that A is a division algebra [1].
Since Q(i, θ) is a splitting field for A, A is isomorphic to a
subalgebra of M2(Q(i, θ)). The inclusion is given by

x 7→
(

x 0
0 x̄

)
, ∀x ∈ Q(i, θ), j 7→

(
0 1
i 0

)
(2)

That is, every element X ∈ A admits a matrix representation

X =
[

x1 x2

ix̄2 x1

]
, x1, x2 ∈ Q(i, θ) (3)
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If we require that the matrix elements of X belong to the ring
of integers Z[i, θ] of Q(i, θ), then X belongs to the Z[i]-order

O =
{[

x1 x2

ix̄2 x1

]
, x1, x2 ∈ Z[i, θ]

}
(4)

Since x ∈ Z[i, θ] implies that N(x) = xx̄ ∈ Z[i], we have
det(X) ∈ Z[i], so |det(X)| ≥ 1 for every X ∈ O \ {0}.
The Golden Code is defined as a right principal ideal of O of
the form G = 1√

5
αO, where α = 1+ iθ̄. We call A the matrix

representation of α.
Every codeword in G is of the form X = 1√

5
AW , with W ∈

O:

X =
1√
5

[
α(a + bθ) α(c + dθ)
ᾱi(c + dθ̄) ᾱ(a + bθ̄)

]
(5)

X carries four information symbols (a, b, c, d) ∈ Z[i]4: the
code is full-rate.

Remark 1. We have seen that ∀W ∈ O\{0}, |det(W )| ≥ 1.
Consequently, ∀X ∈ G \ {0}, |det(X)|2 ≥ δ = 1

5 .
In fact, if X = A√

5
W , |det(X)| = |N(α)|

5 |det(W )| =∣∣∣det (W )√
5

∣∣∣, since |N(α)| = |2 + i| = √
5.

Even though G is defined as a right ideal, it is easy to see
that actually it is a two-sided ideal: if w = w1 + w2j ∈ O,
w1, w2 ∈ Z[i, θ], α(w1 + w2j) = w1α + w2jᾱ = (w1 +
iθw2j)α, observing that αiθ = iθ + 1 = ᾱ. But

ξ : w1 + w2j 7→ w1 + iθw2j (6)

is an homomorphism of Z[i]-modules that maps O into itself
bijectively, therefore αO = Oα.

III. GOLDEN BLOCK CODES

We now focus on the case of a slow block fading channel,
meaning that the channel coefficients remain constant during
the transmission of L codewords. The transmitted signal X =
(X1, . . . , XL) will be a vector of Golden codewords in a block
code S ⊂ GL. The received signal is

Y = HX + W, X,Y,W ∈ C2×2L, (7)

where the entries of H ∈ C2×2 are i.i.d. complex Gaussian
random variables with zero mean and variance per real dimen-
sion equal to 1

2 , and W is the Gaussian noise with i.i.d. entries
of zero mean and variance N0. We consider the coherent case,
where the channel matrix H is known at the receiver.
The pairwise error probability is bounded by [7]

P (X 7→ X′) ≤ 1(√
∆min

ES
N0

)4 , (8)

In the above formula, ES is the average energy per symbol
of S and ∆min = minX6=0 det

(∑L
i=1 XiX

H
i

)
. In order to

minimize the PEP for a given SNR, we should maximize
∆min.
To compare the error probability of a block code with that of

the uncoded Golden Code of equal length L with the same
data rate, we can employ the asymptotic coding gain [4]:

γas =
√

∆min/ES√
∆min,U/ES,U

, (9)

where ∆min, ∆min,U and ES , ES,U are the minimum deter-
minants and average constellation energies of the block code
and the uncoded case respectively.

A. Estimates of the minimum determinant

First of all, we give a more explicit expression for
det(XXH).
We define the quaternionic conjugacy in the algebra A:

X =
[

x1 x2

ix2 x1

]
7→ X̃ =

[
x1 −x2

−ix2 x1

]

∀X ∈ A, X̃X = det(X)1 and det(X) = det(X̃), where 1
denotes the identity matrix.
Recall that the Frobenius norm of a matrix M = (mi,j) is

‖M‖F =
√∑

i,j |mi,j |2. Then ∀X = (X1, . . . , XL) ∈ AL,
the following formula holds:

det(XXH) =
L∑

i=1

|det(Xi)|2 +
∑

j>i

∥∥∥X̃jXi

∥∥∥
2

F
(10)

These simple properties of the quaternionic conjugate and of
the Frobenius norm will be useful in the sequel:

a) If W ∈ O, ‖W‖2F ∈ Z.
b) Let X,Y be two 2× 2 complex-valued matrices. Then

‖X‖2F ≥ 2 |det(X)| ,
∥∥∥X̃Y

∥∥∥
2

F
≥ 2 |det(X)| |det(Y )|

(11)

c) If X1, X2 ∈ G \ {0},
∥∥∥X̃2X1

∥∥∥
2

F
≥ 2

5
= 2δ (12)

From equation (11), it follows that the determinant is
bounded from below by the squared Hamming weight:

Lemma 1. Let X = (X1, . . . , XL) ∈ GL. Then

det(XXH) ≥
(

L∑

i=1

|det(Xi)|
)2

≥ (wH(X))2δ,

where wH(X) = #{i ∈ {1, . . . , L} |Xi 6= 0} is the Hamming
weight of the block X.

IV. THE QUOTIENT RING G/2G
The choice of a good block code of length L will be based

on a partition of the Golden Code. To obtain a binary partition,
which is simpler to use for coding and fully compatible with
the choice of a QAM constellation, we must use ideals whose
index is a power of 2, that is, whose norm is a power of 1+ i.
A similar construction appears in [4] and employs one-sided
ideals. However, in order to have good estimates of the coding
gain, because of the mixed terms in the minimum determinant
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formula (10), we need to take the ring structure into account:
we will choose two-sided ideals to ensure that the ideals
are invariant with respect to the quaternionic conjugacy and
multiplication on both sides, and that the quotient group is
also a ring.

A. Two-sided ideals of G
The existence of two-sided ideals is related to the ramifica-

tion of primes over the base field. We refer the reader to [8]
and [6] for an exposition of these topics.
As we have seen in §II, O = Z[i, θ]⊕ Z[i, θ]j is a Z[i]-order
of A, and G =

√
5G = αO is a two-sided principal ideal of

O.
√

5G is also a prime ideal since
√

5G ∩Z[i] = (2 + i) is a
prime ideal of Z[i].
Observe that the prime ideals (2 + i) and (2 − i) of Z[i] are
both ramified in A: in fact

(2 + i) = (α)2, and (2− i) = (α′)2, where α′ = 1− iθ̄

(Remark that α = iθᾱ, α′ = −iθ̄ᾱ′).
By computing the reduced discriminant d(O) =√
|det(tr(wkwl))|Z[i], where {w1 = 1, w2 = θ,w3 = j,

w4 = θj} is the basis of O over Z[i], one can show that O
is a maximal order of A, and that (2 + i) and (2− i) are the
only ramified primes in A.

Then the prime two-sided ideals of O are either of the form
pO, where p is prime in Z[i], or belong to {αO, α′O}. In fact,
the following theorem holds:

Theorem 2. The two-sided ideals of a maximal R-order O of
a quaternion algebra form a commutative group with respect
to multiplication, which is generated by the ideals of R and
the ideals of reduced norm P , where P varies over the prime
ideals of R that are ramified in the algebra.

It follows that the only two-sided ideals of G whose norm
is a power of 1+ i are the trivial ideals of the form (1+ i)kG.

B. The quotient ring G/2G
Consider the ideal 2O. It is easy to check that G =

√
5G

and 2O are coprime ideals, that is G + 2O = O and as a
consequence, G ∩ 2O = G2O = 2G. Recall the following
basic result:

Theorem 3 (third isomorphism theorem for rings). Let I
and J be ideals in a ring R. Then I

I∩J
∼= I+J

J .

If I = G and J = 2O, we get G
2G
∼= O

2O .
If πG : G → G/2G and πO : O → O/2O are the canonical
projections on the quotient, the ring isomorphism is simply
given by πG(g) 7→ πO(g).
We denote the image of x ∈ O through πO with [x].

Lemma 4. O/2O is isomorphic to the ring M2(F2[i]) of 2×2
matrices over the ring F2[i].

Proof. We use the well-known lemma [5]:

Lemma 5. Let R be a ring with identity, I a proper ideal of
R, M a free R-module with basis X and π : M → M/IM

the canonical projection. Then M/IM is a free R/I-module
with basis π(X) and |π(X)| = |X|.

This Lemma implies that O/2O is a free Z[i]/2-module,
that is a free F2[i]-module, of dimension 4. We can construct
an explicit homomorphism of F2[i]-modules φ : O/2O →
M2(F2[i]) by specifying the image of the basis {1, θ, j, θj}:

φ([1]) = 1, φ([θ]) =
(

1 + i 1
i i

)
,

φ([j]) =
(

0 1
i 0

)
, φ([θj]) = φ([θ])φ([j])

One can easily check that φ is bijective (the images of the
basis elements being linearly independent) and that it is a ring
homomorphism.

In order to find an explicit isomorphism between G/2G and
M2(F2), consider the following diagram, where πG : G →
G/2G is the projection on the quotient, ϕ comes from the third
isomorphism theorem for rings, and φ : O/2O → M2(F2[i])
is the mapping defined in Lemma 4:

G πG−−−−−→ G/2G ϕ−−−−→ O/2O φ−−−−→ M2(F2[i])

The basis {α, αθ, αj, αθj} of G as a Z[i]-module is also a
basis of G/2G as an F2[i]-module. The isomorphism ϕ is
simply the composition of the inclusion G ↪→ O and the
quotient mod 2O. We can compute the images through φ of the
basis vectors: observing that α = 1+ i− iθ, αθ = θ− i, αj =
(1 + i− iθ)j, αθj = (θ − i)j, we get the basis

BM2(F2[i]) =
{(

0 i
1 i

)
,

(
1 1
i 0

)
,

(
1 0
1 1

)
,

(
i 1
0 i

)}
(13)

Observe that the lifts to G of non-invertible elements have
a higher determinant:

Remark 2. If M ∈ M2(F2[i]) \ {0} is non-invertible,

min
X∈G, πG(

√
5X)=M

|det(X)|2 ≥ 2δ

C. The encoder

The codes that we consider follow the outline of Forney’s
coset codes, taking advantage of the decomposition G =
[G/I]+I , where I is a two-sided ideal of G, and [G/I] denotes
a set of coset leaders.

- a binary (n, k, dmin) encoder operates on some of the
information data, and these coded bits are used to select
(C1, . . . , CL) ∈ (G/I)L.

- the remaining information bits are left uncoded and used
to select (Z1, . . . , ZL) ∈ IL.

- the corresponding block codeword is X = (c1 +
Z1, . . . , cL + ZL) ∈ GL, where ci is the coset leader
of Ci.

For a coset code, ∆min is bounded by the minimum determi-
nant of I and the minimum distance dmin of the binary code:

∆min ≥ min
(

min
X∈I\{0}

|det(X)|2 , d2
minδ

)
(14)
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Fig. 1. The general structure of the encoder.

In fact, if (c1, . . . , cL) = 0, then X ∈ IL, and for X 6=
0, det(XXH) ≥ minX∈I\{0} |det(X)|2. If on the contrary
(c1, . . . , cL) 6= 0, there are at least dmin components of X
which do not belong to I , and consequently are nonzero, and
det(XXH) ≥ δwH(X)2 ≥ δd2

min.
So the performance of a coset code will be always limited by
the minimum determinant of I , except if the code on IL is
the zero code.
If I = 2G, the set of coset leaders coincides with the (4-
QAM)4 constellation, making it easier to implement coset
codes with high Hamming distance.

V. GOLDEN REED-SOLOMON CODES

To exploit fully the ring structure of the quotient, one
should use as the outer code an error-correcting code based
on M2(F2[i]); but at present very little is known about codes
over non-commutative rings.
We choose shortened Reed-Solomon codes instead because
they are maximum distance separable and their implementa-
tion is very simple; we will restrict our attention to the additive
structure, defining a group isomorphism between G/2G and the
finite field F256.

A. The 4-QAM case

Using 4-QAM constellations to modulate each of the 4
symbols a, b, c, d in a Golden codeword (5), we obtain a total
of 256 codewords, one in each coset of 2G.

We consider an (n, k, dmin) Reed-Solomon code over F256.
Each quadruple (a, b, c, d) of 4-QAM signals carries 8 bits
or one byte; each block of n Golden codewords will carry n
bytes, corresponding to k information bytes.
The encoding and decoding procedure involves several steps:

a) Reed-Solomon encoding: Each information byte can be
seen as a binary polynomial of degree ≤ 8, that is, an element
of the Galois field F256. An information message of k bytes,
seen as a vector U = (U1, . . . , Uk) ∈ Fk

256, is encoded into a
codeword V = (V1, . . . , Vn) ∈ Fn

256 using the RS(n, k, dmin)
shortened code C.

b) From the Galois field F256 to the matrix ring M2(F2[i]):
We can represent the elements of M2(F2[i]) as bytes, simply
by vectorising each matrix and separating real and imaginary

parts. Since we are only working with the additive structure,
we can identify F256 and M2(F2[i]), which are both F2-vector
spaces of dimension 8.

c) From the matrix ring M2(F2[i]) to the quotient ring
G/2G: For this step we make use of the isomorphism of
F2[i]-modules (ϕ ◦ φ)−1 : G/2G → M2(F2[i]) described in
§IV-B that relates the coordinates with respect to the bases
(13) and BG = {α, αθ, αj, αθj}. Let (a, b, c, d) ∈ Z2[i]4 be
the coordinates of our codeword in the basis BG .

d) Golden Code encoding: For each of the n vector compo-
nents, the symbols a,b,c,d ∈ Z2[i] correspond to four 4-QAM
signals, and can be encoded into a Golden codeword of the
form (5). Thus we have obtained a Golden block X = ξ(V),
where ξ : Fn

256 → Gn is injective.

B. Decoding

ML decoding consists in the search for the minimum of
the Euclidean distance

∑n
i=1 ‖HZi − Yi‖2 over all the images

Z = ξ(V′) of Reed-Solomon codewords.
One can first compute and store in memory the distances

d(i, j) =
∥∥∥HZ(j) − Yi

∥∥∥
2

(15)

for every component i = 1, . . . , n of the received vector Y
and for all the Golden codewords Z(j), j = 0, .., 255 that can
be obtained from a quadruple U (j) of 4-QAM symbols. The
search for the minimum can be carried out using the Viterbi
algorithm or a tree search algorithm.

One can replace ML decoding with n separate Sphere
Decoders on each of the components of Y, followed by Reed-
Solomon decoding. This “hard” decoding has the advantage of
speed. However it is highly suboptimal: performance simula-
tions show that with this method the coding gain is almost
entirely cancelled out (see figure 2).

C. Simulation results

In the 4-QAM case, the spectral efficiency of the Golden
Reed-Solomon codes is

8k bits
2n channel uses

=
4k

n
bpcu

From Lemma 1, we get a lower bound for ∆min: using an
(n, k, dmin) Reed-Solomon code, we have ∆min ≥ δd2

min.
If k = n

2 , the spectral efficiency is 2bpcu. Comparing the 4-
QAM, (n, k, dmin) Golden-RS design (ES = 0.5) with the
uncoded Golden Code using BPSK (ES,U = 0.25), we get an
asymptotic coding gain of:

γas =
√

∆min/ES√
∆min,U/ES,U

=
dmin/0.5
1/0.25

=
dmin

2
(16)

Figure 2 shows the performance comparison of the Golden-
RS code (4, 2, 3) with the uncoded scheme at 2bpcu. Assum-
ing the channel to be constant for 4 blocks, the Golden-RS
code outperforms the uncoded scheme by 6.1 dB.
This gain is unexpectedly high compared with the theoretical
coding gain (16) for dmin = 3, that is 10 log10

(
3
2

)
dB =
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Fig. 2. Comparison between suboptimal decoding and ML decoding for the
RS(4, 2, 3) code at 2 bpcu. The first method achieves a gain of only 1.1 dB
over the uncoded case, compared to the 6.1 dB of the second.

1.7 dB. Also for the (6, 3, 4) code, the actual gain (7.0 dB) is
higher than the theoretical gain (10 log10 2 dB = 3.0 dB).

D. The 16-QAM case

If we use a 16-QAM constellation for each symbol a, b, c, d
in a Golden codeword, we have 216 available Golden code-
words, or 256 words for each of the 256 cosets of 2G in G.
As in the 4-QAM case, we consider coset codes where the
outer code is an (n, k, dmin) Reed-Solomon code C on the
quotient G/2G. The total information bits transmitted are
8k + 8n; they will be encoded into 8n + 8n = 16n bits.

- The code C outputs 8n bits, which are used to encode
the first two bits of 4n 16-QAM constellations, which
identify one of the four cosets of 2Z[i] in Z[i]; each
byte corresponds to a different coset configuration of
(a, b, c, d).

- the other 8n bits, left uncoded, are used to choose the
last two bits of each 16-QAM signal.

In total, we have 4n 16-QAM symbols, that is n Golden code-
words X = (X1, . . . , Xn). The resulting spectral efficiency is

8(k + n) bits
2n channel uses

=
4(k + n)

n
bpcu

We have seen in (14) that

∆min ≥ min

„
min

X∈2G\{0}
|det(X)|2 , d2

minδ

«
= min(16δ, d2

minδ)

With an error-correcting code of rate k = n
2 , we obtain a

spectral efficiency of 6 bpcu.
- If dmin ≥ 4, we have γas = 4/2.5

1/1.5 = 2.4, leading to an
approximate gain of 3.8 dB.

- If dmin = 3, γas = 3/2.5
1/1.5 = 1.8, giving a gain of 2.5 dB.

Decoding

The ML decoding procedure for the 16-QAM case requires
only a slight modification with respect the one illustrated in
§V-B. In the first phase, for each component i = 1, . . . , n and
for each coset leader Wj , j = 0, . . . , 255, we find the closest
point in that coset to the received component Yi, that is

Ẑi,j = argmin
Z∈2G

‖Yi −H(Z + Wj)‖2

6 8 10 12 14 16 18
10

−4

10
−3

10
−2

10
−1

10
0

SNR

F
E

R

Uncoded Golden Code constant for 4 blocks at 6bpcu
Golden−RS(4,2,3) with 16−QAM

Fig. 3. Performance of the (4, 2, 3) Golden Reed-Solomon code with soft
decoding at 6 bpcu compared with the uncoded Golden Code scheme with
the same spectral efficiency.

Computing HZ and HWj separately allows to carry out
only 512 products instead of 2562. The second phase can be
performed as in the 4-QAM case, and the search is limited to
the “closest points” Ẑi,j + Wj found previously:

X̂ = argmin
(Ẑ1,j1+Wj1 ,...,Ẑn,jn+Wjn )

n∑

i=1

∥∥∥H(Ẑi,ji + Wji)− Yi

∥∥∥
2

over all the images (Wj1 , . . . , Wjn) of Reed-Solomon code-
words.

Simulation results
In the 16-QAM case, the (4, 2, 3) Golden Reed-Solomon

code achieves a gain of 3.8 dB over the uncoded scheme at 6
bpcu at the frame error rate of 10−2 (see figure 3).

VI. CONCLUSIONS

In this paper we have presented Golden-RS codes, a coded
modulation scheme for 2 × 2 slow fading MIMO channels,
where the inner code is the Golden Code.
We use a simple binary partitioning, whose set of coset leaders
coincides with a QAM symbol constellation. With a Reed-
Solomon code as the outer code in order to increase the
minimum Hamming distance among the codewords, we obtain
a significant performance gain with respect to the uncoded
case.
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