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Abstract:
This paper presents an accurate and simple method to
evaluate the performance of AD/DA converters affected
by clock jitter, which is based on the analysis of the
mean square error (MSE) between the reconstructed sig-
nal and the original one. Using an approximation of the
linear minimum MSE (LMMSE) filter as reconstruction
technique, we derive analytic expressions of the MSE.
Through asymptotic analysis, we evaluate the perfor-
mance of digital signal reconstruction as a function of the
clock jitter, number of quantization bits, signal bandwidth
and sampling rate.

1. Introduction

A significant problem in Analog Digital Conversion
(ADC) of wide-band signals is clock jitter and its impact
on the quality of signal reconstruction. Indeed, even small
amounts of jitter can measurably degrade the performance
of analog to digital and digital to analog converters.
Clock jitter is typically detrimental because the analog to
digital process relies upon a sample clock to indicate when
a sample or snapshot of the analog signal is taken. The
sample clock must be evenly spaced in time; any devia-
tion will result in a distortion of the digitization process.
If one had a perfect ADC and a perfect DAC and used the
same clock to drive both units, then jitter would not have
any impact on the reconstructed signal. In a real world
system, however, a digitized signal travels through mul-
tiple processors, usually it is stored on a disk or piece of
tape for a while, and then goes through more processing
before being converted back to analog. Thus, during re-
construction, the clock pulses used to sample the signal
are replaced with newer ones with their own subtle vari-
ations. Jitter may have different probability distributions
which may have different effects on the quality of the re-
constructed signal.
While several results are available in the literature on jit-
tered sampling [4, 5] as well as on experimental measure-
ments and instruments performance [1,3,6,7], an analyti-
cal methodology for the performance study of the AD/DA
conversion is still missing.
In this paper we fill this gap and propose a method for eval-
uating the performance of AD/DC converters affected by
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jitter, which is based on the analysis of the mean square er-
ror (MSE) between the reconstructed signal and the origi-
nal one [7].

As reconstruction technique, we consider linear filtering
methods, which typically have low complexity and are
used in a wide variety of fields. If jitter were known ex-
actly, the linear minimum MSE (LMMSE) reconstruction
technique would be optimal, since it minimizes the MSE
of the reconstructed signal. In practice this is not the case,
hence we apply a reconstruction filter with the same struc-
ture of the LMMSE filter, where we let the jitter vanish.
Then, we apply asymptotic analysis to derive analytical
expressions of the MSE on the quality of the reconstructed
signal. We then show that our asymptotic expressions pro-
vide an excellent approximation of the MSE even for small
values of the system parameters, with the advantage of
greatly reducing the computation complexity. We apply
our method to study the performance of the AD/DA con-
version system as a function of the clock jitter, number of
quantization bits, signal bandwidth and sampling rate.

2. System model

Throughout the paper we use the following notations. Col-
umn vectors are denoted by bold lowercase letters and ma-
trices are denoted by bold upper case letters. The(k, q)-
th entry of the generic matrixZ is denoted by(Z)k,q.
The n × n identity matrix is denoted byIn, while I is
the generic identity matrix.(·)T is the transpose opera-
tor, while (·)† is the conjugate transpose operator. We de-
note byfx(z) the probability density function (pdf) of the
generic random variablex, and byE[·] the average opera-
tor.

2.1 Signal sampling and reconstruction

We consider an analog signals(t) sampled at constant rate
fs = 1/Ts over the finite interval[0,MTs). Ts is the
sample spacing. When observed over a finite interval,s(t)
admits an infinite Fourier series expansion. LetN ′ denote
the largest index of the non-negligible Fourier coefficients,
then N ′/Ts can be considered as the approximate one-
sided bandwidth of the signal. We therefore represent the
signal by using a truncated Fourier series withN = 2N ′+



1 complex harmonics as

s(t) =
1√
N

N ′

∑

ℓ=−N ′

aℓ exp

(

j2πℓ
t

MTs

)

, (1)

0 ≤ t < MTs. The vectora = [a−N ′ , . . . , a0, . . . , aN ′ ]T

represents the complex discrete spectrum of the signal.
Observe that the signal representation given in (1) includes
sine waves of any fractional frequencyf0 = fsN

′/M
(whenaℓ = 0 for −N ′ < ℓ < N ′ anda−N ′ = a∗

N ′ ),
which are frequently used as reference signal for calibra-
tion of ADC [1, 2]. We note that when the signals(t)
is observed in the frequency domain through itsM sam-
ples, the spectral resolution is given by∆f = 1/(MTs).
Therefore, considering the expression in (1), the signal
bandwidth is given byB = N∆f

2 = N
2MTs

. By defining
the parameter

β =
M

N
(2)

as theoversampling factor of the signals(t) with respect
to the Nyquist rate, we can also write:

B =
fs/2

β
(3)

In this work, we consider that sampling locations suffer
from jitter, i.e., them-th sampling location is given by

tm = mTs + dm, (4)

m = 0, . . . ,M − 1, wheredm is the associated indepen-
dent random jitter whose distribution is denoted byfd(z).
Typically, we have|dm| ≪ Ts.
Let the signal samples bes = [s0, . . . , sM−1]

T where
sm = s(tm), 0 ≤ m ≤ M − 1. Using (1), the set of
signal samples can be written as

s = V†a

whereV is anN × M random Vandermonde matrix de-
fined as

(V)ℓ,m =
1√
N

exp

(

−j2πℓ
tm

MTs

)

(5)

ℓ = −N ′, . . . , N ′, andm = 0, . . . , N − 1. Note thatV
accounts for the jitter in the AD/DA conversion process,
and that the parameterβ defined in (2) also represents the
aspect ratio of matrixV.
Furthermore, in addition to jittered sampling, we assume
that signal samples are affected by some additive noise and
are therefore given by

y = s + n

wheren is a vector ofM noise samples, modeled as zero
mean i.i.d. random variables. In practice, the dominant
additive noise error is due to then-bit quantization process
[10].
In order to reconstruct the signal we consider a reconstruc-
tion technique that provides an estimateâ of the discrete
spectruma. The reconstruction̂s(t) of s(t) obtained from
â is given by

ŝ(t) =
1√
N

N ′

∑

ℓ=−N ′

âℓ exp

(

j2πℓ
t

MTs

)

2.2 Reconstruction error

We consider as performance metric of the AD/DA conver-
sion process the mean square error (MSE) associated to
the estimate. The MSE, evaluated in the observation inter-
val [0,MTs), can be equivalently computed in both time
and frequency domains as:

MSE = E

[

∫ MTs

0

|s(t) − ŝ(t)|2 dt

]

=
E

[

‖a − â‖2
]

N

More specifically, we consider the MSE relative to the sig-
nal average power, i.e.,

J =
MSE

σ2
a

which can be thought of as a noise to signal ratio and will
be plotted using a dB scale in our results.
Among the possible techniques that can be applied to re-
construct the original signal, we focus on linear filters
that provide an estimate ofa through the linear operation
â = By whereB is anN × M matrix.

3. Jittered AD/DA conversion with linear fil-
tering

Let us assume‖a‖2 = σ2
aN andE[nn†] = σ2

nI, then we
define the signal to noise ratio (SNR) in absence of jitter
as

γ =
σ2

a

σ2
n

Under the assumption thatE[aa†] = σ2
aI, the linear filter

that provides the best performance in terms of MSE is the
linear minimum mean square error (LMMSE) filter, which
is given by

Bopt =

(

VV† +
1

γ
I

)−1

V (6)

In [8], it has been shown that, by applying the LMMSE
filter, we obtain:

J =
1

σ2
aN

E

[

‖a − â‖2
]

= E

[

tr

{

(

γVV† + I
)−1

}]

wheretr{·} is the normalized matrix trace operator and
the average is over the randomness inV.
Note, however, that the filter in (6) cannot be employed in
practice, since the jittersdm (hence the matrixV) are un-
known (see the definition ofV in (5)). We therefore resort
to an approximation of the optimum filterBopt, based on
the assumption that jitter has a zero mean.
In particular, we approximateV with the matrixF defined
as,

F = V|dm=0

with the generic element ofF given by, (F)ℓ,m =

exp
(

−j2πℓ m
M

)

/
√

N , ℓ = −N ′, . . . , N ′, and m =
0, . . . , N − 1. We observe thatF is such that:FF† = βI

and it is related to the discrete Fourier transform matrix.
Substituting the approximation ofV in (6), we obtain:

B =

(

β +
1

γ

)−1

F (7)



Notice that the filter in (7) is the LMMSE filter adapted
to the linear modely = F†a + n. By letting ω =
(β + 1/γ)−1, the noise to signal ratioJ provided by the
approximate filter (7) is given by

J =
1

σ2
aN

E

[

‖a − ωFy‖2
]

= tr

{

ω2
E
d

[

FV†VF†
]

− 2ωℜ{E
d

[

FV†
]

}
}

+1 +
ω2β

γ
(8)

where the operatorE
d
[·] averages over the random jitters

dm, m = 0, . . . ,M − 1.
Assuming the jitters to be independent [1] and with char-
acteristic functionCd(w) = E

d
[exp(jwz)], the first two

terms in (8) are given by

tr E
d

[

FV†
]

=
β

N

N ′

∑

ℓ=−N ′

Cd

(

2πℓ

MTs

)

E
d

[

FV†VF†
]

= β + β
(β − 1)

N

N ′

∑

ℓ=−N ′

∣

∣

∣

∣

Cd

(

2πℓ

MTs

)∣

∣

∣

∣

2

Hence, we can write:

J = 1 + ω2β

(

1 +
1

γ

)

− 2ω
β

N

N ′

∑

ℓ=−N ′

Cd

(

2πℓ

MTs

)

+ω2β
(β − 1)

N

N ′

∑

ℓ=−N ′

∣

∣

∣

∣

Cd

(

2πℓ

MTs

)∣

∣

∣

∣

2

(9)

In order to reduce the complexity of the computation of
the reconstruction error and provide simple but accurate
analytical tools, in the next section we let the parameters
N andM go to infinity, while the ratioβ = M/N is kept
constant. We therefore derive an asymptotic expression of
J , which we will show well approximates the expression
in (9) even for smallN andM .

4. Asymptotic analysis

WhenN andM grow to infinity whileβ is kept constant,
we define theasymptotic noise to signal ratioJ as:

J (β,γ)
∞ = lim

N,M→+∞
β

J

In [8], it has been shown thatJ (β,γ)
∞ provides an excel-

lent approximation ofMSE/σ2
a even for small values of

N andM , with the advantage of greatly simplifying the
computation.
In the limit N,M → ∞ with constantβ, we compute

µ1 = lim
N,M→+∞

β

1

N

N ′

∑

ℓ=−N ′

Cd

(

2πℓ

MTs

)

=

∫ 1/2

−1/2

Cd (4πBx) dx (10)

where, from (3), we used the fact that1/βTs = fs/β =
2B. Similarly, we define

µ2 = lim
N,M→+∞

β

1

N

N ′

∑

ℓ=−N ′

Cd

(

2πℓ

MTs

)2

=

∫ 1/2

−1/2

|Cd (4πBx)|2 dx (11)

By using (10) (11), and (9), the asymptotic expression of
J is given by

J (β,γ)
∞ = 1+ω2β(1+1/γ)−2ωβµ1+ω2β(β−1)µ2 (12)

It is worth mentioning that for large SNRs (i.e., in absence
of measurement noise),J

(β,γ)
∞ reduces to

J (β)
∞ = lim

γ→∞
J (β,γ)
∞ = 1+

1

β
−2µ1 +

(

1 − 1

β

)

µ2 (13)

Equation (13) provides us with a floor that represent the
best quality of the reconstructed signal (minimum MSE)
we can hope for.

4.1 Example: uniform jitter distribution

Let us now assume the jitter to be uniformly distributed
with pdf given by

fd(z) =

{

1
2dmax

−dmax ≤ z ≤ dmax

0 elsewhere

where dmax is the maximum jitter, independent of
the sampling frequencyfs. In this case, the char-
acteristic function of the jitter is given byCd(w) =
sin(dmaxw)/(dmaxw). Then,

µ1 =
Si(2πηu)

2πηu

and

µ2 =
cos2(2πηu) + 2πηuSi(4πηu) − 1

4π2η2
u

whereSi(·) is the integral sine function andηu = dmaxB
is a dimensionless parameter which relates maximum jitter
and signal bandwidth.

5. Results

For the ease of representation, we assume that the dom-
inant component of the additive noise is due to quanti-
zation, and we express the SNR in absence of jitter,γ,
as a function of the number of quantization bitsn of the
ADC [9]:

(γ)dB = 6.02n + 1.76

Then, in the following plots we show the value ofJ as a
function ofγ or, equivalently, of the number of quantiza-
tion bitsn.
Figure 1 compares the value ofJ obtained through its
asymptotic expression against the performance of a sys-
tem with finite parameters values (i.e., the value ofJ
computed using (9)). The results are derived forηu =



10−1, 10−2, 10−3, andβ = 10. Solid lines refer to the
asymptotic expression (12), while markers represent the
values ofJ computed through (9), withN ′ = 100. We
observe an excellent matching between our approximation
of J

(β,γ)
∞ and the results computed through (9), even for

small values ofN and M . We point out that this tight
match can be observed for anyβ > 1 andηu ≪ 1.

We also notice thatJ shows a floor, whose expression is
given by (13). This floor is due to the mismatch between
the filterF employed in the reconstruction and the matrix
V characterizing the sampling system.
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Figure 1: Comparison between the reconstruction errorJ

derived through (9), the approximation ofJ
(β,γ)
∞ and the

floor J
(β)
∞ in (13).

Furthermore, in the case of unknown jitter, and, thus, of a
floor in the behavior ofJ , there exists a number of quan-
tization bitsn = n∗ beyond which a further increase in
the ADC precision does not provide a noticeable decrease
in the reconstruction errorJ . The relation betweenηu, β,
andn∗ is shown in Figure 2. Note thatn∗ is lightly af-
fected by an increase ofβ, provided thatβ > 1, and a
good compromise for choosing the oversampling rate is
β = 5.
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Figure 2: Minimum number of bitsn∗ required to reach
the floor ofJ (β,γ)

∞ as a function ofβ andηu.

6. Conclusions

We studied the performance of AD/DA converters, in pres-
ence of clock jitter and quantization errors. We considered
that a linear filter approximating the LMMSE filter is used
for signal reconstruction, and evaluated the system perfor-
mance in terms of MSE. Through asymptotic analysis, we
derived analytical expressions of the MSE which provide
an accurate and simple method to evaluate the behavior of
AD/DA converters as clock jitter, number of quantization
bits, signal bandwidth and sampling rate vary. We showed
that our asymptotic approach provides an excellent ap-
proximation of the MSE even for small values of the sys-
tem parameters. Furthermore, we derived the MSE floor,
which represents the best reconstruction quality level we
can hope for and gives useful insights for the design of
AD/DA converters.
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