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Abstract— We consider a dual-hop, decode-and-forward
network, where the relay can operate in full-duplex (FD) or half-
duplex (HD) mode (X-duplex relay). We model the residual
self-interference as an additive Gaussian noise with variance
proportional to the relay transmit power, and we assume a
Gaussian input distribution at the source. Unlike previous work,
we assume that the source is only aware of the transmit power
distribution adopted by the relay, but not of the symbols that the
relay is currently transmitting. This assumption better reflects the
practical situation, where the relay node forwards data traffic but
modifies physical-layer or link-layer control information. We then
identify the optimal power allocation strategy at the source and
relay, which in some cases coincides with the HD transmission
mode. We prove that such strategy implies either FD transmis-
sions over an entire time frame or FD/HD transmissions over a
variable fraction of the frame. We determine the optimal transmit
power level at the source and relay for each frame, or fraction
thereof. We compare the performance of our scheme against
reference FD and HD techniques, which assume that the source
is aware of the symbols instantaneously transmitted by the relay,
and show that our solution closely approaches such strategies.

Index Terms— Full-duplex, half-duplex, relay networks, com-
munication strategies.

I. INTRODUCTION

MULTI-HOP relay communications are a key technology
for next generation wireless networks, as they can

extend radio access in case of coverage holes or users at the
cell edge, as well as increase the potentialities of device-to-
device data transfers. The dual-hop relay channel, in particu-
lar, has been widely investigated under different cooperative
schemes, namely, decode-and-forward (DF), compress-and-
forward (CF) and amplify-and-forward (AF) [1]–[5]. Most of
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this body of work has assumed the relay node to operate in
half-duplex (HD) mode. Specifically, results on the capacity of
the HD dual-hop relay channel have appeared in [6] and [7],
where it was shown that the network capacity is achieved by
a discrete input when no direct link between the source and
the destination exists.

More recently, a number of studies [8]–[12] have addressed
the case where the relay operates in full-duplex (FD) mode,
i.e., it can transmit and receive simultaneously on the same fre-
quency band. Indeed, advances in self-interference suppression
in FD systems have made such a technology very attractive for
relay networks. The capacity of Gaussian two-hop FD relay
channels has been characterized in [13], under the assumption
that the residual self-interference can be neglected. The more
realistic case where residual self-interference ([14], [15]) is
taken into account, has been instead addressed in [8]–[12]
and [16]–[18]. In these works, the signal looping back from
the relay output to its input is modeled as an additive noise
with variance proportional to the relay transmit power. In
particular, [16] considers an AF relay, which can work in
either FD or HD, and derives the distribution of the signal-
to-interference plus noise ratio (SINR), the outage probability,
and the average rate. The study in [17] compares the perfor-
mance in terms of block error rate for FD and HD in the
case of DF relay, ultra reliable short-packet communication
and finite blocklength codes. The work in [8] analyses the
instantaneous and average spectral efficiency of a dual-hop
network with direct link between source and destination, and
a relay node that can operate in either HD or FD mode.
Interestingly, the authors propose hybrid FD/HD relaying
policies that, depending on the channel conditions, optimally
switch between the two operational modes when the FD relay
transmit power is fixed to its maximum value, as well as
when it can be reduced in order to mitigate self-interference
as needed. The FD mode only is considered in [10], which
aims to maximize the SINR as the relay transmit power varies,
in the case where AF is used, the relay has multiple transmit
antennas and a single receive antenna, and constraints on
the average and maximum relay transmit power must hold.
In [11], the maximum achievable rate and upper bounds on
the capacity are obtained when the relay node operates in DF
and CF and Gaussian inputs are considered at the source and
the relay.

The study in [12] investigates the capacity of the Gaussian
two-hop FD relay channel where the residual self-interference
is assumed to be a Gaussian random variable with variance
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depending on the amplitude of the transmit symbol of the
relay. Also, [12] assumes the average transmit power at source
and relay nodes to be limited to some maximum values. The
study shows that the optimal conditional probability distribu-
tion of the source input, given the relay input, is Gaussian
while the optimal distribution of the relay input is either
Gaussian or symmetric discrete with finite mass points. This
result implies that, under the above assumptions, a capacity
achieving scheme requires the source to know at each time
instant what the relay is transmitting. This can be realized
with the aid of a buffer at the relay, which holds the data
previously transmitted by the source and correctly decoded by
the relay. The relay re-encodes such data before forwarding it
to the destination in the next available channel use. The source
can use the same encoder as the relay, in order to predict what
will be transmitted by the relay and hence guarantee a capacity
achieving transmission.

In this work, we consider a scenario similar to [12], includ-
ing a dual-hop, DF network where the relay can operate in
FD or HD mode (i.e., X-duplex mode), and the residual self-
interference is modeled as an additive Gaussian noise, with
variance proportional to the relay transmit power. Differently
from [12], in this paper we consider the case where the source
does not know what symbols are transmitted by the relay at
a given time instant and is aware only of the transmit power
distribution adopted by the relay over a given time horizon.
Thus, our scenario can accommodate the practical case where
the relay node, although retransmitting to the destination the
same information sent by the source, it may transmit symbols
different from those it has received. Examples include the
case where the relay modifies physical-layer or link-layer
in-band control information, as well as the case where the
relay performs link-layer data encryption using a key that is
unknown to the source. In this scenario, the source knowledge
about the relay power is exploited in order to optimally set the
source transmit power and decide whether the relay should
operate in HD or FD. Furthermore, we assume a Gaussian
input distribution at both source and relay, with variance not
exceeding a target maximum value.

Under this scenario, we formulate an optimization problem
that aims at maximizing the achievable data rate, subject to
the system constraints. We characterize different operational
regions corresponding to optimal network performance, and
provide conditions for their existence. Our analysis leads to
the following major results:

(i) The distribution of the transmit power at the relay can
be conveniently taken as the driving factor toward the
network performance optimization. We prove that the
optimal probability density function (pdf) of such a
quantity is discrete and composed of either one or two
delta functions, depending on the target value of average
transmit power at the source and relay. We provide the
expression of the above distribution for the whole range
of the system parameter values, including the channel
gains and the target values for the average transmit power
at the source and the relay.

(ii) The above finding leads to the optimal communication
strategy for the network under study, which implies

either FD transmissions over an entire frame, or FD/HD
transmissions over a fraction of the frame.

(iii) Given the optimal transmit power distribution at the
relay, we derive the optimal power level to be used
over time at the relay and the source, i.e., the power
allocation policy that yields the system maximum data
rate. We remark that our policy establishes the time
fractions during which the relay should work in FD and
in HD, as well as the transmit power to be used at the
source and the relay, given that only the average (not the
instantaneous) relay transmit power needs to be known
at the source.

(iv) We compare the results of our optimal power allocation
to a reference FD and HD scheme, where the source
knows the instantaneous relay transmit power. Interest-
ingly, our scheme closely approaches the performance
of such strategy in all the considered scenarios.

In the rest of the paper we introduce our system model in
Sec. II and we present the constrained optimization problem,
along with an overview of the methodology we use in Sec. III
The optimal communication strategy and our main analytical
results are presented in Secs. IV and V. Sec. VI shows some
performance results, and Sec. VII extends the analysis to
a limited average transmission power at the source. Finally,
Sec. VIII concludes the paper.

II. SYSTEM MODEL

We consider a two-hop, DF relay network including a
source node s, a relay r and a destination d . All network
nodes are equipped with a single antenna, and the relay
can work in either FD or HD mode (X-duplex). No direct
link exists between source and destination, thus information
delivery from the source to the destination necessarily takes
place through the relay. As far as the channel is concerned,
we consider independent, memoryless block fading channels
with additive Gaussian noise, between source and relay as well
as between relay and destination.

The source and the relay operate on a frame basis, of con-
stant duration T , with T being set so that channel conditions
do not vary during a frame. In general, the following modes
of operations are possible for source and relay: (i) the source
transmits while the relay receives only (HD-RX mode); (ii) the
source is inactive while the relay transmits (HD-TX mode),
(iii) the source transmits while the relay transmits and receives
at the same time (FD mode).

We remark, that in our model source and relay do not
need to be synchronized on a per-symbol basis, and that the
relay can modify link-layer or physical-layer multiple control
information as well as perform link-layer data encryption. This
implies that, in order to select its operational mode, the source
is not required to be aware of the information the relay is
transmitting. We assume instead that the source has knowledge
of the distribution of the transmit power adopted by the relay
across a frame.

When the relay transmits to the destination, a residual self-
interference (after analog and digital suppression) adds up to
what the relay receives from the source. Then the signals
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received at the relay and destination can be written as:

yr = √
Ph1xs + ν + nr ; yd = √

ph2xr + nd (1)

where
• h1 and h2 are the complex static channel gains of

the source-relay and relay-destination links, respectively.
We consider that h1 is known to the the source, and that
both h1 and h2 are known to the relay. Also, we assume
that the communication between nodes is organized in
frames of duration T , with T being sufficiently smaller
than the channel coherence time, so that channel gains
can be considered as static during a frame;

• xs and xr are the input symbols transmitted by the source
and the relay, respectively. We assume the input at both
source and relay to be zero-mean complex Gaussian
distributed with unit variance. From (1), we have that
the levels of instantaneous power transmitted by source
and relay, are P|xs |2 and p|xr |2, respectively. In the
most general case, P and p are time-varying continuous
random variables ranging in [0, Pmax] and [0, pmax],
respectively. Here we assume1 P and p to be independent
of xs and xr , respectively;

• nr and nd represent zero-mean complex Gaussian noise
with variance N0 over the source-relay and the relay-
destination link, respectively;

• ν represents the instantaneous residual self-interference at
the relay. As typically done in previous studies [11], [12],
[19], [20], given p, we model ν as a Gaussian noise with
variance proportional to the instantaneous transmission
power at the relay, i.e., given p, ν|p ∼ NC(0, βp).
In these expressions, β denotes the self-interference atten-
uation factor at the relay. As shown in [12], assuming ν
as a zero-mean i.i.d. Gaussian random variable represents
the worst-case linear residual self-interference model.

We also define f (p) as the probability density function of p,
with support in [0, pmax]. Finally, we consider that the average
power over a frame at the source and at the relay is constrained
to given target values, denoted by P̄ and p̄, respectively. The
average transmit power at the source and relay is therefore
given by:

p̄ = EpExr [p|xr |2] = Ep[p] =
∫ pmax

0
p f (p) d p (2)

P̄ = EpExs [P|xs |2] = Ep[P] =
∫ pmax

0
P(p) f (p) d p (3)

where E[·] is the average operator and the expression in (3)
is due to the fact that the source may select its transmission
power based on its knowledge of p, hence P can be conve-
niently described as a function of p. In order to highlight this
dependency, in (3) and in the following, P(p) indicates the
transmit power level at the source when the transmit power
level at the relay is set to p. Moreover, in the following P(·)
indicates the generic function of transmit power allocation at
the source, which depends on the relay transmit power. From
the definition of the received signals given in (1), assuming

1The transmit power at the source and the relay are denoted by P (capital
letter) and p (small capital letter).

a sufficiently long frame length T , and having fixed both p
and P(p), the rates on the source-relay and relay-destination
links are given by log

(
1 + P(p)|h1|2

N0+βp

)
and log

(
1 + p|h2|2

N0

)
,

respectively. Then the average rates achieved over a frame can
be written by averaging the above quantities over the random
variable p:

R1( f, P) =
∫ pmax

0
f (p) log

(
1 + P(p)|h1|2

N0 + βp

)
d p;

R2( f ) =
∫ pmax

0
f (p) log

(
1 + p|h2|2

N0

)
d p. (4)

where we recall that p, hence also P(p), is not a function
of the transmitted messages. In (4), by writing R1( f, P) and
R2( f ) we highlight that such rates depend on the choice of
the power allocation function at the relay, f (·), and at the
source, P(·).

III. PROBLEM FORMULATION

In our study, we aim at determining the power allocation at
the source, P(·), and the one at the relay, f (·), that maximize
the achievable rate of the dual-hop network described above.
To this end, we start by recalling some fundamental concepts:
(a) the network rate will be determined by the minimum

between the rate achieved over the source-relay link and
over the relay-destination link;

(b) R1( f, P) depends on the source transmit power, the
Gaussian noise, and on the residual self-interference at
the relay, which, in turn, depends on the relay transmit
power;

(c) R2( f ) depends on the relay transmit power and the noise
at the destination;

(d) the transmit power at source and relay may vary over
time. When P(p) > 0 and p > 0, the relay is in FD
mode, while, when P(p) > 0 and p = 0, the relay is in
HD-RX mode. When P(p) = 0 and p > 0, the relay is
in HD-TX mode and the source is silent.

Based on (b) and (c), the residual self-interference introduces
a dependency between the performance of the first and second
hop. Under such conditions and under the constraints on the
average and the maximum transmit power at the source and at
the relay, the maximum rate achievable by the two-hop relay
network is defined as

R = max
f (·) min

{
max
P(·) R1( f, P), R2( f )

}
(5)

where the last equality comes from the fact that only R1( f, P)
depends on P(·). From the definition of R it is clear that,
in order to maximize the network rate, source and relay should
coordinate their power allocation strategies. In our study,
we optimize such power allocations, hence the source-to-
destination rate, by controlling the distribution of the transmit
power at the relay, f (·), and the distribution of the transmit
power at the source, P(·).

As a first step, in Section III-A we fix f (·) and maximize R1
with respect to P(·). By doing so, we rewrite R1 as a function
of, essentially, a Lagrange multiplier, ω, and f (·). Then,
in Section III-B, we formulate the maximization problem over
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Fig. 1. Transmission power at the source, P(p), for Pmax ≤ ω (left) and
Pmax > ω (right).

the (ω, f (·)) space, which will lead us to find the optimal
transmit power distribution at the relay as well as at the source
node.

A. Optimal Transmit Power Allocation at the Source

For a given distribution f (·), in order to maximize the rate
R1( f, P) with respect to P(·) we need to solve the following
problem

P0: R1( f ) = max
P(·) R1( f, P) s.t.

(a)
∫ pmax

0
P(p) f (p) d p = P̄; (b) 0≤ P(p)≤ Pmax

where (a) represents the constraint on the source average
transmit power given by (3) and (b) is the constraints on the
maximum source transmit power. Problem P0 can be solved
using calculus of variations techniques. Specifically, it can be
shown (see Appendix A) that, given f (·), the maximizer of
P0 is given by

P(p) = β

|h1|2 min
{[ω − p]+,Pmax} (6)

where [·]+ � max{0, ·}, Pmax � Pmax|h1|2/β and ω is a
parameter defined as (see Appendix A): ω � |h1|2

βλ − N0
β

with λ being the Lagrange multiplier used in the constrained
maximization of R1( f, P). Given f (·), the value of ω can be
obtained by substituting (6) into the constraint P0-(a). The
function P(p) � min

{[ω − p]+,Pmax
}
, proportional to (6),

is plotted in Fig. 1 (blue line) for the cases Pmax ≤ ω (left)
and Pmax > ω (right).

In particular, we observe that when Pmax is sufficiently
large, the optimal power allocation at the source behaves as
depicted in Fig. 1(right) and it can be simplified to

P(p) = β

|h1|2 [ω − p]+. (7)

This scenario encompasses the case where the source is a
macro-cell base-station (BS) and the relay is a small-cell
BS, with the macro-cell BS having weaker constraints on
the maximum transmit power than the small-cell BS. The
case where instead the value of Pmax is smaller than ω,
is more complicated to deal with (see Fig. 1(left). This
case encompasses the situation where the source is a user
equipment transmitting to a small-cell BS, which relays traffic
toward a macro-cell BS.

In the following, in order to simplify the derivation of the
network rate, we assume Pmax to be sufficiently large; we will

remove this assumption in Sec. VII, where we briefly explain
how to solve the problem when the parameter Pmax comes
into play. Then, by substituting (7) in constraint P0-(a) and
in the expression for R1( f, P) in (4), we obtain, respectively,∫ pmax

0
f (p)[ω − p]+ d p = P̄

|h1|2
β

� P̄ (8)

R1( f ) =
∫ pmax

0
f (p)

× log

(
1+β0[ω− p]+

1+β0 p

)
d p, (9)

where β0 � β
N0

. Thus, we now have both the rate R, optimized
with respect to P(·) and the constraint on the average source
power, expressed as functions of the parameter ω.

B. Rate Maximization Problem

After having optimized the source transmit power, we need
to find the optimal distribution f (·) that maximizes the net-
work data rate R, as indicated in (5). To this end, we formulate
the following optimization problem, subject to the system
constraints:

P1: R = max
f (·) min{R1( f ), R2( f )} s.t.

(a) R1( f ) =
∫ pmax

0
f (p) log

(
1 + β0[ω − p]+

1 + β0 p

)
d p

(b) R2( f ) =
∫ pmax

0
f (p) log (1 + vp) d p

(c)
∫ pmax

0
f (p)[ω − p]+ d p = P̄

(d)
∫ pmax

0
pf (p) d p = p̄;

∫ pmax

0
f (p) d p = 1;

0 ≤ p ≤ pmax

where v � |h2|2
N0

in (b). In the above formulation, (a) represents
the average rate achieved over a frame on the source-relay link
in (9); (b) represents the average rate achieved over a frame
on the relay-destination link in (4); (c) is the average power
constraint at the source specified in (8); (d) imposes that the
mean value of transmit power at the relay equals p̄, that f (·)
is a distribution, and that p does not exceed pmax.

If f (·) were known, constraint P1-(c) would completely
determine the parameter ω. However, this is not the case in
our scenario; in fact, f (·) is the function that we need to
properly select to maximize the source-to-destination rate. It
follows that, in general, in our problem ω is a free parameter
and we need to maximize the rate over the (ω, f (·)) space.
An overview of the methodology we adopt to solve such a
problem is provided below.

C. Roadmap

We consider the following two cases: ω ≥ pmax (Sec. IV)
and ω < pmax (Sec. V). While the former can be handled ana-
lytically by directly addressing the above problem formulation,
the latter is far more complicated and requires the definition
of a novel methodology. Specifically,
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(i) for ω ≥ pmax, we first find lower and upper bounds
for R1( f ) and R2( f ) so that three different cases can be
identified. For all of them, we obtain the optimal transmit
power allocation at the source and relay. The third of these
cases leads to a particularly interesting result, which shows
that the network rate is maximized when f (p) is discrete with
one or two probability masses, depending on the value of the
system parameters (e.g., channel gains and self-interference
mitigation factor). As by-product of this analysis, we also
obtain the optimal communication scheme, which turns out
to be a time-division strategy;

(ii) for ω < pmax, we show that the rate maximization
problem can be rewritten in a simpler form by expressing
f (p) as the sum of two distributions with support over two
distinct intervals of values of p. The simpler formulation we
get allows bounding the rates on the two links, and analysing
the expressions for the two rates over different sub-regions of
the solution space. Also, we can provide analytical solutions
for the network rate, and the optimal power allocation and
transmit strategy at the relay and at the source.
Our main analytical results are summarized in Tables I and II.

IV. OPTIMAL POWER ALLOCATION FOR ω ≥ pmax

We solve the problem P1 by first considering the case
ω ≥ pmax, which allows to remove the [·]+ operator in
constraint P1-(a) and P1-(c). This case was also sketched
in our conference paper [21]. Then, by using the equalities
provided in P1-(d) in P1-(c), we obtain ω = P̄ + p̄.
By plugging such expression for ω in P1-(a) and in (7), we get

R1( f )= log
(
1+β0(P̄ + p̄)

) −
∫ pmax

0
f (p) log(1 + β0 p) d p

(10)

and, from (9) P(p) = β
|h1|2 [P̄ + p̄ − p]. Moreover, since ω =

P̄ + p̄, the constraint ω ≥ pmax implies P̄ ≥ pmax − p̄ � P0

where we recall that P̄ � P̄ |h1|2
β . In this section, we analyze

the behavior of the system for P̄ ≥ P0.
In order to solve problem P1, as a first step we provide

upper and lower bounds to R1( f ) and R2( f ) (Sec. IV-A).
Such bounds are then used to identify three possible cases,
in each of which we solve P1 to the optimum (Sec. IV-B).

A. Bounding R1( f ) and R2( f )

Let us consider R1( f ) and R2( f ), as given, respectively,
in (10) and in constraint P1-(b); an upper and a lower bound
to such expressions can be obtained through the lemma below.

Lemma 1: Let φ(p) be a continuous concave function and
f (p) be a probability distribution, both with support in [a, b].
Let

∫ b
a p f (p) d p = m. Then,

b−m

b−a
φ(a)+

(
1− b−m

b−a

)
φ(b) ≤

∫ b

a
f (p)φ(p) d p ≤ φ(m).

The lower bound holds with equality when f (p) = b−m
b−a δ(p−

a)+
(

1 − b−m
b−a

)
δ(p − b), while the upper bound holds with

equality when f (p) = δ(p−m), where δ(·) is the Dirac delta.

Proof: The proof is reported in Appendix B.
We observe that the term log(1 + cp), c > 0, appearing

as argument of the integrals in (10) and P1-(b), is a concave
function of p. Since f (p) is a distribution with average p̄, we
can exploit the lower bound provided by Lemma 1 and write:

R1 ≤ log
(
1 + β0(P̄ + p̄)

) − p̄

pmax log(1 + β0 pmax) � rmax
1

(11)

R2 ≥ p̄

pmax log(1 + vpmax) � rmin
2 (12)

with the equality in (11) and (12) holding when f (p) =(
1 − p̄

pmax

)
δ(p) + p̄

pmax δ(p − pmax). Similarly, by applying
the upper bound provided by Lemma 1, we get:

R1 ≥ log
(
1 + β0(P̄ + p̄)

) − log(1 + p̄β0) � rmin
1 ;

R2 ≤ log(1 + p̄v) � rmax
2 (13)

with the equality holding when f (p) = δ(p − p̄).

B. Solving P1

The bounds to R1( f ) and R2( f ), in Section IV-A, allow us
to break problem P1 into three cases, as detailed below.

1) If rmin
2 ≥ rmax

1 , then R = rmax
1 and the optimal

relay power distribution is f �(p) =
(

1 − p̄
pmax

)
δ(p)+ p̄

pmax δ

(p − pmax). Solving for P̄ the inequality rmin
2 ≥ rmax

1 ,
we obtain

P̄ ≤ P1 � 1

β0

[
(1 + pmaxβ0)(1 + pmaxv)

] p̄
pmax − 1 + p̄β0

β0

R = log
(
1 + β0(P̄ + p̄)

) − p̄

pmax log
(
1 + β0 pmax).

2) If rmin
1 ≥ rmax

2 , then R = rmax
2 and the optimal relay

power distribution is f �(p) = δ(p − p̄). Solving for P̄ the
inequality rmin

1 ≥ rmax
2 , we get

P̄ ≥ P2 � p̄v
1 + p̄β0

β0
; R = log (1 + p̄v).

3) Otherwise, we find solutions for f (·) such that
R = R1 = R2. Indeed, for P1 ≤ P̄ ≤ P2, problem P1
becomes:

P2: R = log
(
1 + β0(P̄ + p̄)

)

− min
f (·)

∫ pmax

0
f (p) log(1 + β0 p) d p s.t.

(a)
∫ pmax

0
f (p) log [(1 + pβ0)(1 + pv)] d p

= log
(
1 + β0(P̄ + p̄)

)

(b)
∫ pmax

0
p f (p) d p = p̄; (c)

∫ pmax

0
f (p) d p = 1.

The minimizer of the functional can be found by applying the
theorem below, which shows that the solution of optimization
problems such P2 is given by one or two delta functions,
depending on the value of the parameters appearing in the
problem formulation.
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Theorem 2: Consider the following constrained minimiza-
tion problem:

min
f (·)

∫ b

a
f (p)φ(p) d p s.t.

(a)
∫ b

a
f (p)ψ(p) d p = c; (b)

∫ b

a
p f (p) d p = m

(c)
∫ b

a
f (p) d p = 1; (d) f (p) ≥ 0,∀p ∈ [a, b]; (14)

where φ(p) = log(1 + γ1 p), η(p) = log(1 + γ2 p), ψ(p) =
φ(p) + η(p), and f (p) is a probability distribution with
support in [a, b], a > 0. Moreover, γ1 > 0, γ2 > 0, m ∈ [a, b]
and c are constant parameters. Then, the minimizer has the
following expression

f �(p) =

⎧⎪⎪⎨
⎪⎪⎩

p2 − m

p2 − a
δ(p − a)+ m − a

p2 − a
δ(p − p2) if γ1 > γ2

b − m

b − p1
δ(p − p1)+ m − p1

b − p1
δ(p − b) if γ1 ≤ γ2

(15)

where p1 ∈ [a,m] and p2 ∈ [m, b] are obtained by replac-
ing (15) in the constraint (a) in (14).

Proof: The proof is given in Appendix D.
Through Theorem 2 and considering v ≥ β0, the maximizer
of the rate in P2 is:

f �(p) = pmax − p̄

pmax − p1
δ(p − p1)+ p̄ − p1

pmax − p1
δ(p − pmax)

(16)

where p1 is obtained by replacing f (p) with (16) in constraint
P2-(a), i.e., by solving the following equation for p1

[
(1 + p1β0)(1 + p1v)

k

] pmax− p̄
pmax−p1 = 1 + β0(P̄ + p̄)

k
(17)

with k = (1 + pmaxβ0)(1 + pmaxv). When v < β0, the maxi-
mizer of the rate in P2 is

f �(p) = p2 − p̄

p2
δ(p)+ p̄

p2
δ(p − p2) (18)

where p2 is obtained using f �(p) in P2-(a), i.e., by solving
the following equation for p2

[(1 + p2β0)(1 + p2v)]
p̄

p2 = 1 + β0(P̄ + p̄). (19)

Given the optimal distribution f �(p), which represents
the optimal transmit power allocation at the relay, the opti-
mal power allocation at the source node can be obtained
by using (7). From the implementation view point, such a
scheme implies minimal overhead since f �(p) is composed
of one or two δ functions. Thus, it is enough that the sends
to the source the parameters of such δ’s. It is however
important that source and relay are synchronized at the frame
level.

From the above results, important observations can be made:

(i) the power allocation at the relay that leads to the
maximum rate depends on the channel gain h2 through
v (see (16) and (18) where p1 and p2, given in (17)

Fig. 2. Left: Optimal communication strategy during a frame resulting in two
phases (A and B). Right: Optimal distribution of the average relay transmit
power at the relay (p).

and (19), depend on v). Similarly, the power allocation
at the source depends on channel gain h1 (see (7));

(ii) more importantly, the optimal power allocation f �(p)
at the relay is discrete, with either one or two proba-
bility masses depending on the number of δ functions
appearing in the expression of f �(p);

(iii) the above finding implies that source and relay should
operate according to a time division strategy consisting
of transmissions over either the entire frame (when
f �(p) includes one probability mass only), or two
fractions of the frame (when two probability masses
appear in f �(p)). We will refer to such fractions as,
respectively, phase A and phase B; clearly, they reduce
to one phase when f �(p) includes only one probability
mass. An example where two phases exist is depicted
in Fig. 2(left);

(iv) The phases duration are given by the coefficients of the
δ functions composing f �(p) (see Fig. 2(right)). Note
that now p takes on a new meaning, as it represents the
average level of transmission power to be used at the
relay during a frame phase. The values of p, hence of
the relay average transmission power over each phase,
are given by the arguments of the δ’s in f �(p). Likewise,
through (7), the average level of transmitted power at the
source is determined by the arguments of the δ functions
in f �(p).

To summarize, Table I reports the solution of problem
P1 for P̄ ≥ P0, along with the corresponding power allo-
cation at the source and relay. Thus the two tables also
specify the optimal communication strategy at source and
relay, i.e.,

• for P̄ ≤ P1, both source and relay transmit during phase
A and thus the relay operates in FD. In phase B, the relay
is silent and only receives (HD-RX mode);

• for P̄ ∈ (P1,P2), two cases are possible. For v ≥ β0
the relay always operates in FD but source and relay
use different power levels in the two phases. Otherwise,
the relay uses the same scheme as for P̄ ≤ P1, i.e., FD in
phase A and HD-RX in phase B, but its transmit power
in phase A should be set to p2;

• for P̄ ≥ P2, the relay continuously operates in FD over
the entire frame, and source and relay always transmit at
their average power.

V. OPTIMAL POWER ALLOCATION FOR ω < pmax

In this section, we solve problem P1 when ω < pmax.
To this end, we first show that P1 can be recast in a simpler



2894 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 66, NO. 7, JULY 2018

TABLE I

OPTIMAL POWER ALLOCATION AND RATE FOR P̄ ≥ P0 . tA AND tB = 1 − tA ARE THE TIME FRACTIONS REPRESENTING
THE PHASES DURATION. THE PHASES IN WHICH THE RELAY WORKS IN HD ARE SHADED

form by rewriting the distribution f (p) as a sum of two distri-
butions (Sec. V-A). Next, we bound the rates R1( f ) and R2( f )
(Sec. V-B) and show that such bounds can be used to
break the maximization problem into easier sub-problems,
(Secs. V-C and V-D). The expression of the maximum achiev-
able rate is then derived by solving the obtained sub-problems
as Pmax varies (Sec. V-E).

A. Rewriting the Maximization Problem in a Simpler Form

We observe that, due to the presence of the [·]+ operator, the
arguments of the constraints P1-(a) and P1-(c) are identically
zero for p ∈ (ω, pmax], while they can take values greater
than zero for p ∈ (ω, pmax]. This suggests that, given ω ∈
[0, pmax), we can rewrite the distribution f (p) as the weighted
sum of two distributions: g(p) with support in [0, ω], and h(p)
with support in (ω, pmax]; i.e.,

f (p) = F(ω)g(p)+ [1 − F(ω)]h(p) (20)

where F(ω) ∈ [0, 1] is the cumulative distribution function
of f (p), given by F(ω) = ∫ ω

0 f (p) d p. It is easy to check
that the expression for f (p) given in (20) integrates to 1 in
the range [0, pmax]. Then constraint P1-(d) on the average
transmit power at the relay can be rewritten as

p̄= F(ω)
∫ ω

0
pg(p) d p+[1−F(ω)]

∫ pmax

ω
ph(p) d p. (21)

If we define, ∫ ω

0
pg(p) d p � G(ω)

F(ω)
, (22)

from (21) it immediately follows that
∫ pmax

ω
ph(p) d p = p̄ − G(ω)

1 − F(ω)
(23)

where, being (22) and (23) positive, we have:
0 ≤ G(ω) ≤ p̄.

For simplicity, from now on we drop the dependence on
ω from F(ω) and G(ω). The relation between F and G can
be found by applying the definitions in (20) and (22) to the
constraint P1-(c). Doing so, we obtain

∫ pmax

0
f (p)[ω− p]+ d p =

∫ ω

0
(ω− p)Fg(p) d p = Fω−G = P̄

(24)

i.e., G = Fω − P̄ . We also need to impose that the averages
in (22) and (23) lie within the support of the distributions g(p)
and h(p), respectively, i.e.,

0 ≤ G

F
≤ ω; ω <

p̄ − G

1 − F
≤ pmax. (25)

As shown in Appendix C, recalling that ω ∈ [0, pmax), F ∈
[0, 1], 0 ≤ G ≤ p̄ and using (24), the inequalities in (25)
define a region � ⊂ R

2 of approximately triangular shape
given by

� =
{
(ω, F) ∈ R

2
∣∣∣∣ pmaxP̄

pmax − p̄
≤ ω ≤ P̄ + p̄,

P̄
ω

≤ F ≤ pmax − p̄ − P̄
pmax − ω

}
(26)

with vertices V1 =
(

pmaxP̄
pmax− p̄ , 1 − p̄

pmax

)
; V2 =(P̄ + p̄, 1

) ; V3 =
(
P̄ + p̄, P̄

P̄+ p̄

)
. Such region exists if

P̄ < P0 where we recall that P0 = pmax − p̄. The region �
is depicted in Fig. 3(top), where the edge V1–V2 has equation

F = pmax− p̄−P̄
pmax−ω while the edge V1–V3 has equation F = P̄

ω .
Next, we substitute (20) in the the rates R1( f ) and

R2( f ) given in P1-(a) and P1-(b), respectively, and obtain:
R1( f ) = F log(1+β0ω)−F

∫ ω
0 g(p) log(1+ pβ0) d p � R1(g)
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and

R2( f ) = F
∫ ω

0
g(p) log(1 + pv) d p

+ (1 − F)
∫ pmax

ω
h(p) log(1 + pv) d p

≤ F
∫ ω

0
g(p) log(1 + pv) d p

+ (1 − F) log

(
1 + v

p̄ − Fω + P̄
1 − F

)

� R̃2(g) (27)

where the inequality in (27) follows from Lemma 1 and (23).
By writing R1(g) and R̃2(g), we stress the fact that they
depend on the distribution g(·). The upper bound, R̃2(g),
is achieved for

h(p) = δ

(
p − P̄ + p̄ − ω

1 − F
− ω

)
. (28)

It turns out that, by writing f (p) as in (20), the maximization
problem P1 reduces to the maximization of the rate R over
g(·) and over the region �. Thus, P1 is recast as

P3: R = max
g(·),(ω,F)∈�min{R1(g), R̃2(g)} s.t.

(a)R1(g)= F log(1+β0ω)−F
∫ ω

0
g(p) log(1+ pβ0) d p

(b)R̃2(g) = F
∫ ω

0
g(p) log(1 + pv) d p

+ (1 − F) log

(
1 + v

P̄ + p̄ − Fω

1 − F

)

(c)
∫ ω

0
pg(p) d p = ω − P̄

F
; (d)

∫ ω

0
g(p) d p = 1

(29)

where P3-(c) is obtained by using (22) and (24), P3-(d) states
that g(p) is a pdf.

B. Bounding the Rates R1(g) and R̃2(g)

To solve P3, we first apply Lemma 1 to R1(g) and R̃2(g).
We obtain:

R1(g) ≥ F log
F(1 + ωβ0)

F(1 + ωβ0)− P̄β0
� Rmin

1 (30)

R̃2(g) ≤ F log

(
1 + v

(
ω − P̄

F

))

+ (1 − F) log

(
1 + v

P̄ + p̄ − Fω

1 − F

)
� R̃max

2 . (31)

The bounds in (30) and (31) hold with equality when

g(p) = δ

(
p − ω + P̄

F

)
. (32)

Similarly, we can write

R1(g) ≤ P̄
ω

log(1 + β0ω) � Rmax
1 (33)

R̃2(g) ≥
(

F − P̄
ω

)
log(1 + vω)

+ (1 − F) log

(
1 + v

P̄ + p̄ − Fω

1 − F

)

� R̃min
2 . (34)

In (33) and (34), equality holds for

g(p) = P̄
Fω

δ(p)+
(

1 − P̄
Fω

)
δ(p − ω). (35)

In the following, we use the above bounds to divide the
solution space � into subregions, over which maximizing R
becomes easier.

C. Breaking the Solution Space Into Subregions

In order to maximize the rate over �, we exploit the bounds
in (30), (31), (33), (34) and define the following subsets of �.

1) �1 =
{
(ω, F) ∈ �

∣∣∣Rmin
1 ≥ R̃max

2

}
. Then in �1 the

problem P3 reduces to maximizing R̃max
2 . The maximum rate

achieved in �1 will be denoted by R�1 . We observe that
�1 can be viewed as the set of points where Q1(ω, F) �
Rmin

1 − R̃max
2 ≥ 0 (i.e., Rmin

1 ≥ R̃max
2 ). Then the implicit

curve Q1(ω, F) = 0 is one of the edges of �1 (see
Fig. 3(top)). Also, the intersection point between Q1(ω, F) =
0 and the edge V1–V3, whose equation is F = P̄

ω , is

A =
(
ωA, FA = P̄

ωA

)
. The value of ωA can be computed

numerically by solving Q1 (ωA, FA) = 0.
The intersection between Q1(ω, F) = 0 and the edge

V1–V2, whose equation is F = pmax− p̄−P̄
pmax−ω , is B =(

ωB , FB = pmax− p̄−P̄
pmax−ωB

)
. The value of ωB can be computed

numerically by solving Q1(ωB, FB ) = 0. Moreover, as shown
in Appendix E, the curve Q1(ω, F) intersects the line ω =
p̄ + P̄ at most in a single point. Finally, it can be seen that
Rmin

1 decreases with ω while R̃max
2 increases with ω (details

can be found in [22]). Thus, we conclude that �1 is located
on the left of the curve Q1(ω, F) = 0 (see Fig. 3(top)).

2) Let �2 =
{
(ω, F) ∈ �

∣∣∣R̃min
2 ≥ Rmax

1

}
. Then in �2

the problem P3 reduces to maximizing Rmax
1 . The maximum

rate achieved in this subregion will be denoted by R�2 . We
observe that �2 is given by the set of points (ω, F) where
Q2(ω, F) � R̃min

2 − Rmax
1 ≥ 0 (i.e., R̃min

2 ≥ Rmax
1 ). Then

the implicit curve Q2(ω, F) = 0 is one of the edges of �2.
Also, it can be easily shown that Rmax

1 decreases with ω,
while R̃min

2 increases with ω and decreases with F (see [22]
for details). Based on the above observations and recalling
that Rmax

1 does not depend on F , we conclude that Q2(ω, F)
increases with ω while decreases with F . By consequence,
the curve defined by the implicit equation Q2(ω, F) = 0, has
non-negative derivative:

−∂Q2(ω, F)

∂ω

/
∂Q2(ω, F)

∂F
≥ 0.
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Fig. 3. (Top) A graphical representation of Region � and its subregions �1,
�2 and �3. (Bottom) A graphical representation of the subregions �1, �2,
and �3 and of the cases when they exist.

Moreover, the curve Q2(ω, F) = 0 intersects the edge
V1–V3 in A =

(
ωA, FA = P̄

ωA

)
, as it can be easily proven

by observing that Q2(ωA, FA) = 0. The curve Q2(ω, F) = 0
intersects the edge V1–V2 in C =

(
ωC , FC = P̄+pmax− p̄

pmax−ωC

)
.

Note that the curve Q2(ω, F) = 0 never crosses the line
ω = P̄ + p̄. Indeed, when ω = P̄ + p̄, the expression
Q2(P̄+ p̄, F) does not depend on F any longer. As mentioned,
Rmax

1 decreases with ω while R̃min
2 increases with ω; thus,

�2 is located on the right of the curve Q2(ω, F) = 0
(see Fig. 3(top)).

3) Finally, let �3 = � \ (�1 ∪ �2). The maximum rate
achieved in �3 is denoted by R�3 and can be obtained by
maximizing the rate R1(g) = R̃2(g) over g(·). To this end,
in the region �3, we reformulate P3 as follows:

P4: R�3 = max
(ω,F)∈�3

[
F log(1 + ωβ0)

−F min
g(·)

∫ ω

0
g(p) log(1 + β0 p) d p

]
s.t. (36)

∫ ω

0
g(p)

[
log(1+β0 p)+ log(1 + vp)

]
d p = C(ω, F)

∫ ω

0
pg(p) dp = ω − P̄

F
;

∫ ω

0
g(p) d p = 1

C(ω, F) = log(1 + β0ω)+
(

1 − 1

F

)

× log

(
1 + v

P̄ + p̄ − Fω

1 − F

)
(37)

where we maximize with respect to ω, F , and g(·), and we
impose R1(g) = R̃2(g).

The maximum rate over � is therefore given by R =
max{R�1 , R�2 , R�3}. In the following, we state the conditions
under which the three subregions �1, �2, and �3 exist.

D. Existence of Regions �1, �2, and �3

We first observe that, depending on the system parameters,
the positions of the points A and B vary. Several cases are
possible.

(a) Point A is located on the left of V1, hence, outside
�. Since the curve Q2(ω, F) = 0 intersects the edge
V1–V2 at most once, we conclude that in this case �2 = �.
This situation is depicted in (a) in Fig. 3(bottom) and arises
when Q2(V1) ≥ 0. By solving Q2(V1) ≥ 0 for P̄, we obtain

P̄ ≤ P3 � pmax− p̄
pmaxβ0

[
(1 + pmaxv)

p̄
pmax− p̄ − 1

]
. Clearly, �1 and

�3 do not exist in this case.
(b) Points A and B are located on the right of the points V3

and V2, respectively, as depicted in (b) in Fig. 3(bottom). Since
the curve Q1(ω, F) = 0 intersects the edge V2–V3 at most in
a single point (as proved in Appendix E), in this case �1 = �.
The condition Q1(V2) ≥ 0 (i.e., for which B is on the right
of V2), solved for P̄ , provides P̄ ≥ p̄ v

β0
(1+ p̄β0) = P2 while

the condition Q1(V3) ≥ 0 (i.e., for which A is to the right
of V3) is equivalent to p̄ log

(
1 + v(P̄ + p̄)

) ≤ P̄ log(1+(P̄+
p̄)β0) with solution P̄ ≥ P4. Therefore, the above situation
arises when P̄ ≥ max{P2,P4}.

(c) Point A is located on the right of V3 and B is on the
left of V2. Here, only regions �1 and �3 exist, as depicted in
(c) in Fig. 3(bottom). This situation arises when Q1(V3) ≥ 0
and Q1(V2) ≤ 0, i.e., for P4 ≤ P̄ ≤ P2. Furthermore, in this
case the curve Q1(ω, F) = 0 intersects the edge V2–V3 in D.

(d) Point A lies on the edge connecting V1 and V3. In this
case, all regions �1,�2, and �3 exist, as depicted in (d)
in Fig. 3(bottom). This situation happens when P3 ≤ P̄ ≤ P4.

E. Maximizing R as the Average Source
Transmit Power Varies

We consider the four cases reported in Fig. 3(bottom).
(a) For P̄ ≤ P3 (case depicted in (a) in Fig. 3(bottom)),

R = R�2 = max�2 Rmax
1 . Since Rmax

1 decreases with ω
and does not depend on F , the maximum is achieved in V1.
We then replace (35) and (28) in (20), set ω and F to the
coordinates of V1, and find:

f �(p) =
(

1 − p̄

pmax

)
δ(p)+ p̄

pmax δ(p − pmax).

Recalling that the source power is P(p) = β
|h1|2 [ω− p]+, for

p = 0 we get P(p) = pmax P̄
pmax− p̄ , while for p = pmax we have

P(p) = 0. The achieved rate becomes:

R = R�2 =
(

1 − p̄

pmax

)
log

(
1 + pmaxP̄

(pmax − p̄)β0

)
.

(b) For P̄ ≥ max{P4,P2} (case depicted in (b)
in Fig. 3(bottom)), R = R�1 = max�1 R̃max

2 . It can be easily
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shown that R̃max
2 increases with ω, the values on the edge

V1–V2 monotonically increase with ω, and the values on the
edge V1–V3 monotonically decrease with ω (see [22] for
details). We therefore conclude that the maximum of R̃max

2 is
located on the rightmost edge of �1, i.e., on the edge V2–V3
where ω = P̄ + p̄. Once we fix ω to such value, R̃max

2 |ω=P̄+ p̄
increases with F . It follows that the rate is maximized in V2
and is given by R = R�1 = log(1 + v p̄). Moreover, by
replacing (32) and (28) in (20) and by setting ω = P̄ + p̄
and F = 1, we obtain f �(p) = δ(p − p̄). Since this is a
single delta function, the source power can be computed for
p = p̄ as: P( p̄) = β

|h1|2 [ω − p̄]+ = P̄ .

(c) For P4 < P̄ < P2, only subregions �1 and �3
exist, thus R = max{R�1, R�3}. Let us first focus on �1.
As observed before, R�1 = max�1 R̃max

2 where R̃max
2 increases

with ω, thus R̃max
2 is maximized on the edge B–D and on the

segment D–V3 (where ω = P̄ + p̄). However, as mentioned
for ω = P̄ + p̄, R̃max

2 increases with F . It follows that the
maximum must lie on the edge B–D.

As for the subregion �3, the maximum achievable rate is
given by the solution of P4, which can be solved by using
Theorem 2. We have that:

• if v ≥ β0, it can be shown that R�3 lies on the edge B–D
(see [22] for details). Thus, R = R�1 = R�3 and R can
be computed by solving R = maxQ1(ω,F)=0 Rmin

1 , which
is convex, hence, easy to be solved. Let (ω�, F�) be the
point where the rate is maximized, then the corresponding
function f �(p) is given by combining (28) with g(p) =
δ(p − ω + P̄/F), i.e.,

f �(p) = F�δ(p − ω� + P̄/F�)

+ (1 − F�)δ

(
p − P̄ + p̄ − ω�

1 − F�
− ω�

)
(38)

• otherwise, the problem can be solved numerically and the
rate is maximized in V2 = (P̄ + p̄, 1) [22]. The optimal
distribution of the transmission power at the relay is then
given by:

f �(p) = p2 − p̄

p2
δ(p)+ p̄

p2
δ(p − p2) (39)

where p2 is the solution of the following constraint:

log [(1 + β0 p2)(1 + vp2)]

p2

=
log(1 + β0ω)+

(
1 − 1

F

)
log

(
1 + v P̄+ p̄−Fω

1−F

)

ω − P̄
F

. (40)

(d) When P3 < P̄ < P4, the situation is depicted in (d)
in Fig. 3(bottom) where all three subregions exist. In subregion
�1, following the same rationale as in case (c), we conclude
that the rate R�1 lies on the edge B–A. In subregion �2,
the rate is R�2 = max�2 Rmax

1 . Since Rmax
1 does not depend on

F , it decreases with ω, and the implicit curve Q2(ω, F) = 0
is monotonically increasing, we conclude that R�2 is obtained
when operating in A. Hence, R�2 ≤ R�1 . With regard to
subregion �3, the maximum achievable rate is given by the

solution of P4, which can be solved by using Theorem 2.
We have that:

• if v ≥ β0, as observed for case (c), R�3 lies on the edge
B–A. Thus, R = R�1 = R�3 and R can be computed by
solving R = maxQ1(ω,F)=0 Rmin

1 ;
• else, similarly to the previous case, the problem can be

solved numerically and the optimum is located in A =
(ωA, FA). The optimal distribution of the transmission
power at the relay is given by:

f �(p) = FAδ(p)+ (1 − FA)δ

(
p − p̄

1 − FA

)
. (41)

As done before, we use the obtained probability density
function of the transmit power at the relay, to derive the
optimal power allocation at the source node using (7).
In Table II, we summarize our results highlighting the
power allocation at both source and relay, the phases
duration, and the data rate for the different cases analyzed
above. Note that the expressions reported in the table hold
only for 0 ≤ P̄ < P0. By looking at the two top tables,
we can make the following observations:

– for P̄ ≤ P3, the source transmits in phase B
(i.e., the relay operates in HD-RX) while in phase A
the relay operates in HD using its maximum power
(HD-TX);

– for P̄ ≥ max{P2,P4}, the relay operates in FD for
the whole frame and both source and relay transmit
at their average power;

– for P̄ ∈ (P3,max{P2,P4}), v ≥ β0, the relay works
in HD-TX in phase A and in FD in phase B;

– for P̄ ∈ (P4,max{P2,P4}), v < β0, the relay works
in FD in phase A and in HD-RX in phase B;

– for P̄ ∈ (P3,P4] and v < β0, the relay works
in HD-TX mode in phase A and in HD-RX in
phase B; thus, this case corresponds to the traditional
HD mode.

VI. RESULTS

We compare the performance of our scheme to the ideal full
duplex communication (referred to as “FD Ideal”) where the
relay does not suffer from any self-interference. The perfor-
mance of the “FD-Ideal” scheme is clearly unachievable when
self-interference is present; it is therefore used as an upper
bound for all the considered techniques. The corresponding
rate is (see [12, eq.(38)])

RFD−Ideal = min

{
log

(
1 + P̄ |h1|2

N0

)
, log

(
1 + p̄|h2|2

N0

)}
.

We then consider the full duplex scheme (referred to
as “FD-IP”) where the source is aware of the instantaneous
power (IP) at which the relay transmits. In FD-IP, the source
always transmits with average power P̄ while the relay trans-
mits with average power p̄. We stress that, unlike FD-IP,
our scheme only requires the knowledge at the source of the
average power used at the relay. The expression of the rate



2898 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 66, NO. 7, JULY 2018

TABLE II

OPTIMAL POWER ALLOCATION AND RATE FOR 0 ≤ P̄ < P0 . tA AND tB = 1 − tA ARE THE TIME FRACTIONS REPRESENTING
THE PHASES DURATION. THE PHASES IN WHICH THE RELAY WORKS IN HD ARE SHADED

achieved by FD-IP, also considered in [12], is2:

RFD−IP = min

{∫ +∞

−∞
log

(
1 + P̄ |h1|2

N0 + βx2

)
e−x2/(2 p̄)

√
2π p̄

dx,

log

(
1 + p̄|h2|2

N0

)}
. (42)

Furthermore, as done in [12], we compare our solution to the
conventional half duplex scheme (named “HD”), for which the
rate is given by:

RHD = max
p̄/pmax≤t≤1

min

{
(1 − t) log

(
1 + |h1|2 P̄

(1 − t)N0

)
,

t log

(
1 + p̄|h2|2

t N0

)}
(43)

where the relay always operates in half duplex and its transmit
power is limited to pmax. This scheme implies that the com-
munication is organized in two phases of relative duration t
and 1 − t , respectively.

Finally, we consider a scheme similar to the one pro-
posed in [12] but without knowledge of the instantaneous
transmitted symbols. Specifically, we compare with a hybrid
communication scheme named FD-HD where the source has
only knowledge of the instantaneous power used by the relay
and the relay leverages on FD-IP or on HD, depending on
which operational mode provides the highest rate. FD-HD
is organized in the following three phases: (A) the source
transmits at power PA for a time fraction tA while the relay
is silent; (B) the source is silent and the relay transmits at
power pB for a time fraction tB ; (C) the relay operates in FD,
source and relay transmit at power PC and pC , respectively,

2We further note that the symbols are Gaussian distributed, thus the
probability that they transmit a symbol x = 0 is 0. It follows that the system
always works in FD mode.

for a time fraction tC . The achieved rate is given by:

RFD−HD = max
tA,tB ,tC
PA,PC
pB ,pC

min

{
tA log

(
1 + PA|h1|2

N0

)

+ tC

∫ +∞

−∞
log

(
1 + PC |h1|2

N0 + βx2

)
e−x2/(2pC )

√
2πpC

dx,

tB log

(
1 + pB |h2|2

N0

)
+ tC log

(
1 + pC |h2|2

N0

)}

(44)

where the first argument of the min operator represents the rate
achieved on the source-relay link, the second one represents
the rate achieved on the relay-destination link, and the follow-
ing constraints must hold: tA + tB + tC = 1, tA PA + tC PC = P̄ ,
tB pB + tC pC = p̄, and pB, pC ≤ pmax.

In order to evaluate the performance of our solution against
the above schemes, we consider a scenario similar to that
employed in [12] where the source-relay and relay-destination
distances are both set to d = 500 m, the signal carrier
frequency is fc = 2.4 GHz and the path loss is given by

|h1|2 = |h2|2 =
(

c
4π fc

)2
d−α , with α = 3. Considering an

additive noise with power spectral density −204 dBW/Hz and
a bandwidth B = 200 kHz, the noise power at both relay and
destination receivers is about N0 = −151 dBW. Note that, for
this setting, we have v = |h1|2/N0 ≈ 30 dB.

Fig. 4(left) compares the rate of our optimal power
allocation scheme, labeled “OP”, against the performance
of FD-Ideal, FD-IP, FD-HD and HD, for p̄ = −10 dBW,
pmax = −7 dBW and β = −135 dB. Since β0 = β/N0 ≈
16 dB, the results we derived for v > β0 apply. Let Pi =
Pi

β
|h1|2 , for i = 0, . . . , 4. For the parameters used in this exam-

ple, the value of the power thresholds are: P0 = −24 dBW,
P1 = −14.23 dBW, P2 = −3.04 dBW, P3 = −9.92 dBW, and
P4 = −20.56 dBW. The thresholds P3 and P4 are meaningful
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Fig. 4. Performance for p̄ = −10 dBW, pmax = −7 dBW and β = −135 dB: (left) Achieved rate vs. P̄; (middle) Optimal source and relay transmit power
for phase A (solid lines) and phase B (dashed lines); (right) Phase durations tA (solid line) and tB (dashed line).

Fig. 5. Performance for p̄ = −10 dBW, pmax = −7 dBW and β = −110 dB: (left) Achieved rate vs. P̄; (middle) Optimal source and relay transmit power
for phase A (solid lines) and phase B (dashed lines); (right) Phase durations tA (solid line) and tB (dashed line).

only if lower than P0 (see Sec. V), thus they are not shown
in the figure. The achieved rates are depicted as functions of
the average transmit power at the source, P̄ . For P̄ ≥ P0,
the results obtained in Sec. IV hold. Accordingly, the plot
highlights three operational regions corresponding to P0 ≤
P̄ ≤ P1, P1 < P̄ ≤ P2, and P̄ > P2, respectively. Instead, for
P̄ < P0 (see Sec. V), we have a single operational region only,
since P3 > P0 and P4 > P0. As expected, the performance of
all communication strategies is upper-bounded by FD-Ideal,
since the latter assumes no self-interference at the relay. Also,
FD-HD outperforms both FD-IP and HD since it assumes
perfect knowledge at the source about the instantaneous relay
transmit power (as FD-IP) and can work in either FD or HD
mode, depending on the system parameters. The proposed OP
technique always outperforms HD and achieves higher rates
than FD-IP for P̄ < −10 dBW. Furthermore, OP gets very
close to FD-HD, especially for P̄ > P1.

Such performance of the OP scheme is achieved for the
source and relay transmit power levels and for the phase
durations depicted in Figs. 4(middle) and 4(right), respectively.
Interestingly, for P̄ < P1, the time durations of the two
communication phases remain constant. With regard to the
transmit power, for P̄ < P0, the source transmits in phase B
and is silent in phase A while the relay only transmits in
phase A at its maximum power. For P0 ≤ P̄ < P1, the source
always transmits (even if at different power levels), while the
relay only receives in phase B and transmits at its maximum
power in phase A. For P1 ≤ P̄ < P2, both source and relay
transmit but the duration of the two phases varies, with tA → 0
as P̄ → P2. Finally, for P̄ ≥ P2, both source and relay
transmit at their average power level.

Fig. 5(left) refers to the same scenario as that considered
in Fig. 4(left), but with the self-interference attenuation factor,
β, set to −110 dB. In this case, β0 = β/N0 ≈ 41 dB
and the results obtained for v < β0 apply. Moreover, we
have: P0 = 1 dBW, P2 = 21 dBW, P3 = −9.9 dBW, and
P4 = −0.7 dBW, while the threshold P1 is not meaningful
(hence, it is not shown). The figure highlights two operational
regions for P̄ ≥ P0 (namely, P0 ≤ P̄ ≤ P2 and P̄ ≥ P2),
and three operational regions for P̄ < P0 (i.e., P̄ < P3,
P3 ≤ P̄ ≤ P4 and P4 < P̄ < P0). In this case too, OP
outperforms FD-IP (except for high values of P̄) and performs
very close to FD-HD. By looking at Fig. 5(middle), which
depicts the corresponding power levels used at source and
relay, we note that in phase B the relay is always silent.
In phase A, instead, the relay transmits at its maximum power
(namely, −7 dBW) when P̄ ≤ P3, and it slowly decreases its
power to p̄ as P̄ approaches P2. With regard to the source, in
phase B it always transmits for P̄ < P2, although at different
power levels depending on P̄ . On the contrary, in phase A it
is silent for P̄ < P4, and it always transmits for larger values
of P̄ . These results match the values of the phase durations
depicted in Fig. 5(right): now, the region where the phase
durations are constant is limited to P̄ < P3, while, as P̄
approaches P2, tA → 1 and tB → 0.

Fig. 6(left) highlights the impact of self-interference on
the network performance by showing the rate versus P̄ ,
achieved by OP and its counterpart FD-HD, as β varies. For
completeness, the results for FD-Ideal and HD (which do not
depend on β) are shown too. For β = −120 dB (i.e., v < β0),
the system is affected by a substantial self-interference at the
relay, and OP performs as HD for low-medium values of P̄ .
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Fig. 6. (Left) Achieved rate vs. P̄ , for p̄ = −10 dBW, pmax = −7 dBW, and different values of β; (middle) Achieved rate vs. P̄ = p̄, for pmax = p̄ + 3 dB
and β = −130 dB; (right) Achieved rate vs. P̄ = p̄, for pmax = 10 dBW and β = −130 dB.

As β (i.e., the self-interference) decreases, the OP performance
becomes closer to that of FD-HD and FD-Ideal; in particular,
for β = −140 dB, the gap between OP and FD-HD reduces
to about 1 dB.

In Fig. 6(middle), we study a different scenario where β is
fixed to −130 dB, p̄ and P̄ vary, and pmax = p̄ +3 dB. Since
now P̄ , p̄ and pmax can all grow very large, the gap between
FD-Ideal and all other schemes becomes much more evident.
However, OP closely matches FD-HD and significantly out-
performs HD. Interestingly, FD-IP provides a lower rate than
HD as the transmit power at source and relay increases. This
is because FD-IP cannot exploit the HD mode; thus, when p̄
is large and the impact of self-interference becomes severe,
there is no match with the other schemes.

Finally, Fig. 6(right) addresses a similar scenario to the one
above, but pmax is now fixed to 10 dBW. We observe that, as p̄
grows, the rate provided by all schemes increases. However,
when p̄ approaches pmax, the relay is constrained to transmit,
i.e., to work in FD, for an increasingly longer time. For
p̄ = pmax, the relay always transmits at a power level equal
to p̄ = pmax. Also, the rate provided by the HD scheme drops
to 0 while FD-IP and FD-HD provide the same performance;
indeed, the latter cannot exploit anymore the advantages of
HD. For the same reason, the OP scheme experiences a rate
decrease. These results clearly suggest that significantly better
performance can be achieved when p̄ is not too close to pmax.

VII. EXTENSION TO FINITE Pmax

The analysis performed in Secs. IV and V as well as the
numerical results reported in Sec. VI have been obtained by
assuming Pmax to be very large. By removing this assumption,
the transmission power at the source can be written as in 6 We
recall that, for simplicity, we defined Pmax = |h1|2

β Pmax so that

P(p) can be more conveniently written as P(p) = β
|h1|2 P(p)

with P(p) = min
{[ω − p]+,Pmax

}
.

The following cases can occur:

• Pmax > ω, then P(p) = [ω − p]+. This leads to a
situation similar to that considered in Secs. IV and V.
Indeed,
– in Sec. IV, by imposing ω ≥ pmax in constraints (c), (d),
and (e) of problem P1, we obtained ω = P̄ + p̄. It follows
that P̄ should lie in the range [pmax− p̄,Pmax− p̄] where
the results reported in Table I hold;

– in Sec. V, we considered the case ω < pmax. Since
Pmax > ω, we obtain ω < min{pmax,Pmax}. If Pmax >
pmax the results shown in Table II hold, otherwise they
need to be recomputed by simply considering ω ranging
in [0,Pmax).

• Pmax ≤ ω, which is a more challenging scenario to
analyse. Indeed, in such a situation function P(p), with
p ∈ [0, pmax], takes values in up to three linear regions,
depending on the value of pmax. Specifically,
– if pmax < ω−Pmax, we have P(p) = Pmax. Then the
integral in (3) holds only if P̄ = Pmax. This corresponds
to the case where the source always transmits at its
maximum power, regardless what the relay does;
– if ω − Pmax ≤ pmax < ω, P(p) takes values in two
linear regions, i.e., P(p) = Pmax if p ∈ [0, ω − Pmax),
and P(p) = ω − p if p ∈ [ω − Pmax, pmax). In order to
maximize the rate R over the distribution f (p), we then
need to split it in two parts as done in Sec. V and the
same analysis therein applies;
– if pmax ≥ ω, P(p) is composed of three linear regions,
i.e., P(p) = Pmax if p ∈ [0, ω − Pmax), P(p) = ω − p
if p ∈ [ω − Pmax, ω), and P(p) = 0 otherwise. In this
case, for any given ω, the rate maximization can be solved
by splitting f (p) in three distributions having support
in [0, ω − Pmax), [ω − Pmax, ω), and [ω, pmax], and
having masses F1(ω), F2(ω), and 1 − F1(ω) − F2(ω),
respectively. The maximization can be performed follow-
ing a procedure similar to Sec. V, although in this case,
we need to consider a three-dimensional (instead of a
bi-dimensional) region �, with coordinates (ω, F1, F2).
Such maximization is quite cumbersome if performed
analytically.

VIII. CONCLUSIONS

We investigated the maximum achievable rate in dual-hop
decode-and-forward networks where the relay can operate in
full-duplex mode. Unlike existing work, in our scenario the
source is only aware of the probability density function of the
transmit power at the relay; under this assumption, we derived
the allocation of the transmit power at the source and relay
that maximize the data rate. Such probability density function
turned out to be discrete and composed of either one or two
delta functions. This finding allowed us to identify the optimal
network communication strategy, which, in general, is given
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by a two-phase scheme where the relay operates in HD or FD
in each phase. Our numerical results highlight the advantage
of being able to gauge full-duplex and half-duplex at the
relay, depending on the channel gains and the amount of
self-interference affecting the system. They also underline the
excellent performance of the proposed scheme, even when
compared to strategies that assume the source to be aware
of the instantaneous transmit power at the relay.

APPENDIX A

We can solve P0 by writing Lagrange’s equation and lever-
aging the well-known Karush-Kuhn-Tucker (KKT) conditions.
We define the Lagrangian as:

L(P) = f (p) log

(
1 + |h1|2 P(p)

N0 + βp

)
− λ

(
f (p)P(p)− P̄

)

−μ1(p)(P(p)− Pmax)+ μ2(p)P(p) (45)

where μ1(p), μ2(p) ≥ 0 and λ are the KKT multipliers.
Writing the KKT conditions, we obtain f (p)|h1|2

N0+βp+P(p)|h1|2 −
λ f (p) − μ1(p) + μ2(p) = 0, μ1(p)(P(p) − Pmax) = 0,
and μ2(p)P(p) = 0, along with (a) and (b) that must still
hold. It can be easily verified that the above system is satisfied
when μ1(p) = μ2(p) = 0, for which the first KKT condition
reduces to f (p)

[ |h1|2
N0+βp+P(p)|h1|2 − λ

]
= 0. Solving for P(p)

we get: P(p) = β
|h1|2 min

{[ω − p]+,Pmax
}

where we defined

Pmax � Pmax |h1|2
β , and ω = |h1|2

βλ − N0
β , which must satisfy (a).

APPENDIX B

The upper bound is immediately obtained by applying
Jensen inequality and it clearly holds with equality when
f (p) = δ(p − m). With regard to the lower bound,
being φ(p) concave in p ∈ [a, b], we can write φ(p) ≥
φ(b)−φ(a)

b−a (p − a) + φ(a). Therefore,
∫ b

a f (p)φ(p) d p ≥
b−m
b−a φ(a) +

(
1 − b−m

b−a

)
φ(b). For f (p) = b−m

b−a δ(p − a) +(
1 − b−m

b−a

)
δ(p − b), the lower bound holds with equality.

APPENDIX C

The conditions ω ∈ [0, pmax), F ∈ [0, 1], 0 ≤ G ≤ p̄,
(24), and (25) can be rewritten in terms of F and ω as
follows: (a)F ≤ p̄+P̄

ω ; (b)F ≤ pmax− p̄−P̄
pmax−ω ; (c)F ≥ P̄

ω ; (d)ω <
P̄+ p̄; (e)0 ≤ F ≤ 1; ( f )0 ≤ ω < pmax. Note that (d) implies
P̄+ p̄
ω > 1. Since F ≤ 1, condition (a) is always verified, hence

it is redundant. Similarly, since P̄ and ω are both positive,
we have P̄

ω ≥ 0; thus the left inequality in (e) is redundant.

Also, it easy to check that pmax− p̄−P̄
pmax−ω ≤ 1 implies ω ≤ p̄ − P̄,

which is more restrictive than (d); thus, the right inequality
in (e) is redundant. In conclusion, the remaining constraints

on F can be summarized as P̄
ω ≤ F ≤ pmax− p̄−P̄

pmax−ω . Clearly,

solutions for F exist if and only if P̄
ω ≤ pmax− p̄−P̄

pmax−ω , i.e.,

if and only if ω ≥ pmaxP̄
pmax− p̄ . Since term pmaxP̄

pmax− p̄ is positive,

the remaining conditions on ω can be summarized as pmaxP̄
pmax− p̄ ≤

ω < min{pmax, P̄ + p̄}. Hence, a solution for ω exists if and

only if pmaxP̄
pmax− p̄ < pmax and pmaxP̄

pmax− p̄ < P̄ + p̄; such conditions

are satisfied when P̄ < pmax − p̄ = P0. In conclusion, under
the condition P̄ < P0, a solution for the above inequalities
exists and it is represented by the region � in (26).

APPENDIX D

The problem in (14) can be solved by using the Euler-
Lagrange formula. We define the Lagrangian L(p, f (p)) =
f (p)φ(p)+λ1 f (p)ψ(p)+λ2 p f (p)+λ3 f (p)−μ(p) f (p)
where the first term represents the functional to be minimized.
The second, third and fourth terms represent the constraints
(a), (b), and (c) with associated Lagrange multipliers λ1,
λ2 and λ3, respectively. Note that (d) can be rewritten as
− f (p) ≤ 0 and it requires a Lagrange multiplier for every
p ∈ [a, b]. This can be done by introducing the multiplier
μ(p) ≥ 0.

Next, we apply the Euler-Lagrange formula and we write
the KKT conditions associated with the problem. Specifically,
we get ∂L

∂ f = 0 ⇒ μ(p) = φ(p) + λ1ψ(p) + λ2 p + λ3,
subject to the conditions (a), (b), (c), (d), μ(p) ≥ 0, and
μ(p) f (p) = 0.

Now the key observation is that μ(p) = φ(p)+ λ1ψ(p)+
λ2 p+λ3 identifies a family of continuous functions driven by
the parameters λ1, λ2 and λ3. Such parameters need to be prop-
erly chosen in order to have μ(p) ≥ 0,∀p ∈ [a, b]. If μ(p)
is strictly positive in [a, b] (i.e., μ(p) > 0,∀p ∈ [a, b]), then
the condition μ(p) f (p) = 0 implies f (p) = 0,∀p ∈ [a, b],
which is not a valid solution. Moreover, φ(p) and ψ(p) are not
constant functions, therefore it is not possible to find values
of the Lagrange multipliers such that μ(p) = 0, in a subset of
[a, b] having non-zero measure. The only option is to allow
μ(p) > 0 for all p ∈ [a, b], except for a discrete set of points
pi ∈ [a, b] for which μ(pi) = 0. This observation hints that
the solution of the problem must be found in the set of discrete
distributions. In practice, every solution pi of μ(p) = 0 is
associated with a mass of probability, πi , located at pi .

The number of solutions of μ(p) = 0 can vary depending
on the values of λ1, λ2, λ3, γ1, and γ2. In general, such a
number can be computed by analyzing the first derivative of
μ(p): μ′(p) = k1 p2+k2 p+k3

(1+γ1 p)(1+γ2 p) where k1, k2, k3 depend on
λ1, λ2, λ3, γ1, γ2. The numerator of μ′(p) is a polynomial
in p of degree 2 and thus has up to two solutions for p in
[a, b], which correspond to local minima or maxima of μ(p).
Let f �(p) be the minimizer of (14). Then several cases are
possible:

1) μ(p) has a single solution p1 ∈ [a, b], which does not
correspond to local minima or maxima. Then p1 = a or
p1 = b. This implies f �(p) = π1δ(p − a) (or, f �(p) =
π1δ(p − b)) which, however has only one degree of freedom
(i.e., the value of π1) and thus, in general, cannot satisfy
constraints (a), (b), and (c) of (14) all together;

2) μ(p) has a single solution p1 ∈ [a, b], which corresponds
to a local minimum. Thus f �(p) = π1δ(p − p1). However,
this solution is not feasible since it has only two degrees of
freedom (i.e., p1 and π1) and therefore, in general, cannot
satisfy the three constraints (a), (b), and (c) of (14) at the
same time;
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3) μ(p) has two solutions p1, p2 ∈ [a, b] none of which
corresponds to a local minimum. Thus p1 = a and p2 = b,
and f �(p) = π1δ(p − a) + π2δ(p − b). Again, in general,
this solution is not feasible since it has only two degrees of
freedom (π1 and π2) and therefore cannot meet (a), (b), and
(c) at the same time;

4) μ(p) has two solutions p1, p2 ∈ [a, b] one of which is
a local minimum. Then two cases are possible, i.e., {p1 =
a, p2 > a} or {p1 < b, p2 = b}) and the minimizer f �(p)
takes the expression f �(p) = π1δ(p − a) + π2δ(p − p2)
or f �(p) = π1δ(p − p1) + π2δ(p − b). This solution is
feasible since it has three degrees of freedom represented
by {π1, π2, p1} or {π1, π2, p2} that can be determined by
imposing the constraints (a), (b), and (c). The constants γ1,
and γ2 determine which of the two expressions in (15) is the
minimizer. This is shown below.

Since μ(p) cannot have more than two distinct solutions in
[a, b] (indeed, μ′(p) has at most two solutions), we conclude
that the minimizer of (14) is given by (15).

Selecting the minimizer expression. The minimizer can
assume one of the two possible expressions in (15). Here
we show that the choice of the minimizer depends on the
parameters γ1 and γ2. To do so, we first observe that the
family of distributions f �(p, x, y) = π(x, y)δ(p − x)+ [1 −
π(x, y)]δ(p − y), where π(x, y) = y−m

y−x > 0 with m ≤ y ≤ b
and a ≤ x ≤ m, encompasses both expressions in (15).
Specifically, the expressions reported in (15) are given by
f �(p, a, p2) and f �(p, p1, b), respectively.

For such a family of distributions, constraint (a) in (14)
can be rewritten as F(x, y) = ∫ b

a f �(p, x, y)ψ(p) d p =
π(x, y)ψ(x) + [1 − π(x, y)]ψ(y) = c. Similarly, the cost
function,

∫ b
a f (p)φ(p) d p, can be written as G(x, y) =

π(x, y)φ(x) + [1 − π(x, y)]φ(y). Note that, since ψ(p) =
φ(p) + η(p), we have F(x, y) = G(x, y) + H (x, y) where
H (x, y) = π(x, y)η(x)+ [1 −π(x, y)]η(y). In the following,
for the sake of notation simplicity, we drop the argument of
the functions when not needed. We now make the following
observations:

1) F and G are increasing functions of x and decreasing
functions of y [22].

2) the equation F(x, y) = c is the implicit definition of
yc(x), a ≤ x ≤ p1 and p2 ≤ y ≤ b with derivative defined
as y ′

c(x) = dyc(x)
dx = − Fx

Fy
where we defined Fx = ∂F

∂x and

Fy = ∂F
∂y . By the above arguments on the partial derivatives

of F , we conclude that y ′
c(x) > 0. Similarly, the function

G(x, y) = t is the implicit definition of yt (x) whose derivative
y ′

t (x) is positive.
3) Given the constant c, a value for t exists such that

yc(x) and yt (x) have a common solution (x∗, y∗). E.g., if
t = G(a, p2), the two curves share the point (a, yc(a)). Now
consider a value of t such that the curves yc(x) and yt (x) inter-
sect at point P = (x∗, y∗), with P �= (a, p2), P �= (p1, b).
If y ′

c(x) > y ′
t (x) at P , then t is not the global minimum of the

cost function in (14). Indeed, it exists ε > 0 such that the curve
yt−ε(x) intersects yc(x) at some point P ′ = (x∗+�x , y∗+�y)
where the cost function G(x∗ + �x , y∗ + �y) = t − ε is
clearly lower than at P . Since this is true for any point

P = (x∗, y∗), we conclude that the minimizer is f �(p, p1, b)
and that the minimum is G(p1, b). By applying similar argu-
ments, if y ′

c(x) < y ′
t (x) at P the minimizer is f �(p, a, p2)

and the minimum is G(a, p2).
To compare the derivatives of y ′

c(x) and y ′
t (x), we use

the definitions of F , G, and H and write: y ′
c(x) = − Fx

Fy
=

− Gx+Hx
G y+Hy

and y ′
t (x) = − Gx

G y
where Gx , Hx , Gy , Hy are the

partial derivatives of G and H w.r.t. x and y, respectively.
By considering y ′

c(x) ≥ y ′
t (x), we obtain − Gx +Hx

G y+Hy
≥ − Gx

G y
⇒

− Gx
G y

≤ − Hx
Hy
. We also observe that: ∂π

∂x = πx = π
y−x and

∂π
∂y = πy = 1−π

y−x . We can the easily derive the expressions of
Gx , Gy , Hx and Hy. Now observe that φ(p) = log(1 + γ1 p)
and η(p) = log(1 + γ2 p) are the same function (i.e.,
log(1 + γ p)), the former evaluated in γ = γ1 and the latter in
γ = γ2. Therefore, since G depends on φ(p) and H depends
on η(p), we can write − Gx

G y
= ζ(γ1) and − Hx

Hy
= ζ(γ2). It is

easy to show that ζ(γ ) increases with γ ; indeed, by imposing
ζ ′(γ ) ≥ 0, after some algebra and after simplifying positive
factors, we obtain: log

(
1+γ y
1+γ x

)
(2+γ y+γ x) ≥ 2γ (y−x). The

right hand side (r.h.s.) of the previous inequality is positive
and linear with γ , γ ≥ 0. The left hand side (l.h.s.) is
positive, convex and tangent to the r.h.s. at γ = 0. Therefore,
the above inequality always holds and ζ(γ ) increases with γ .
We conclude that if γ1 ≤ γ2, we have − Gx

G y
≤ − Hx

Hy
and, thus,

yc(x) > yt (x). In such a case, the minimizer is f �(p, p1, b).
Similarly, when γ1 > γ2, the minimizer is f �(p, a, p2).

APPENDIX E

The curve Q1(ω, F) intersects the line ω = p̄ + P̄ at
most in a single point. To prove this, we substitute ω =
p̄ + P̄ in the expression for Q1(ω, F) = 0, i.e., we compute
(Rmin

1 = R̃max
2 )|ω= p̄+P̄ which can be conveniently rewritten as

− log

(
1 − P̄β0

F(1 + a)

)
= F log

(
1 − P̄β0v

F(β0 + av)

)

+ log

(
1 + av

β0

)
(46)

where a = β0( p̄ + P̄). The l.h.s of (46) is defined when
P̄β0

F(1+a) < 1, i.e., when F ≥ P̄β0
1+a , which is always true in �

where F is larger than in V3, i.e., P̄β0
a . Moreover, the l.h.s

of (46) decreases with F while the r.h.s of (46) increases
with F ; thus, (46) has at most one solution.
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