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Abstract—In this paper, we present a novel mathematical
investigation on the dispersion-limited optical communication
channel. We tackle the problem using a comprehensive approach
that is based on the optimization of the energy transfer from the
input to the output of the channel. We solve the optimization
problem deriving a fundamental integral equation, which we are
able to solve analytically. We show that the dispersion-limited
optical channel has a very interesting equivalence to the ideal
lowpass filter. This equivalence allows us to derive new bounds
on the maximum achievable bit rate on the channel with limited
intersymbol interference (ISI). In particular, we demonstrate that
by suitably increasing the memory of the modulator and using the
optimal pulses derived in this paper, one can transmit with limited
ISI over a channel with arbitrarily high dispersion.

Index Terms—Optical fiber bandwidth, optical fiber communi-
cation, optical fiber dispersion, optical modulation, optical pulse
shaping, pulse-shaping methods.

1. INTRODUCTION

ANY RECENT papers in optical communications

focus on finding optical modulation formats that enable
extending the maximum achievable distance when transmitting
over standard single-mode fibers (SMF), where chromatic dis-
persion is usually the most important physical impairment. In
metropolitan area networks (MANs), most fibers are still SMF
and, due to cost limitation, the use of optical dispersion com-
pensation is to be avoided as much as possible. This motivates
today’s great interest in fully understanding the characteristic
of the so-called “dispersion-limited” optical channel, i.e., a
channel where chromatic dispersion significantly distorts the
transmitted signal, generating high levels of intersymbol inter-
ference (ISI). In fact, the problem to be solved for this channel
is the minimization of ISI at the receiver.

In this MAN and Extended-MAN scenario, the current
trend is to try to increase the dispersion limit by operating on
the electronics of either the transmitter (through new mod-
ulation formats, [4], [8]) or the receiver (through electrical
equalization [11]), without increasing the optical complexity
of the system, and in particular, without using special optical
filtering or dispersion compensation. Several papers have been
published on duobinary/phase-shaped binary transmission
(PSBT) optical modulation [8], a line-coding technique that
allows more than doubling the dispersion limit with respect to
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standard not-return-to-zero (NRZ) optical modulation, without
any modification on the receiver side. Duobinary is now im-
plemented in several precommercial optical transceivers. Other
authors, such as [4], proposed more advanced line coding, or
other techniques, such as chirped-return-to-zero (CRZ) [1] or
carrier-suppressed RZ (CSRZ) [7].

In this paper, we propose a novel analysis of the dispersion-
limited optical channel with two main targets. On one side,
we find the expression for the optimal transmitted signal max-
imizing the energy transfer over the dispersive channel. On the
other side, using the same criteria, we derive bounds on the
maximum achievable bit rate over the dispersion-limited op-
tical channel, when a given maximum amount of ISI is toler-
ated. Moreover, our results on the optimal pulses may lead in the
future to a better understanding of optimal optical line coding
and/or to practical implementations.

Some preliminary results on this topic appeared in our pre-
vious paper [6]. Here we present the full mathematical formula-
tion of the problem, its analytical solution, and new interesting
results on the dispersion-limited optical-channel theoretical
bounds. Moreover, in [6], we only considered memoryless
transmitters, while now we extend the results to modulation
schemes with memory (line coding).

The paper is organized as follows. In Section II, we formu-
late the optimization problem, and we present its closed-form
solution, showing its equivalence to a well-known canonical
problem related to the minimization of the time-bandwidth
product of a signal [12]. In Section III, we derive, starting from
the closed-form solution, an interesting upper bound to the
maximum achievable bit rate over the dispersion-limited optical
channel, relating it to the memory of the transmitted modulation
scheme. In Section IV, we show the potential applications of
our theory in realistic optical links. We conclude in Section V
with a final discussion of our results.

A. Assumptions

The results in this paper are based on some basic assump-
tions consistent with the typical constraints imposed by today’s
optical technology. In particular, we will analyze the following
scenario.

* The optical transmitter is based on an ideal continuous
wave (CW) laser and on external modulation. We assume
to modulate independently the amplitude and phase of
each individual pulse corresponding to a given bit. This is
a reasonable assumption, since several of the previously
cited modulation formats (CRZ and CSRZ) are today im-
plemented using the cascade of (at least) two indepen-
dently driven amplitude and phase modulators.
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* The transmission is binary on—off keying (OOK), and we
do not consider multilevel modulation. We will consider
transmission with memory, i.e., setups where the pulse
transmitted for an individual bit can be arbitrary longer
than the bit duration. Thus, we basically assume imple-
menting optical line coding or, equivalently, partial-re-
sponse signaling. Optical line coding is today commonly
implemented in a very simple form in optical duobinary
transmission [8]. The idea of modulation with memory is
a key issue in this paper, and will be explained in detail in
Section I-B.

» Chromatic dispersion is the only impairment in the optical
link and no optical dispersion compensation is present.
The channel we consider is thus characterized by a single
parameter, namely, its accumulated dispersion.

» The receiver is a standard direct-detection optical receiver:
alarge optical filter, followed by a photodiode and an elec-
trical filter, without electronic compensation [11]. We as-
sume single-threshold detection, and symbol-by-symbol
detection, i.e., decisions are taken on each individual bit
without taking memory into account. This means that the
information, at the receiver side, is only carried by the
power of the received signal, while its phase information
is lost.

B. Optical Modulation With Memory

All the above assumptions match well to today’s high perfor-
mance, externally modulated optical links, with the exception
of the idea of modulation with memory. Though well known
in other communication areas under such names as partial-re-
sponse signaling or line coding, memory modulation is not yet
widespread in optical communication. It is not a totally new
concept, since optical duobinary modulation, which is recently
gaining significant attention, can be interpreted as a form of line
coding, as shown, for example, in [9].

Using modulation with memory, the pulse transmitted for
each individual bit (or symbol, if the transmission is multilevel)
has a duration that extends beyond the one-bit window. T’p being
the bit duration, the pulse transmitted for each individual bit
will have a duration 73, = Nmem - T, Where the (integer) pa-
rameter ny,en, 1S usually called the “transmitter” memory. As a

A possible practical implementation of the modulator with memory, for nmem = 4.

practical example, a system working at 10 Gbit/s [Tz = 100
picoseconds (ps)] with e, = 4 will use pulses at the trans-
mitter side with a duration 7}, = 400 ps. The particular case
Nmem = 1 corresponds to a standard, memoryless modulation.
For nem > 1, it should be noted that the signal coming out of
the transmitter is affected by ISI. Anyway, line coding is usu-
ally associated with a propagation channel that, under suitable
conditions, reduces or cancels the amount of ISI present at the
transmitter. For instance, optical duobinary can be interpreted
as line coding with nmem = 2 [9]. In fact, the resulting duobi-
nary signal at the transmitter output is strongly affected by ISI,
giving rise to a three-level eye diagram. In the duobinary case,
the IST at the transmitter is cancelled by the direct-detection re-
ceiver, which converts the three-level ISI-affected signal into a
standard two-level signal without ISI. In general, in line coding,
a controlled amount of IST is created at the transmitter in order
to have some kind of advantage at the receiver.

The practical implementation of a generic optical modulator
with memory is outside the scope of this paper, which is mainly
focused on finding the theoretical transmission bounds of the
dispersion-limited channels. A schematic of a possible realiza-
tion of a modulator with nye, = 4 is proposed in Fig. 1. It is
an extension of the optical time-domain multiplexing principle
[10]. Let us assume again that we are dealing with a system
at R = 10 Gbit/s (T = 100 ps) with nem, = 4. The light
coming from a CW laser is split into nyem = 4 fibers. Each
fiber feeds an optical modulator that receives the data from a
1:4 serial-to-parallel converter, so that the input data stream for
each modulator is actually at a rate R/4 (2.5 Gbit/s). The key
point is that, using this approach, the pulses that each modulator
should generate do not overlap in time, since the available time
window for each pulse is 475 = 400 ps, so that the modulation
on each of the four branches becomes a standard memoryless
modulation at 2.5 Gbit/s. Each modulator is then followed by
an optical delay line with delay equal to 0, Tz, 275, and 3T,
and by an optical coupler that recombines the signals.

II. MATHEMATICAL ASSESSMENT OF THE PROBLEM

Being interested in dispersion-limited systems, we focus on
a fiber transmission model which includes first-order chromatic
dispersion only, neglecting all other transmission impairments.
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Thus, we consider the well-known fiber-dispersive transfer
function [4]

B2

Hp(f) = e7? F1Cm) (1)
where 8o = —(D) /(27 fy) is the chromatic-dispersion param-
eter, D being the fiber-chromatic dispersion (usually expressed
in ps/nm/km) and fj the central frequency, while L is the fiber
length. As commonly accepted, we will indicate as accumu-
lated dispersion the quantity 3L in ps2, or equivalently, DL
in ps/nm.

In order to simplify the expressions, we introduce the nor-
malized dispersion index (NDI) ~,! defined as

v = —23LR? )

where R = 1/Tp is the system bit rate (s being the bit
duration). The v parameter is quite useful in simplifying the
equations, normalizing them to the system bit rate R or the bit
duration 7T'. In fact, using this notation, the transfer function
becomes

7rf)2

Hy(f) = (5% 3)
while the impulse response of the fiber is given by [4]
jm /4 sign (v) if_t \2
hp(t) = c -4(+) 4)

E——
Tp+/7|v|

We assume that the transmitted binary digital signal (at the
optical level) is in the form

+oo

x(t) = Z Q- Sin(t — kTB)

k=—o0

®)

where s;y, () is the complex envelope of the transmitted pulse for
a single bit, and «, assumes the values 0 and 1 for a standard
OOK modulation. Since the channel is linear and time invariant
(LTT), the resulting pulse at the fiber output is Sout(t) = Sin(t) *
hp(t). The goal of our paper is the optimization of the input
pulse si, (¢) under the following assumptions.

* The input pulse s;,(t) is strictly time limited to the in-
terval I = [~Tin/2,+Tin/2]. As a particular case, we
have T, = Tp for a standard memoryless transmitter,
but we will show that the case T;, > T, corresponding
to a transmitter with memory, is extremely interesting in
extending the dispersion limit. In particular, as already
mentioned in Section I-B, we will assume 1}, = nmem -
Tp, where the (integer) parameter n,ep, is the transmitter
memory.

* We chose as optimization criterion the maximization of
the energy transfer from an input time window I to an
output time window .J [—Tout/2, +Tout/2]. More
specifically, we introduce the input and output energies

5in:/|8in(t)|2dt

I

gout :/|50ut(t)|2dt
J

IThe v parameter has already been used by other authors, such as [4]. This
should not be confused with the optical-fiber nonlinear Kerr coefficient.

(6)

)
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and we maximize over s;,(t) the energy transfer ratio
(ETR), defined as

gout
gin .

ETR = ®)
The pulses siy, (t) resulting from the optimization process
proposed here will be indicated as “optimal pulses” in the
rest of the paper. Since the impulse response in (4) is aeven
function of ¢, then it can be shown that the input-output
optimal pulses are also even functions of ¢ [3], justifying
our assumption of a symmetric output time window .J.

* The criterion we have chosen is particularly relevant for
the case T,,+ = 1', since we assume symbol-by-symbol
detection for a binary memoryless receiver (i.e., a receiver
taking decisions on single received bits). The concentra-
tion of the output pulse energy over a T’ time window is
effective in both minimizing ISI (which is the goal of our
paper) and in increasing the signal-to-noise ratio (SNR) at
the decision instant for any “reasonable” digital receiver.
In fact, the criterion is “exact” for an ideal optical inte-
grate-and-dump receiver, since in this case, the decision
sample is directly proportional to the signal energy over
a Tp time window. Anyway, as we will show a poste-
riori in Section IV, it proves an extremely good criterion
for realistic optical receiver structures. We notice that for
Nimem > 1, We are considering a somehow nonintuitive
system where ISI is strongly present at the transmitter side,
but then it is reduced, or even cancelled, by the propaga-
tion over the dispersive channel.

* We will show, again in Section IV, that the ETR (for
Tout = T'p) for realistic optical receivers should typically
be above 90% to give a penalty due to ISI in the 1-2 dB
range. As a consequence, we will conventionally define in
the rest of the paper the “dispersion limit” as the amount
of accumulated dispersion for a given bit rate that results
in an ETR = 90%.

A. Fundamental Parameters and Equations

The ETR optimization problem over a generic LTI system is
a canonical problem that was studied in the past [3], [5], and
can be reduced to the optimization of a quadratic functional in
Sin(t), with a quadratic constraint, as recalled in the Appendix.
For a generic filter-impulse response, it leads to the following
Fredholm integral equation of the second kind:

/ K(u,v)sin(u) du = Asin(v) ©)
I
where the kernel of the integral equation is
K(u,v) = / hp(z —u)hp(z —v)dz (10)
J

and where the optimal solution is given by the eigenfunction
corresponding to the maximum eigenvalue A, which is equal to
the ETR (8), as shown in the Appendix.

This problem has been solved in the literature for several
types of bandlimited and standard lowpass filters [3], [5], [12].
In this paper, we solve it (for the first time to our knowledge)
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considering the fiber-dispersive transfer function (1) as the ban-
dlimiting filter. In this case, replacing (4) in (10), by straightfor-
ward calculations, the kernel can be expressed as

e—j(“j%z) » [Tout(u—v)} an

m(u =) T3

B. Numerical Solutions

The resulting integral equation is well conditioned, and can
be solved by a suitable numerical method. We used the method
described in [3, Sec. IV.A], which simply discretizes time over
ann X n grid [, 7;], and reduces the integral equation (9) to a
simple (and numerically stable) discrete eigenvalue problem of
the form

n
Z IC(’T'Z'7 Tj)Sin(Ti)A’Ti = )\Sin(’Tj)7
i=1
Most of the numerical results shown in Section IV were obtained
using this numerical solution.

C. Closed-Form Solution

The integral equation (9), with the kernel (11), can be solved
by looking for a solution in the form si,(t) = a(t) - e/®(®),
where a(t) and ¢(t) are real functions of time. This separates the
two input-pulse contributions that are usually called amplitude
modulation and phase modulation (or chirp). In particular, we
look for a solution of the form

. 2

sin(t) = a(t) - 3 (75) (13)

This “guess” was originally driven by the observation of the

numerical results obtained in [6], and proved to be exact, as
shown in the following.

By writing the kernel as K(u,v) = Kg(u,v) - exp
[—j((u? —v?)/(vT3))], where
1 . Tout(u - U)
= 3 — 14
Kr(u,v) w(u—v) sin [ |’y|T]§ } (14)

and by substituting (13) into (9), the phase terms vanish, and the
resulting integral equation simplifies to

/1 Kr(u,v)a(u) du = Aa(v).

The same integral equation results from the ETR pulse op-
timization over an ideal lowpass filter with bandwidth W and
J = [—00, 400]. This problem received a lot of attention in the
past, in the framework of fundamental works on communica-
tions theory, and it was fully analyzed and analytically solved
in [12]. It leads to an integral equation with kernel

sin[27W (u — v)] '
m(u —v)

15)

’CLP(U,’U) = (16)
Thus, the integral equation (15) giving the amplitude a(t) is
mathematically equivalent to the ideal lowpass case. A full treat-
ment of these results can be found in [13], [14], orin [15], where
the expression of the result in terms of prolate spheroidal func-
tions is given.
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We conclude that the solutions of the form (13) are unique,
and the one corresponding to the the maximum eigenvalue of
(15) corresponds to the one maximizing the ETR.

By direct comparison between the kernels (14) and (16), we
observe that

Tout

TOU
2W = 2 = W= — 2
2r|v| T3

— 5 (17)
IyIT3

This is, in our opinion, the most important result of this paper,
not only because it gives a closed-form formulation, (i.e., the
solution for the ideal lowpass case expressed through prolate
spheroidal functions [12]), but even more because it leads to the
interesting results we illustrate in the following section.

III. OPTIMAL CHIRP AND CHANNEL-EQUIVALENT BANDWIDTH

The previous results lead to the following important
considerations.

* The optimal pulses have a phase modulation given
by ¢(t) = (t?)/(vT3), or equivalently, ¢(t) =
—(%)/(2B;L). This expression gives the optimal chirp
for pulses launched over a dispersive channel. Interest-
ingly, this result was already found in [4], using a totally
different approach for which optimality was not proven.

* Provided that the pulse chirp is chosen to be optimal, the
dispersive channel is totally equivalent, at least in the ETR
sense, to an ideal lowpass filter with bandwidth

Tout 1 Tout

= ————, orequivalently, W = — .
anyrg YT B

(18)

This result can be usefully interpreted as a definition of the
equivalent bandwidth of the dispersive channel which, to
our knowledge, was never given before in a rigorous form.
We note here that dispersive channel-transfer function (1)
has a peculiar expression that renders most of the common
bandwidth definitions totally useless, since |Hp(f)[> =
1 V£. For instance, the commonly used noise-equivalent
bandwidth is infinite, and the 3-dB bandwidth is mean-
ingless.

¢ In the ideal lowpass problem, it can be shown that the ETR
depends only on WT;,, and the function ETR = f(WT;,)
is monotonically increasing, asymptotically reaching ETR
= 1 for WTi, — +oco [12]. If we fix the limiting value
ETR = 0.9 (a 90% energy transfer, see discussion in Sec-
tion IV), the condition W}, > 0.675 must be satis-
fied [12]. In our case, using (18), the ETR is a function
of (ToutTin)/(2m|y|T3) only. If we fix T, = 15 and
Tin = Mmem - T, we have that the ETR is only a function
of nmem/ |’Y| .

¢ In order to have ETR = 0.9, for n.m = 1, we have the
condition |y| < 0.236, or equivalently, introducing (2)

, _ 0.1179
= |BL|

(19)

This last equation can be interpreted as the theoretical
upper bound to the maximum bit rate that can be achieved
over the dispersive optical channel with limited ISI (i.e.,
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TABLE 1
MAXIMUM ACCEPTABLE ACCUMULATED DISPERSION VALUES (IN TERMS OF
DL IN ps/nm) FOR 10 AND 40 Gbit/s SYSTEM FOR A GIVEN MEMORY 7 em

Nomem | 10 Gbit/s 40 Gbit/s
1 928 58
2 1856 116
3 2785 174
4 3713 232
[
3 o041
2
£
©
% 0.05
[=))
%) Increasing
Dispersion
0 1
-0.5 0 0.5
& -
o
54
2 -50
Q
-
% -100 Increasing
c Dispersion
2
& §
-150
-0.5 0 0.5
Normalized Time
Fig. 2. Optimal pulses for 7mem = 1 and « values ranging from 0.1 to 0.3 in

0.05 steps. Time is normalized to T'5.

ETR = 0.9) and for the memoryless modulator (7mem
=1).

* From another point of view, if we need to transmit over a
fiber with arbitrary bit rate and dispersion, we can always
obtain a limited ISI condition (e.g., ETR > 0.9), provided
that we accept a memory 7y, at the transmitter given by

Nmem > 4.241]7y| = Npem > 8.482|62 LI R%.

(20)

This is a novel and important result, stating that we can
limit ISI, provided that the modulator memory 7em 1S
sufficiently large, and optimal pulses are used. Table I
reports the amount of accumulated dispersion that, ac-
cording to (20), can be tolerated for a 10 and 40 Gbit/s
system for different 7ep,-
The result expressed in (20) also states that the dispersive
channel, for arbitrary values of dispersion, allows an arbitrarily
high bit rate, provided that nye, is sufficiently large and,
obviously, that optimal pulses are used. Practically, as shown
later in Section IV, this means that for high dispersion, the
optimal pulses are compressed by the channel from an input
duration 7nyen, - '3 to an output duration close to Ty, = 1'5.

IV. RESULTS AND EXAMPLES OF APPLICATION

In this section, we show some examples of application of the
theory developed in the previous section. We start by showing
in Fig. 2 the optimal pulses for nyen = 1 and «y values ranging
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Fig. 3. ETR versus v for nmem = 1,2,3,4.
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Normalized Time
Fig. 4. Input and output signal for »pem = 4 and v = 0.8. Time is

normalized to T'z.

from 0.1 to 0.3 in steps of 0.05. The signal amplitudes show
a Gaussian-like return-to-zero (RZ) shape for low values of ,
while tending to become NRZ (i.e., constant over a bit duration)
for high values of ~, while the optimal signal phases show the
parabolic behavior.

Fig. 3 shows the ETR versus v for nyem = 1,2, 3, 4. In par-
ticular, it shows that the amount of tolerable accumulated dis-
persion increases for increasing 7yep,. The dispersion limit for
ETR = 90% is v = 0.235,0.475,0.712, and 0.95 for npmem =
1,2, 3, and 4, respectively. A standard NRZ modulation format
would have an ETR well below the optimal curve, even for
Nmem = 1, as we demonstrated in [6], where we showed that
for NRZ, we have ETR = 0.9 only for v = 0.12. Another inter-
esting comparison can be done with optical duobinary, where,
depending on the implementation, the maximum amount of tol-
erable accumulated dispersion is in the range v = [0.5, 0.6] (see
[4, Fig. 22]). Considering that the ETR limit is v = 0.95 for the
optimal pulses with 1,0, = 4, we see that the optimal pulses
can outperform optical duobinary for high values of 76 -
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Transmitted (left) and received (right) eye diagrams at 10 Gbit/s for nmem = 1 (upper diagram) and 2mem = 4 (lower diagram) at ETR = 90% dispersion

limit, corresponding to D = 928 and 3713 ps/nm, respectively (see Table I). A realistic OC-192 SONET receiver is simulated.

To better show the optimal signal behavior for nyem > 1,
i.e., to understand the impact of introducing memory in the (op-
timal) transmitter, we show in Fig. 4 the input—output optimal
signal for npem = 4 and v = 0.8, giving an ETR = 0.94. Note
that the steps of 7 in the phase are due to the sign changes in
the amplitude. Thanks to the combination of the optimal chirp
expressed in (13) and the optimal amplitude shape, the pulse
compresses from an input duration equal to four bits, to a much
lower output duration, where most of the signal energy is con-
tained in a T’ window.

In order to give a more practical insight on these results,
and to connect the somehow theoretical performance param-
eter ETR to the power penalty due to dispersion, we performed
a set of numerical simulations using the commercial simulator
OptSim on a typical optical transmission system based on [2].

* Transmitter side: modulation at 10 Gbit/s using either op-
timal pulses or NRZ modulation format, with a (time-
domain) raised-cosine shape, rolloff equal to 0.3 and no
phase modulation (chirpless).

» Link: only dispersion has been considered, as in (1); re-
sults will be expressed as a function of the accumulated
dispersion DL measured in ps/nm.

* Receiver side: we considered amplified spontaneous emis-
sion (ASE) noise and a standard direct-detection receiver
using a Gaussian optical filter with 3-dB bandwidth equal
to 25 GHz, a photodiode, and an electrical fourth-order
Bessel filter with 3-dB bandwidth equal to 7.5 GHz (cor-
responding to a typical SONET-SDH OC-192 receiver
[16]).

In Fig. 5, we show the corresponding eye diagrams (without
noise), when using the optimal pulses for n,em = 1 (upper di-
agram) and 4 (lower diagram) for ETR = 90% at the dispersion
limits DL = 928 and 3713 ps/nm, respectively. On the left side,
the transmitted eye diagrams are presented. For nyem = 4, a
strong ISI is evident, as expected (see Section I-B) for a mod-
ulation with memory. On the right side, we show the received
eye diagram. They are affected by low ISI in both situations,
confirming that the optimization based on the ETR parameter
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Fig. 6. Power penalty at 10 Gbit/s for NRZ, optimal pulses for nyem = 1,
and optimal pulses for 7mem = 4. The power reference is taken as the NRZ
back-to-back value.

is indeed a “good” criterion also for a realistic optical receiver
and, moreover, that the ETR = 90% condition is a good choice
for the definition of the dispersion limit. To further check the
validity of our assumption, we perform a set of numerical sim-
ulations to estimate the actual power penalty of the systems as
a function of dispersion, for the optimal signals and for stan-
dard NRZ signals. We set the reference optical SNR (OSNR) at
the receiver to 15.3 dB over a 0.1-nm bandwidth, giving rise,
for NRZ without dispersion, to a Q-factor equal to 17.5 dB, re-
sulting in a bit-error probability below 10~2. This OSNR value
is taken as a reference for defining the power penalty.

In Fig. 6, we plot the power penalty as a function of the ac-
cumulated dispersion for the above NRZ system, and for the
optimal pulses for nypem = 1 and npem = 4. We note the
following.

* If we define, as it is commonly done, the dispersion
limit at the point giving rise to a 2-dB power penalty,
we note that for the NRZ system, this limit is around
DL = 650 ps/nm, while for the optimized pulses for
Nmem = 1, it is around 1100 ps/nm, and for npem = 4, it
is around 3700 ps/nm. These results show the effective-
ness of the optimized pulses in extending the dispersion
limits. At the same time, they confirm a posteriori that
the ETR optimization criterion we have chosen is valid.

e The 3700 ps/nm dispersion limit for nyem = 4 is well
beyond the results that have been demonstrated for op-
tical duobinary [8], where the limit at 10 Gbit/s is in the
2000-2500 ps/nm range, depending on the chosen system
setup. Though we reckon that the optimal pulse method
described in this paper does not have a simple practical
implementation, we believe this result for nyem = 4 is
effective in showing that the way to go to increase the dis-
persion limits passes through line coding with sufficiently
high memory and signal chirp.

* The optimized pulses perform better than NRZ even for
low dispersion values, where they show a negative penalty
with respect to NRZ. This result can be explained by ob-
serving that the optimized pulse in this case (relatively
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low 7y) tends to have an RZ Gaussian-like shape (as shown
in Fig. 2). RZ has been shown to give an advantage over
NRZ for standard optical receivers with nonmatched op-
tical filters [2].

V. DISCUSSION AND CONCLUSION

We have presented a comprehensive mathematical approach
to investigate the ultimate limits of the dispersion-limited op-
tical communication channel. Our method allows deriving new
bounds on the maximum bit rate achievable on the channel with
limited ISI. We believe that one of our most important results is
the proof that one can transmit with limited ISI over a channel
with arbitrarily high dispersion, provided that the modulator
memory is sufficiently high and that optimal pulses are used.
The scope of this paper was mainly theoretical, even though
realistic simulations have been presented in Section IV. Future
work should study the potential application of these modulation
formats. In particular, we are currently investigating their ro-
bustness to fiber nonlinear effects in several real-case scenarios.

APPENDIX
DERIVATION OF INTEGRAL EQUATION (9)

Without loss of generality, we can normalize the input pulse
to have unit energy

gin = /sm(t) S;kn(t) dt = 1.
JI

The maximization of the ETR thus becomes a maximization
of the functional &,,;. Since the input pulse is assumed to be
strictly limited in I, we can write Sout (%) as

1)

sou(t) = / sin(T)hp(t — 7) dr 22)
I
and thus, evaluate &, as
gout = / Sout (t)s:ut (t) dt (23)

J
= //K(u, v)sin(u)sh, (v) du dv (24)
1Jr
where the kernel is
K(u,v) = / hp(t —u)hp(t —v) dt.
J

Using the Hermitian scalar product notation, we can rewrite
(6) and (24) as

(25)

Sin = <sin7 3in> and gout = <Ksin7 5in>- (26)

The constraint maximization problem can be solved using the
Lagrange multiplier method on the functional

G = (KSin, Sin) — A(Sin, Sin)-

By observing that the kernel is Hermitian, evaluating the gra-
dient over s;, (see, for example, [5]) and equating it to zero, we
have

27)

VG = Ksiy — ASin = 0 = Ksin = ASin (28)

which can be rewritten as (9). Finally, by multiplying both sides
by s (¢) and integrating over I, we get Eout = Ain, showing
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that, for a given eigenfunction s;,(t), the corresponding eigen-
value A gives the resulting ETR. Thus, the optimal solution to
our problem is the eigenfunction that gives the maximum eigen-
value, i.e., the maximum ETR.
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