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Abstract—In this paper, we provide a solution to the open
problem of computing the Fourier transform of a binary function
defined over n-bit vectors taking m-bit vector values. In partic-
ular, we introduce the two-modular Fourier transform (TMFT)
of a binary function f : G → R, where G = (Fn

2 ,+) is the
group of n bit vectors with bitwise modulo two addition +,
and R is a finite commutative ring of characteristic 2. Using
the specific group structure of G and a sequence of nested
subgroups of G, we define the fast TMFT and its inverse. Since
the image R of the binary functions is a ring, we can define the
convolution between two functions f : G → R. We then provide
the TMFT properties, including the convolution theorem, which
can be used to efficiently compute convolutions. Finally, we derive
the complexity of the fast TMFT and the inverse fast TMFT.

Index Terms—Two-modular Fourier transform, binary func-
tions, binary groups, group ring

I. INTRODUCTION

The Fourier transform is a fundamental tool in signal
processing for spectral analysis and is often used to transform
a convolution between two real- or complex-valued functions
into the product of the respective transforms. In discrete-
time signal processing, numerical evaluation of the Fourier
transform is based on the fast-Fourier transform (FFT), which
enables to efficiently compute convolutions [1].

More generally, the Fourier transforms of functions over
finite Abelian groups f : G → C (complex field) or f : G → Z
(ring of integers) have been extensively studied [5]. For com-
plex valued functions, when the group G is cyclic, the Fourier
transform is the well-known discrete Fourier transform [5]. For
complex valued functions, and when G is the additive group
of Fn

2 , where F2 is the binary field, the Fourier transform is
provided by the well known Hadamard transform, commonly
used for analyzing Boolean functions [4]. In computer science,
harmonic analysis of Boolean functions is a powerful tool,
which is used in the theory of computational complexity (cf.
the PCP Theorem in [3, Chap. 22]).

The Fourier transform of f : G → C, when G is finite and
non-Abelian, is based on the complex matrix representations of
the non-Abelian group [5]. This Fourier transform satisfies the
convolution theorem, which converts time-domain convolu-
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tions between functions into the product of the corresponding
transforms.

The concept of Fourier transform was also extended to
functions f : G → K defined over finite group G taking values
in a finite field K, except for the case where the characteristic
of the field divides the order of the group. In general, for
f : G → R, where G is an arbitrary group and R is a ring of
prime characteristic p co-prime with the order of G, its Fourier
transform is called the p-modular Fourier transform, which is
similar to that of f : G → C, when G is non-Abelian, but
uses finite field matrix representations of G [5].

An application of the p-modular Fourier transform, when G
is Abelian, enables to describe Reed-Solomon codes and their
decoding algorithms by a frequency domain interpretation [2].
In Reed-Solomon codes, R is the finite field F2n and the
Abelian group G is the cyclic multiplicative group of F2n .
In this case, the order of G is 2n − 1, which is not divisible
by the characteristic 2 of the field. However, when the order of
the group is divisible by the characteristic p, and especially in
the case of p = 2 and |G| = 2n (the order of G), the Fourier
transform has never been defined before.

In this paper, we provide a solution to this problem by
introducing the two-modular Fourier transform (TMFT) of a
binary function f : G → R, where G = (Fn

2 ,+) is the group
of n bit vectors with bitwise modulo two addition + and R
is a finite commutative ring of characteristic 2. Furthermore,
using the specific group structure of G and a sequence of
nested subgroups, we introduce the fast TMFT and its inverse
TMFT (ITMFT).

The TMFT is based on the two-modular two-dimensional
representations of the additive group of F2 and defines n+ 1
“spectral components” as matrices over “0” and “1” in R of
size 2k×2k, for k = 0 . . . , n. To develop ITMFT, we introduce
a new operator which extracts the top right corner element of
these matrices, since the trace operator used in the traditional
Fourier transform is not valid when the characteristic of the
ring R, p = 2, divides the order of the group |G| = 2n.

When the ring R = F2 = {0, 1}, the Hadamard transform
for f : G → C can be used for faster convolution computa-
tions, since we can map F2 to {+1,−1} ⊂ C by y = 2x− 1.
However, if there is no such map from R to C then the
traditional Fourier transform for f : G → C cannot be used
for computing convolutions of f : G → R functions. With
our TMFT, we can provide the convolution theorem, since the
TMFT preserves the multiplicative structure of the ring R, and
enables efficient computations of multiplications in the group
ring R[G] [10] of functions f : G → R. Finally, we discuss
the implementation and complexity of the fast TMFT and its
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inverse.
We expect the TMFT to have broad applications to problems

in coding theory and computer science, for example, in reliable
computation of binary functions, network coding, cryptogra-
phy, and classification of binary functions [11].

The rest of this paper is organized as follows. Section II
reviews the classical concept of Fourier transforms of func-
tions defined over additive groups taking values in complex
or finite fields. In Section III, we present TMFT and fast
TMFT of a binary function f : G → R defined over a
finite commutative ring R of characteristic 2. In Section IV
we present the corresponding ITMFTs, and in Section V, we
prove the convolution theorem. In Section VI, we discuss the
implementation aspects and complexity of the proposed TMFT
and ITMFT.

II. BACKGROUND

In this section, we review the classical concept of Fourier
transforms of functions defined over additive groups taking
values in complex or finite fields. We highlight the essential
mathematical ideas that are later used to define the TMFT. In
the following we assume the reader is familiar with the basic
notions of group, subgroup, quotient group, homomorphism,
the fundamental homomorphism theorem, ring, and field [8].

A. Algebraic view of the discrete Fourier transform

The discrete Fourier transform (DFT) is defined for N sam-
ples of a real (or complex) discrete time function f : ZN → C,
where ZN = {0, 1, . . . , N − 1} is the time axis. We can
think of f as discrete-time periodic function by N samples.
The DFT provides the well known discrete spectrum of such
function. We observe that the time axis ZN has an additive
group structure given by G , (ZN ,+) with addition mod
N . Hence we can think of f : G → C as a complex valued
function over the Abelian group G.

Let the vector f = (f [n])
N−1
n=0 contain the N values of the

time-domain function f : G → C. Then the DFT of f is given
by the frequency-domain vector f̂ = (f̂ [k])N−1

k=0 , where

f̂ [k] =

N−1∑
n=0

f [n]e−ȷ2π nk
N , k = 0, . . . , N − 1, (1)

represents the transform of f as a function f̂ : G → C. The
corresponding frequency index k also ranges in ZN and the
frequency axis has the same group structure as G. The inverse
discrete Fourier transform (IDFT) of f̂ is given by

f [n] =
1

N

N−1∑
k=0

f̂ [k]eȷ2π
nk
N , k = 0, . . . , N − 1. (2)

The well known DFT matrix F = {e−ȷ2π nk
N }N−1

n,k=0 is a
unitary matrix such that

f̂T = FfT and fT =
1

N
FH f̂T (3)

where (·)T and (·)H denote transposition and Hermitian
transposition of a matrix, respectively. The vectors f and f̂ are

two ‘descriptions’ of the signal f [n] in different coordinate
systems, namely the time basis and the frequency basis.

We show how the group structure of the time axis can
provide more insight into the DFT operation by using the
notions of group representations and characters (see Appendix
A for a brief review).

For the cyclic group G = (ZN ,+), the scalar representation
ρk is the homomorphism from G to the unit circle in the
complex plane S = {z ∈ C : |z| = 1}, given by

ρk : G → Sk ⊂ S ρk(n) , e−ȷ2π nk
N

for k = 0, . . . , N−1, and the image of ρk is the set of distinct
points on the unit circle

Sk , Im(ρk) =
{
1, e−ȷ2π k

N , e−ȷ2π 2k
N , · · · , e−ȷ2π

(N−1)k
N

}
.

The representation ρk is a group homomorphism transform-
ing G into the group of complex roots of unity Sk, i.e., for
any g1, g2 ∈ G

ρk(g1 + g2) = ρk(g1)ρk(g2)

since
e−ȷ2π

(g1+g2)k
N = e−ȷ2π

g1k
N e−ȷ2π

g2k
N .

We now illustrate the relation between the DFT and the
representation of a cyclic group using the example below with
G = (Z6,+).

Example 1: Using Definition A.2 (see Appendix A) in
the scalar case, Table I illustrates all the inequivalent scalar
representations ρk : G → Sk for k = 0, . . . , 5. Some
representations are faithful (e.g., ρ1 and ρ5), the others are
not. According to the fundamental homomorphism theorem
of groups [8, Th. 1.5.6], the image Sk is isomorphic to
the quotient group G/Ker(ρk), where Ker(ρk) is a normal
subgroup of G. �

We can formally rewrite the DFT in (1) as

f̂ [k] =
∑
g∈G

f [g]ρk(g) k = 0, . . . , N − 1 (4)

Let (·)∗ denote complex conjugation. Then we observe that the
pairwise orthogonal complex vectors ψk = [ρ∗k(g)]g∈G, form
the discrete Fourier basis vectors in CN (i.e., the columns
of the DFT matrix F in (3)). This is shown in Table II for
G = (Z6,+). The formal DFT in (4) can also be interpreted
as the complex scalar product

f̂ [k] = ⟨f ,ψk⟩ k = 0, . . . , N − 1 (5)

which gives the projection of the time domain vector f along
the Fourier basis vector ψk.

We now discuss how the fast Fourier transform (FFT)
naturally stems from the group structure of G = (ZN ,+).
From the fundamental homomorphism theorem [8, Th. 1.5.6],
since Ker(ρk) is a subgroup of G, the direct product of Ker(ρk)
and G/Ker(ρk) is isomorphic to G, i.e.,

G = {g = u+ v|u ∈ Ker(ρk), v ∈ G/Ker(ρk)}
∼= Ker(ρk)×G/Ker(ρk), (6)
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TABLE I
DFT EXAMPLE WITH G = (Z6,+).

0

0

12

3

4 5

0

2

4

03

0

4

2

0

54

3

2 1

k Sk= Im(ρk)={ρk(g), g∈G={0, 1, 2, 3, 4, 5}} Ker(ρk), G/Ker(ρk)

{1}

{1, e−ȷ 2π
6 , e−ȷ 4π

6 , e−ȷ 6π
6 , e−ȷ 8π

6 , e−ȷ 10π
6 }

{1, e−ȷ 4π
6 , e−ȷ 8π

6 }

{1,−1}

{1, eȷ
4π
6 , eȷ

8π
6 }

{1, eȷ
2π
6 , eȷ

4π
6 , eȷ

6π
6 , eȷ

8π
6 , eȷ

10π
6 }

0

1

2

3

4

5

{0, 1, 2, 3, 4, 5}, {0}

{0}, {0, 1, 2, 3, 4, 5}

{0, 3}, {0, 2, 4}

{0, 2, 4}, {0, 3}

{0, 3}, {0, 2, 4}

{0}, {0, 1, 2, 3, 4, 5}

and

ρk(u) = ρk(0) = 1 ∈ Sk for all u ∈ Ker(ρk) . (7)

Then we can compute the DFT more efficiently as

f̂ [k] =
∑
g∈G

f [g]ρk(g)

=
∑

v∈G/Ker(ρk)

∑
u∈Ker(ρk)

f [u+ v]ρk(u+ v)

=
∑

v∈G/Ker(ρk)

 ∑
u∈Ker(ρk)

f [u+ v]ρk(u)

 ρk(v)

=
∑

v∈G/Ker(ρk)

 ∑
u∈Ker(ρk)

f [u+ v]

 ρk(v) (8)

for k = 0, . . . , N − 1. The last equality in (8) is due to
(7). From (8), we observe how the number of multiplications
reduces from |G|2 = N2 to∑

k

|G/Ker(ρk)| .

In the above example, the number of multiplications reduces
from 36 to 21. Note that by taking advantage of the Hermitian
symmetry of the DFT matrix F, the number of multiplications
can be further reduced to 12.

B. Fourier Transform of f : G → C for arbitrary G

The classical notion of Fourier transform over arbitrary
finite groups is based on the n-dimensional representations
of group elements by complex n × n matrices in GL(n,C)
(see Appendix A). It generalizes the well known discrete
Fourier transform, which is naturally defined over a cyclic
group (additive Abelian group). In the general case where G
is non-Abelian, the group element representations are matrices
and we have

TABLE II
FOURIER BASIS VECTORS DFT EXAMPLE WITH G = (Z6,+).

g ∈ G 0 1 2 3 4 5

ρ∗0(g) 1 1 1 1 1 1 ψ0

ρ∗1(g) 1 e+ȷ 2π
6 e+ȷ 4π

6 e+ȷ 6π
6 e+ȷ 8π

6 e+ȷ 10π
6 ψ1

ρ∗2(g) 1 e+ȷ 4π
6 e+ȷ 8π

6 1 e+ȷ 4π
6 e+ȷ 8π

6 ψ2
ρ∗3(g) 1 −1 1 −1 1 −1 ψ3

ρ∗4(g) 1 e−ȷ 4π
6 e−ȷ 8π

6 1 e−ȷ 4π
6 e−ȷ 8π

6 ψ4

ρ∗5(g) 1 e−ȷ 2π
6 e−ȷ 4π

6 e−ȷ 6π
6 e−ȷ 8π

6 e−ȷ 10π
6 ψ5

Definition 1: ([5]) Given a finite group G, the Fourier
transform of a function f : G → C evaluated for a given
representation ρ : G → GL(dρ,C) of G, of dimension dρ, is
given by the dρ × dρ matrix

f̂(ρ) =
∑
g∈G

f(g)ρ(g).

The complete Fourier transform is obtained by considering
all the ρ’s in the set {ρk} of all inequivalent irreducible
representations of G (see Appendix A). �

Definition 2: ([5]) The inverse Fourier transform evaluated
at g ∈ G is given by

f(g) =
1

|G|
∑
k

dρk
Tr

(
ρk(g

−1)f̂(ρk)
)

(9)

where |G| is the order of the group G. �
Note that Definitions 1 and 2 generalize the DFT/IDFT for

the Abelian group G = (ZN ,+). The above Fourier transform
is well defined for complex valued functions over finite groups
G and can be used to transform convolution in the ‘time-
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domain’ defined as1 ([5])

(f1 ∗ f2)(g) =
∑
h∈G

f1(h
−1g)f2(h) for all g ∈ G (10)

into the product of the ‘frequency domain’ transforms, i.e., [5]

̂(f1 ∗ f2)(ρ) = f̂1(ρ)f̂2(ρ) .

C. Fourier Transform of f : G → K

We now consider the Fourier transform of functions over
a finite group G taking values in a finite field K = Fpn of
prime characteristic p, where n is positive integer. Let α be a
primitive element of K [12], then we can list all the elements
in Fpn as {0, 1, α, . . . , αpn−2}.

Definition 3: ([12]) For an Abelian group G = (ZN ,+),
where N is a divisor of pn − 1 and p is coprime with N , we
define the finite field Fourier transform of f : ZN → Fpn as

f̂ [k] =

N−1∑
n=0

f [n]αnk

and its finite field inverse Fourier transform as

f [n] =
1

N

N−1∑
k=0

f̂ [k]α−nk.

�
The finite field inverse Fourier transform exists only if p is
co-prime with N = |G|. This definition can be reformulated
as in (4) using the scalar representations ρk : G → K that are
defined by N vectors

[1, αk, α2k, . . . , α(N−1)k] for k = 0, . . . , N − 1.

We note that this Fourier transform is only defined when
G = (ZN ,+) is isomorphic to a subgroup of the cyclic
multiplicative group of Fpn . For any other non-Abelian group
G, we need to modify Definition 1 by replacing the group rep-
resentations with the p-modular representations of G defined
below.

Definition 4: A p-modular representation of a group G over
a field K of prime characteristic p is a group homomorphism
π : G 7→ GL(n,K), such that the binary operation of two
group elements corresponds to the matrix multiplication. �

III. THE TWO-MODULAR FOURIER TRANSFORM OF
BINARY FUNCTIONS

We now focus on binary functions (i.e., from n bit vectors
to m bit vectors) f : G → R where G = (Fn

2 ,+) is the
group of n-bit binary vectors with bitwise mod two addition
+, and R is a finite commutative ring of characteristic 2. For
example, we can choose R = (Fm

2 ,+,∧), where addition
and multiplication are defined by bitwise + (XOR) and ∧
(AND) binary logic operators, respectively. Another example
is a polynomial ring F2[X]/ϕ(X), where ϕ(X) is an arbitrary
polynomial of degree m. In the special case where ϕ(X) is
an irreducible polynomial, R is the finite field K = F2m .

1We adopt the conventional multiplicative group notation for non-Abelian
groups.

The elements of R can be represented as binary coefficient
polynomials of degree less than m, where the ring operations
are polynomial addition and multiplication mod ϕ(X). In the
following, we will denote the zero and one elements of the
ring R as 0 and 1, and 1 + 1 = 0 ∈ R. In the special case of
R = (Fm

2 ,+,∧), we have 0 → 0m and 1 → 1m, where
0m and 1m denote the m-bit all-zero and all-one vectors.
Nevertheless, we use 0 and 1 in all cases for simplicity of
notation.

For convenience of notation, we will label the n-bit vectors
b = (b1, . . . , bn) ∈ G using the corresponding decimal values
{0, . . . , 2n − 1}, i.e.,

D(b) =

n∑
k=1

bk2
n−k (11)

and its inverse as
b , D−1(j) (12)

for any decimal j ∈ {0, . . . , 2n − 1}. In the following, we
will first introduce the two-modular representations of binary
groups. Then we will introduce the TMFT and the fast TMFT.

A. Two-modular representations of binary groups

Definition 5: The two-modular representation of the binary
group C2 = (F2,+) = {0, 1} is defined as 2×2 matrices over
{0, 1} ∈ R, i.e., π1(C2) = {E0, E1}, where

π1(0) = E0 ,
(

1 0
0 1

)
and π1(1) = E1 ,

(
1 1
0 1

)
.

�
Lemma 1: The n-fold direct product group Cn

2 = (Fn
2 ,+)

can be faithfully represented as the Kronecker product of the
representations of C2, i.e.,

πn(C
n
2 ) , π1(C2)⊗ · · · ⊗ π1(C2)

= πn−1(C
n−1
2 )⊗ π1(C2). (13)

Specifically, the matrix representation of a group element b =
(b1, . . . , bn) is,

Eb , π1(b1)⊗ · · · ⊗ π1(bn). (14)

�
Proof: We need to show that πn is an injective homomor-

phism. For n = 0 and 1, it is straightforward. For n ≥ 2,
we prove it by induction using the recursion (13). Thus it is
enough to consider the case n = 2 and show that π2 is a group
homomorphism between C2

2 and π2(C
2
2 ), i.e., that

π2(b1 + c1, b2 + c2) = π2(b1, b2) · π2(c1, c2),

or equivalently,

E(b1+c1,b2+c2) = E(b1,b2) · E(c1,c2) .

From (13) we have π2 = π1 ⊗ π1 then

E(b1,b2) · E(c1,c2) = (Eb1 ⊗ Eb2) · (Ec1 ⊗ Ec2)

= (Eb1Ec1)⊗ (Eb2Ec2) (15)
= E(b1+c1,b2+c2) .
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Then, we note that Eb = I2n holds only for b = 0n. This
proves the homomorphism is injective, since the kernel of πn

is only the all zero binary vector. �
Finally we define the representation of the trivial group {0}

as π0({0}) , 1 ∈ R.
Example 2: The two-modular representation of G = F2

2 is
given by:

E00=

 1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 E01=

 1 1 0 0
0 1 0 0
0 0 1 1
0 0 0 1



E10=

 1 0 1 0
0 1 0 1
0 0 1 0
0 0 0 1

 E11=

 1 1 1 1
0 1 0 1
0 0 1 1
0 0 0 1

 .

�
We list below a few simple properties of the representation
matrices.

Property 1: The 2 × 2 matrices E0 and E1 are upper
triangular and have antidiagonal symmetry. Hence, any Eb

defined by the Kroneker product in (14) is also upper triangular
and antidiagonal symmetric. �

Property 2: Any linear combination of Eb matrices is upper
triangular and antidiagonal symmetric. �

Property 3: From Lemma 1, we have Eb = I2n only for
b = 0n, where I2n denotes the 2n × 2n identity matrix. �

Property 4: The top right corner element of Eb is 1 only
for b = 1n. �

Property 5: The main diagonal of Eb’s is all 1s, and hence
the top left corner element is always 1.

B. The TMFT and the fast TMFT

Let us consider a sequence of nested subgroups Hk
∼= Ck

2

of G = Cn
2 , namely

H0 = {0n}▹H1 ▹ · · ·▹Hk ▹ · · ·▹Hn−1 ▹G (16)

where {0n} denotes the trivial group with only one element,
the n-bit zero vector.

There are many possible choices for such sequence Hk
∼=

Ck
2 and we now choose a specific one, which results in a

simpler notation. In particular, we choose Hk, k = 1, . . . , n,
to be the set of n-bit vectors with the first n − k bits set to
zero, i.e.,

Hk = {(0, . . . , 0, bn−k+1, . . . , bn)|bi ∈ {0, 1}} ∼= Ck
2 , (17)

and k = 1, . . . , n. Then we consider the quotient groups
G/Hk, which are the sets of n-bit vectors with the last k
bits set to zero, i.e.,

G/Hk =

 {(b1, . . . , bn−k, 0, . . . , 0)|bi ∈ {0, 1}}
k = 1, . . . n− 1

{0n} k = n
(18)

Table III shows an example of G, H1, H2, G/H1, and
G/H2 for n = 3 bits, where we index each element using
its corresponding decimal value from (11). Let dk ∈ Hk be

TABLE III
NESTED SUBGROUPS AND CORRESPONDING QUOTIENT GROUPS OF C3

2

D(g) G
0 000
1 001
2 010
3 011
4 101
5 101
6 110
7 111

H1

0 000
1 001

G/H1

0 000
2 010
4 100
6 110

H2

0 000
1 001
2 010
3 011

G/H2

0 000
4 100

the n-bit all-zero vector except for its (n − k + 1)-th bit set
to 1, i.e.

dk = (0, . . . , 0︸ ︷︷ ︸
n−k

, 1︸︷︷︸
n−k+1

, 0, . . . , 0︸ ︷︷ ︸
k−1

)

Let us consider the binary subgroups of Hk generated by
dk, i.e., ⟨dk⟩ = Hk/Hk−1 = {0, dk} ∼= C2 and Hk/⟨dk⟩ =
Hk−1. Then we have the following decomposition

G︸︷︷︸
2n

= Hk/⟨dk⟩︸ ︷︷ ︸
2k−1

×⟨dk⟩︸︷︷︸
2

×G/Hk︸ ︷︷ ︸
2n−k

k = 1, . . . , n (19)

where cardinalities of the component subgroups are indicated
below each one and

Hk/⟨dk⟩ =


{0n} k = 1
{(0, . . . , 0, bn−k+2, . . . , bn)|

bi ∈ {0, 1}} ∼= Ck−1
2 k = 2, . . . , n

(20)
For any g = (b1, . . . , bn) ∈ G, we have g = u + v or

g = u + v + dk, where u = (0, . . . , 0, bn−k+2, . . . , bn) ∈
Hk/⟨dk⟩ for k = 2, . . . , n (or u ∈ {0n} for k = 1), and
v = (b1, . . . , bn−k, 0, . . . , 0) ∈ G/Hk for k = 1, . . . , n − 1
(or v ∈ {0n} for k = n). The element dk is the n-bit all-zero
vector except for its (n − k + 1)-th bit set to 1, as defined
above.

We now define σk : Hk/⟨dk⟩ → Ck
2 as a map converting the

n bit vectors in Hk/⟨dk⟩ to k bit vectors in Ck
2 , which removes

the first n − k zero bits of the n bit vectors of Hk/⟨dk⟩.
Specifically, for any u ∈ Hk/⟨dk⟩, we have

σk(u) ,
{

0 k = 1.
(0, bn−k+2, . . . , bn) k = 2, . . . , n

(21)

We note that Im(σk) does not contain any pair of complemen-
tary vectors. All the complementary vectors are in the Im(σk),
where

σk(u) ,
{

1 k = 1.
(1, b̄n−k+2, . . . , b̄n) k = 2, . . . , n

(22)

where b̄i represents the binary complement of bi ∈ {0, 1}.
Lemma 2: The map σk is a homomorphism, i.e., given

u1, u2 ∈ Hk/⟨dk⟩, we have σk(u1 + u2) = σk(u1) + σk(u2)
and σk(0n) = 0k, but the map σk is not. �
Proof: The proof is straightforward. �

Let τk : G 7→ Ck
2 , k = 1, . . . , n, be a map with image

Im(τk) = Ck
2 , which defines the k-bit vector index b = τk(g)
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of Eb = Eτk(g), for all g ∈ G. In particular, for any g ∈ G,
τk(g) is defined as

τk(g) ,


σk(u) if g = u+ v for some

u ∈ Hk/⟨dk⟩ and v ∈ G/Hk

σk(u) if g = u+ v + dk for some
u ∈ Hk/⟨dk⟩ and v ∈ G/Hk

(23)

Lemma 3: The map τk : G 7→ Ck
2 is a group homomor-

phism, i.e., τk(g + w) = τk(g) + τk(w), for g, w ∈ G, and
Ker(τk) = G/Hk. �
Proof: The proof is given in Appendix B. �

We now consider the two-modular representations
πk(τk(g)) = Eτk(g) of G, with image Im(πk) = πk(C

k
2 ) =

{Eτk(g) : g ∈ G} with 2k elements isomorphic to the nested
subgroups Hk, i.e.,

H0
∼= Im(π0) = {1}

H1
∼= Im(π1) = {E0, E1}

H2
∼= Im(π2) = {E00, E01, E10, E11}

H3
∼= Im(π3) = {E000, E001, E010, E011,

E100, E101, E110, E111}
...

the Fourier basis ‘vectors’ ψk = [Eτk(g) : g ∈ G] are the 2n-
component vectors (indexed by g) of 2k × 2k matrices from
the set Im(πk).

The projection of f on the k-th Fourier basis vector ψk, for
k = 0, . . . , n, gives the corresponding Fourier coefficient f̂k,
which is a 2k × 2k matrix.

Definition 6: (TMFT). We define the k-th Fourier coeffi-
cients of the TMFT for k = 1, . . . , n as the 2k × 2k matrix

f̂k = ⟨f,ψk⟩ ,
∑
g∈G

f(g)Eτk(g) (24)

where Eτk(g) is the g-th element of the vector ψk and for
k = 0 we define

f̂0 = ⟨f,ψ0⟩ ,
∑
g∈G

f(g) (25)

and we refer to f̂0 as the ‘DC-component’ of f . �
We are now ready to define the fast TMFT to compute (24)

more efficiently by collecting the terms with the same Eτk(g).

Lemma 4: (fast TMFT) The k-th Fourier coefficients f̂k
of the fast TMFT for k = 1, . . . , n can be efficiently computed
as

f̂k =
∑

u∈Hk/⟨dk⟩


 ∑
v∈G/Hk

f(u+ v)

Eσk(u)

+

 ∑
v∈G/Hk

f(u+ dk + v)

E
σk(u)

 (26)

For k = 0, (25) holds as is. �
Proof: We note that, in Definition 6, for g ∈ G, there are 2n

matrices Eτk(g) of size 2k×2k in the computation of f̂k, k =
1, . . . , n. Among these matrices Eτk(g), there are 2k distinct

ones in pairs of Eσk(u) and E
σk(u)

, where u ∈ Hk/⟨dk⟩,
according to (26). Hence, the fast TMFT can collect the 2n−k

terms with the same Eτk(g), leading to a reduced computation
complexity (see details on complexity analysis in Section VI).

�
Example 3: The Fourier coefficients of the fast TMFT for

a function over G = C3
2 can be computed using H1 and H2

defined in (17) as

f̂0=
∑
g∈G

f(g) (27)

f̂1=
∑

v∈G/H1

f((000)︸ ︷︷ ︸
u

+v)E0 + f((000)︸ ︷︷ ︸
u

+(001)︸ ︷︷ ︸
d1

+v)E1 (28)

f̂2=
∑

u∈H2/⟨d2⟩

∑
v∈G/H2

f(u+v)Eσ2(u)+f(u+(010)+v)Eσ2(u)

(29)

f̂3=
∑

u∈H3/⟨d3⟩

f(u)Eσ3(u) + f(u+ (100))E
σ3(u)

(30)

The sum indices in (27), (28), (29), and (30) are based
upon these group elements listed in Table III. For example,
in (29), given ⟨d2⟩ = {000, 010}, according to (20) and (21),
we choose u ∈ H2/⟨d2⟩ = {000, 001}, and thus we obtain
the corresponding σ2(u) ∈ {00, 01} with the associated ma-
trices {E00, E01}. Then σ2(u) ∈ {11, 10} and the associated
matrices are {E11, E10}.

Similarly, in (30), given ⟨d3⟩ = {000, 100}, we choose
u ∈ H3/⟨d3⟩ = {000, 001, 010, 011}, which yields σ3(u) ∈
{000, 001 010, 011} with the associated matrices {E000, E001,
E010, E011}, and σ3(u) ∈ {111, 110, 101, 100} with the
associated matrices {E111, E110, E101, E100}.

In Fig. 1, we illustrate how to efficiently bit-label all the E
matrices using a binary tree structure. At level k in the tree,
let b(k) = τk(g) denote a k bit vector, then

Eb(k) ∈
∪

u∈Hk/⟨dk⟩

{Eσk(u), Eσk(u)
} k = 1, . . . , n

where g = u + v or g = u + v + dk for some u ∈ Hk/⟨dk⟩
and v ∈ G/Hk. At level k, a node labeled with Eb(k) splits
into two branches leading to an upper node labeled by E0,b(k)

(prepend 0) and a lower node labeled by E
1,b(k) (complement

bits of b(k) and prepend 1). This pair of nodes with a common
parent correspond to Eσk+1(u) and E

σk+1(u)
, respectively.

From Definition 4, we note that the Fourier coefficient
matrices f̂k in the fast TMFT are linear combination of the
Ebk

matrices, weighted by a sum of the time domain samples
of the function f given in (26). Fig. 2 illustrates how we label
the nodes for v ∈ G/Hk. For convenience of notation, the time
domain samples in Fig. 2 are denoted by fj = f(g), j = D(g),
for any g ∈ G. At level k, in each pair of the nodes with a
common parent, the upper binary vector represents the u+ v
and the lower represents u + v + dk, where v ∈ G/Hk for
a given u. This tree can be used to compute the sums over
v ∈ G/Hk in (26).

Combining the labels from both trees in Figs. 1 and 2 yields
the combined tree structure illustrated in Fig. 3. For each pair
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u ∈ H1/⟨d1⟩, H2/⟨d2⟩, H3/⟨d3⟩
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Fig. 1. Labeling tree the Fourier basis elements. The nodes in level k are
labeled with the 2k × 2k representations Eτk(g)

of u ∈ Hk/⟨dk⟩.

of nodes at level k with the same parent node at level k − 1,
we compute  ∑

v∈G/Hk

f(u+ v)

Eσk(u) (31)

and  ∑
v∈G/Hk

f(u+ dk + v)

E
σk(u)

(32)

respectively, where Eσk(u) and E
σk(u)

are the node labels from
Fig. 1, while the arguments of f in the sums are given by the
node labels from Fig. 2. Using Fig. 3, we can explicitly rewrite
the fast TMFT coefficients in (27), (28), (29), and (30) as

f̂0 = f0 + f1 + f2 + f3 + f4 + f5 + f6 + f7

f̂1 = (f0 + f2 + f4 + f6)E0 + (f1 + f3 + f5 + f7)E1

f̂2 = (f0 + f4)E00 + (f2 + f6)E11

+(f1 + f5)E01 + (f3 + f7)E10

f̂3 = f0E000 + f4E111 + f2E011 + f6E100

+f1E001 + f5E110 + f3E010 + f7E101 (33)

Alternatively, the Fourier basis vectors ψk in Definition 6
(non-fast TMFT) are shown in Table IV. �

Example 4: The TMFT of a Dirac function over G, i.e.,
δ0(0) = 1 and 0 otherwise, is given by

δ̂0(g) = [1, E0, . . . , E0n
] = [1, I2, . . . , I2n ]

i.e., the list of Fourier coefficient matrices is made up of
identity matrices of increasing size. �

v ∈ G, G/H1, G/H2

000, f0

100, f4

010, f2

110, f6

001, f1

101, f5

011, f3

111, f7

b100
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f0 + f2 + f4 + f6

∑7
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Fig. 2. Labeling tree of the arguments of f in the sums in (26) that multiply
the Fourier basis elements. The bit vector labels of the elements in G are
obtained by letting b1, b2, and b3 vary in {0, 1}.

f̂0 f̂1 f̂2 f̂3
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Fig. 3. Labeling tree of the multiplications of the arguments of f in the
sums in (26) and the corresponding E matrices, resulting in the fast TMFT
coefficients.
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TABLE IV
THE FOURIER BASIS VECTORS FOR G = C3

2

D(g) 0 1 2 3 4 5 6 7

Eτ0(g) 1 1 1 1 1 1 1 1 ψ0
Eτ1(g) E0 E1 E0 E1 E0 E1 E0 E1 ψ1
Eτ2(g) E00 E01 E11 E10 E00 E01 E11 E10 ψ2
Eτ3(g) E000 E001 E011 E010 E111 E110 E100 E101 ψ3

Example 5: The TMFT of the indicator function of the
element g0 ∈ G, i.e.,

δg0(g) =

{
1 g = g0
0 otherwise

is given by

δ̂g0(g) =
[
1, Eτ1(g0), . . . , Eτn(g0)

]
.

For example, g0 = (11) ∈ G = C2
2 yields ̂δ(11)(g) =[

1, Eτ1(11), Eτ2(11)

]
= [1, E1, E10]. �

IV. THE INVERSE TWO-MODULAR FOURIER TRANSFORM

In the case of binary functions considered in this paper,
Definition 2 cannot be applied since the 1

|G|Tr(·) operator is
undefined. In fact |G| does not have an inverse and the trace
of any representation matrix Eb is always zero, having an
even number of ones on the diagonal (see Property 5). To
overcome this problem, we introduce the matrix operator Φk :
πk(C

k
2 ) → C2 from the set of two-modular representations of

Ck
2 to {0, 1}, for k = 1, . . . , n.
Definition 7: Let Eb be the 2k × 2k representation of a k-

bit binary vector b ∈ Ck
2 , then we define the matrix operator

on Eb as
Φk(Eb) , Eb[1, 2

k] ∈ {0, 1}

i.e., Φk extracts the top-right corner element of the matrix Eb.
�

As observed in Property 4, only b = 1k yields Φk(Eb) = 1,
while any other binary vector representation is mapped to zero.

Lemma 5: The operator Φk is linear, i.e.,

Φk(αEa + βEb) = αΦk(Ea) + βΦk(Eb)

and
Φk(EaEb) = Φk(EbEa) (34)

for any α, β ∈ R, and a,b ∈ Ck
2 .

Proof: The proof is straightforward.
Lemma 6: Let Ea and Eb be the 2k×2k representation of

the k-bit binary vectors a,b ∈ Ck
2 , respectively. We have

Φk(EaEb) = Φk(Ea+b)

=

{
1 iff a+ b = 1 (or a = b̄)
0 otherwise .

(35)

�
Proof: The proof is straightforward. �

Theorem 1: (Inverse TMFT). The inverse TMFT is given
by

fj = f̂0 +

n∑
k=1

Φk

(
f̂kEτk(D−1(j))

)
j = 0, . . . , 2n − 1 (36)

where D−1(j) = (cn, . . . , ck, . . . , c1)
2, with ck ∈ {0, 1} and

τk is given in (23). �
Proof: Recalling (18), (19), (20), and dk = (0, . . . , bn−k+1 =
1, 0, . . . , 0) (the n-bit all-zero vector except for bn−k+1 = 1),
we have{

u+ v = (b1, . . . , bn−k, 0, bn−k+2, . . . , bn)
u+ v + dk = (b1, . . . , bn−k, 1, bn−k+2, . . . , bn)

(37)

for k = 2, . . . , n− 1, while in the special cases of k = 1 and
k = n, we have respectively{

u+ v = (b1, . . . , bn−k, 0)
u+ v + d1 = (b1, . . . , bn−k, 1)

(38)

and {
u+ v = (0, b2, . . . , bn)

u+ v + dn = (1, b2, . . . , bn)
(39)

We then rewrite the right-hand side of (36) in its binary form
as (40).

For any k ∈ {1, . . . , n}, based on the binary representation
D−1(j) = (cn, . . . , ck, . . . , c1) and the definition of τk in (23),
we have that:

• Eτk(D−1(j)) = Eσk(ũ) holds when D−1(j) ∈ {ũ +
v | v ∈ G/Hk}, which implies ck = 0 and
ũ = (0, . . . , 0, ck−1, . . . , c1). For such ũ, only the
term f(b1, . . . , bn−k, c̄k = 1, ck−1, . . . , c1) in the
sum over u remains, since Φk(Eσk(ũ)

Eτk(D−1(j))) =

Φk(Eσk(ũ)
Eσk(ũ)) = 1. All the other terms can-

cel, since Φk(Eσk(u)Eσk(ũ)) = 0 for all u, and
Φk(Eσk(u)

Eσk(ũ)) = 0 for all u ̸= ũ.
• Eτk(D−1(j)) = E

σk(ũ)
holds when D−1(j) ∈ {ũ +

v + dk | v ∈ G/Hk}, which implies ck = 1 and
ũ = (0, . . . , 0, ck−1, . . . , c1). For such ũ, only the term
f(b1, . . . , bn−k, c̄k = 0, ck−1, . . . , c1) in the sum over u
remains, since Φk(Eσk(ũ)Eσk(ũ)

) = 1, while the other
terms cancel, since Φk(Eσn(u)

E
σk(ũ)

) = 0 for all u and
Φk(Eσk(u)Eσk(ũ)

) = 0 for all u ̸= ũ.
Then (40) simplifies to∑

b1,...,bn

f(b1, . . . , bn)

+

(v)∑
b1,...,bn−1

f(b1, . . . , bn−1, c̄1) + · · · (40)

+

(v)∑
b1,...,bn−k

f(b1, . . . , bn−k, c̄k, ck−1, . . . , c1) (41)

+ · · ·+ f(c̄n, cn−1, . . . , c1) . (42)

2To simplify notation, we have reversed the order of the bit indices of ck .
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f̂0 +
n∑

k=1

Φk

(
f̂kEτk(D−1(j))

)

=

(v)∑
b1,...,bn

f(b1, . . . , bn) +

(v)∑
b1,...,bn−1

f(b1, . . . , bn−1, 0︸︷︷︸
c1

)Φ1(Eσ1(u)=0Eτ1(D−1(j)))

+f(b1, . . . , bn−1, 1︸︷︷︸
c1

)Φ1(Eσ1(u)=1
Eτ1(D−1(j)))

+ · · ·

+

(v)∑
b1,...,bn−k

(u)∑
bn−k+2,...,bn

f(b1, . . . , bn−k, 0︸︷︷︸
ck

, bn−k+2, . . . , bn)Φk(Eσk(u)Eτk(D−1(j)))

+f(b1, . . . , bn−k, 1︸︷︷︸
ck

, bn−k+2, . . . , bn)Φk(Eσk(u)
Eτk(D−1(j)))

+ · · ·

+

(u)∑
b2,...,bn

f( 0︸︷︷︸
cn

, b2, . . . , bn)Φn(Eσn(u)Eτn(D−1(j))) + f( 1︸︷︷︸
cn

, b2, . . . , bn)Φn(Eσn(u)
Eτn(D−1(j)))

 .

(40)

Adding the first two summations in (40) yields∑
b1,...,bn−1

f(b1, . . . , bn−1, c1) due to the characteristic 2 of
R (bitwise XOR addition). Progressively adding the summa-
tions up to (41) yields

∑
b1,...,bn−k

f(b1, . . . , bn−k, ck, . . . , c1).
Finally adding all summations up to (42) yields
f(cn, . . . , ck, . . . , c1) = fj . This completes the proof.

�
Example 6: Following Example 3, given Fourier coefficients

f̂0, f̂1, f̂2 and f̂3 in (33) for a function over G = C3
2 , the

inverse Fourier transform can be computed as

f0=f̂0 +Φ1(f̂1E0) + Φ2(f̂2E00) + Φ3(f̂3E000)

f1=f̂0 +Φ1(f̂1E1) + Φ2(f̂2E01) + Φ3(f̂3E001)

f2=f̂0 +Φ1(f̂1E0) + Φ2(f̂2E11) + Φ3(f̂3E011)

f3=f̂0 +Φ1(f̂1E1) + Φ2(f̂2E10) + Φ3(f̂3E010)

f4=f̂0 +Φ1(f̂1E0) + Φ2(f̂2E00) + Φ3(f̂3E111)

f5=f̂0 +Φ1(f̂1E1) + Φ2(f̂2E01) + Φ3(f̂3E110)

f6=f̂0 +Φ1(f̂1E0) + Φ2(f̂2E11) + Φ3(f̂3E100)

f7=f̂0 +Φ1(f̂1E1) + Φ2(f̂2E10) + Φ3(f̂3E101)

�

V. TMFT PROPERTIES

Theorem 2: (Linearity of TMFT). Given a pair of func-
tions r and s : G → R, let r̂ = [r̂0, . . . , r̂k, . . . , r̂n] and
ŝ = [ŝ0, . . . , ŝk, . . . , ŝn] be the lists of Fourier coefficients
matrices of TMFT (i.e., r̂k and ŝk are 2k × 2k matrices), the
TMFT of the linear combination of r and s is given by

̂αr + βs = αr̂ + βŝ

= [αr̂0 + βŝ0, . . . , αr̂k + βŝk, . . . , αr̂n + βŝn]

for α, β ∈ R. �

Proof: The proof is straightforward.
Next, we specialize the definition of convolution in (10) for

the case of the additive group G = Cn
2 .

Definition 8: Given a pair of functions r and s : G → R
we define the convolution product f : G → R as

f(g) = r(g) ∗ s(g) =
∑
g′∈G

r(g′ + g)s(g′) for g ∈ G.

�
It can be easily shown that the convolution product is commu-
tative. Now we present the convolution theorem when using
TMFT.

Theorem 3: (Convolution Theorem). Given a pair of
functions r and s : G → R, let r̂ = [r̂0, . . . , r̂k, . . . , r̂n] and
ŝ = [ŝ0, . . . , ŝk, . . . , ŝn] be the lists of Fourier coefficients
matrices of TMFT (i.e., r̂k and ŝk are 2k × 2k matrices), we
obtain Fourier transform of the convolution product as

r̂ ∗ s = r̂ ⊙ ŝ , [r̂0ŝ0, . . . , r̂kŝk, . . . , r̂nŝn] .

�
Proof: Using Definition 6, we can simply write the product

of the k-th Fourier coefficient matrices of r and s as

r̂kŝk =
∑
g∈G

r(g)Eτk(g)

∑
g′∈G

s(g′)Eτk(g′) .

Substituting w = g + g′, we obtain

r̂kŝk =
∑
w∈G

∑
g∈G

r(g)s(g + w)Eτk(g)Eτk(g+w)

=
∑
w∈G

∑
g∈G

r(g)s(g + w)Eτk(g)Eτk(g)+τk(w)

=
∑
w∈G

∑
g∈G

r(g)s(g + w)Eτk(w)

=
∑
w∈G

(r ∗ s)(w)Eτk(w) . (43)
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The second equality is based on the fact that τk is group
homomorphism (see Lemma 3). �

Theorem 4: (Shifting Property). Given the function f :
G → R and its TMFT

f̂k =
∑
g∈G

f(g)Eτk(g) k = 1, . . . , n

and a given shift a ∈ G then the Fourier transform of f(g+a)
is given by∑

g∈G

f(g + a)Eτk(g+a) =
∑
g∈G

f(g + a)Eτk(g)Eτk(a) . (44)

If f(g + a) = f(g) for all g ∈ G, then the above Fourier
transform becomes∑

g∈G

f(g + a)Eτk(g+a) = f̂kEτk(a) . (45)

�
Proof: The proof is straightforward.

VI. IMPLEMENTATION AND COMPLEXITY

The evaluation of the TMFT only requires additions (and
no multiplications) in the ring R, since the Eb matrices only
contain zeros and ones in R. Hence, we define the complexity
as the number of additions in the ring R. For convenience of
exposition, we will begin by analyzing the complexity of the
ITMFT.

A. Complexity of ITMFT

The following lemma enables us to count the number of ring
additions needed to compute one term Φk(f̂kEτk(D−1(j))) in
(36), for any k = 0, . . . , n and j = 0, . . . , 2n−1. We note that
the top right corner of the matrix product is given by the scalar
product first row of f̂k and the last column of Eτk(D−1(j)).

Lemma 7: Given an n-bit vector b and the corresponding
representation matrix Eb, let v be the first row (or the
transposed last column) of the matrix Eb and let wH(b) and
wH(v) be their Hamming weights, then

wH(v) = 2wH(b) . (46)

�
Proof: We first prove this lemma when v is the first row

of the matrix Eb. For n = 1, (46) is true by definition of E0

and E1. By induction on the number of bits, we assume (46)
is true for a k-bit vector b(k), i.e., wH(v(k)) = 2wH(b(k)),
where v(k) is the first row of Eb(k) . When one more bit bk+1

is appended to b(k) the matrix representation becomes

Eb(k+1) = Eb(k) ⊗ Ebk+1
.

From the definition of the Kroneker product and the matrices
E0 and E1, we have:

wH(v(k+1)) =

{
wH(v(k)) if bk+1 = 0
2wH(v(k)) if bk+1 = 1

Hence the weight of the first row doubles for every bit that is
equal to one in b.

Based on the anti-diagonal symmetry noted in Property 1,
under the same assumptions, (46) is also valid when vT is the
last column of Eb. �

Lemma 8: The total complexity of the ITMFT is given by

CITMFT =
3n+1 + 1

2
+ (n− 2)2n . (47)

�
Proof: The total complexity of the ITMFT takes into

accounts i) the number of terms in f̂k to be added when
computing Φk(f̂kEτk(D−1(j))), for k = 1, . . . , n; and ii) the
number of additions of terms Φk(f̂kEτk(D−1(j))) in (36).

Let w = wH(b) be the Hamming weight of the k-bit
vector b associated with the matrix Eτk(D−1(j)). The number
of elements of the matrix f̂k to be added when computing
Φk(f̂kEτk(D−1(j))) is determined by the number of ones in the
last column of Eτk(D−1(j)), which is 2w according to Lemma
7. Then the number of additions is one less, i.e., 2w−1. Since
there are only 2k distinct Eτk(D−1(j)) for each k, we need to
run over all the weights w of the k-bit vector corresponding
to the matrix Eτk(D−1(j)) for k = 1, . . . , n. This results in a
complexity of

n∑
k=1

k∑
w=0

(
k

w

)
(2w − 1) . (48)

We simplify (48) to
n∑

k=1

[
k∑

w=0

(
k

w

)
2w −

k∑
w=0

(
k

w

)]
=

n∑
k=1

(3k − 2k) . (49)

On the other hand, the number of additions of terms
Φk(f̂kEτk(D−1(j))) in (36) is n2n. Finally, we obtain the total
complexity

CITMFT =
n∑

k=1

(3k − 2k) + n2n =
3n+1 + 1

2
− 2n+1 + n2n .

(50)
�

B. Complexity of the fast TMFT

From Lemma 4, we note that the Fourier coefficient matrices
f̂k of the fast TMFT are linear combination of the matrices Eb,
weighted by the scalar values. Following (14) and Property
1, the matrices Eb are the k-fold Kroneker products of the
2 × 2 upper triangular and anti-diagonal symmetric matrices
E0, E1. This provides a simple algorithm (see Fig. 4), in which
any f̂k can be entirely reconstructed from its first row entries.
Hence, we only need to compute and store the first row of the
matrices f̂k, which is a linear combination of the first rows of
matrices Eb. Then the complexity can be derived by counting
the Hamming weights of the first rows of matrices Eb. We
have the following Lemma.

Lemma 9: The total complexity of the fast TMFT is given
by

CFTMFT =
3n+1 + 1

2
− 2n+1 . (51)

�
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1. Input: v (first row of f̂k), k number of bits
2. for j = 0 : k − 1
3. w = zeros(2j , 2k);
4. for i = 1 : 2j+1 : 2k − 2j

5. w(1 : 2j , (i+ 2j) : (i+ 2j + 2j − 1)) = v(1 : 2j , i : i+ 2j − 1);
6. end
7. v = [v;w];
8. end
9. return v (complete matrix f̂ )

Fig. 4. Algorithm to find the full f̂k from its first row.

Proof: For each f̂k, k = 1, . . . , n, given k bit vector b with
Hamming weight w = wH(b), we let vb denote the first row
vector of a Eb matrix with Hamming weight wH(vb) = 2w,
according to Lemma 7. We prove the complexity of the fast
TMFT in the following steps.

1) We start from the leaf nodes at level n in the tree, as
shown for example in Fig. 3. The total number of terms
to be added is given by the sum of the Hamming weights
of all vectors vb at level n, i.e.,∑

b

wH(vb) =

n∑
w=0

(
n

w

)
2w = 3n .

The corresponding addition count is given by

K1 = 3n − 2n (52)

since we have 2n separate sums to compute the first
row elements. By direct computation, we note that the
first term in the first row of f̂n is f̂0 =

∑2n−1
j=0 fj . This

needs to be computed only once and is used throughout
the following steps.

2) At level k (1 ≤ k < n) in the tree, we only focus on the
first row of each matrix f̂k, except for the first element
in this row (f̂0 =

∑2n−1
j=0 fj), which has been already

computed at level n. Since the first term in vb is always
one (see Property 5), for each f̂k, the total number of
terms to be added is given by the sum of wH(vb) − 1
of all vectors vb at level k, i.e.,∑

b

(wH(vb)−1) =

k∑
w=0

(
k

w

)
(2w−1) = 3k−2k, (53)

for k = 1, . . . , n − 1. The last equality is due to (49).
The corresponding additions count is given by (3k −
2k)− (2k − 1), since we have 2k − 1 separate sums to
compute the 2k − 1 elements of the first row.
At each level k, there are extra addition operations that
are performed to compute the partial sum of the time
domain samples, i.e.,

∑
v∈G/Hk

f(u + v) in (31) and∑
v∈G/Hk

f(u+v+dk) in (32). Note that we can ignore
the partial sum coefficient of E0 at level k, since, by
excluding the first element of the first row of E0, the
remaining elements are all zeros. Hence, the extra count
for such addition is 2k − 1. This can be also interpreted
using the tree structure in Fig. 3: the number of additions
simply coincides with the number of nodes at level k,

after excluding node E0. Then, the complexity at all
level k is given by

K2 =

n−1∑
k=1

(3k−2k)−(2k−1)+(2k−1) =

n−1∑
k=1

(3k−2k) .

(54)
3) At k = 0, we have f̂0, already available at level n.

Hence, the final complexity is

CFTMFT = K1+K2 =

n∑
k=1

(3k−2k) =
3n+1 + 1

2
−2n+1 .

�

C. Complexity of TMFT

Lemma 10: The total complexity of TMFT is given by

CTMFT = 3n+1 − (n+ 4)2n + n+ 1 . (55)

�
Proof: The proof is similar to that of the fast TMFT and

can be derived by modifying (53) and (54).

1) At level n, the complexity of TMFT is the same as K1 =
3n − 2n in (52) of the fast TMFT, since both methods
have the same 2n distinct matrices Eb.

2) At level k = 1, . . . , n− 1, (53) becomes

∑
b

(wH(vb)− 1) = 2n−k
k∑

w=0

(
k

w

)
(2w − 1)

= 2n−k(3k − 2k) . (56)

and the corresponding additions count is given by∑n−1
k=1 2

n−k(3k − 2k)− (2k − 1), since we have 2k − 1
separate sums to compute the 2k − 1 elements of the
first row.
Note that (56) has an extra 2n−k scaling factor, when
compared to (53). As observed in the proof of Lemma
4, f̂k of TMFT is the linear combination of the 2n

matrices Eb, weighted by the scalar values. Among all
the 2n matrices Eb, there are 2k distinct ones and 2n−k

repetitions of each distinct one, which causes the extra
scaling factor in (56).
Note that, for TMFT, there is no partial sum of the
time domain samples in (31) and (32), and thus no extra
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addition count of 2k + 1 in (54). Then, the complexity
in (54) becomes

K2 =

n−1∑
k=1

2n−k(3k−2k)− (2k−1), k = 1, . . . , n−1 .

(57)
3) At level 0, as discussed in the fast TMFT, no extra

computation complexity is needed, since f0 is already
available at level n. Hence, the final complexity of
TMFT is

CTMFT = K1 + K2 = 3n+1 − (n+ 4)2n + n+ 1 .

�
Remark 1: Comparing the complexity of TMFT in (55)

and the fast TMFT in (51), we obtain the asymptotic ratio
of CTMFT over CFTMFT as

lim
n→∞

CTMFT
CFTMFT

= 2 (58)

�
Remark 2: We can now compare the complexity of a

convolution in the time domain to the complexity when using
the fast TMFT. The convolution in Definition 8 requires
|G|2 = 4n multiplications in the ring R. On the other hand, if
we apply the convolution theorem, we need to compute two
fast TMFT’s and one ITMFT for a total of

3

2

(
3n+1 − 2n+2 + 1

)
+ n2n

additions in the ring R. �

VII. CONCLUSIONS

In this paper we have defined the two-modular Fourier
transform of a binary function f : G → R over G = Cn

2

with values in a finite commutative ring R of characteristic
2. This new Fourier transform is based on k-dimensional
representations of a sequence of nested subgroups Hk = Ck

2

of G. Using the specific group structure of G, we have
highlighted the steps that lead to the fast version of the two-
modular Fourier transform and its inverse. In particular, this
new inverse Fourier transform significantly deviates from the
traditional modular inverse Fourier transform, which is only
valid for the case where the characteristic of the ring R does
not divide the order of the group G. The major difference is
that the trace operator is replaced by a new operator, which
extracts the top right corner element of a matrix.

We then provided the TMFT properties including linearity,
shifting property and the convolution theorem, which enables
to efficiently compute convolutions (multiplications in the
group ring R[G]). We also presented the exact complexity
of fast TMFT and its inverse.

This Fourier transform may have broad applications to
problems, where binary functions need to be reliably computed
or in classification of binary functions.

APPENDIX

A. Basic Definitions of Group Representation and Characters

Definition A.1: An n–dimensional representation of a group
G is a group homomorphism from G to the group of n × n
invertible matrices over a field K, i.e.,

ρ : G → GL(n,K)

such that

ρ(g1g2) = ρ(g1)ρ(g2) ∀g1, g2 ∈ G .

If the homomorphism is injective, we say the representation
is faithful. We also define the kernel of ρ as Ker(ρ) = {g ∈
G : ρ(g) = In}. �
Note that this homomorphism transforms the group operation
on a pair of elements to matrix multiplication of the corre-
sponding representation matrices. Since matrix multiplication
is non-commutative these representations are useful to study
non-Abelian groups. When dealing with Abelian groups scalar
(one-dimensional) representations are commonly used [8].

Definition A.2: Given two representations of a group G

ρ1 : G → GL(n,K) ρ1(g) = Vg

and
ρ2 : G → GL(n,K) ρ2(g) = Wg

where g ∈ G, we say ρ1 and ρ2 are equivalent, if there exists
an invertible matrix A such that ρ2(g) = A ·Vg ·A−1 = Wg,
for all g ∈ G. Otherwise, we say ρ1 and ρ2 are inequivalent.
In the scalar case, two representations are equivalent only if
they coincide, i.e., ρ1(g) = ρ2(g) for all g ∈ G. �

Definition A.3: A finite dimensional complex representation
ρ : G → GL(n,C) is irreducible if the only subspace V ⊆ Cn

that is invariant under all the matrix transformations ρ(g), for
all g ∈ G, is either V = Cn or V = 0. �

Definition A.4: Given a representation ρ of a group G, the
character of ρ is the function χρ : G → K given by

χρ(g) = Tr(ρ(g)) ∀g ∈ G

where Tr(·) is the trace of the matrix. �
Note that a one-dimensional representation coincides with its
character and hence it is a group homomorphism. However, in
general the character of a matrix representation is not a group
homomorphism.

B. Proof of Lemma 3

According to (23), for any g, w, g + w ∈ G, we have

τk(g) =


σk(u1) if g = u1 + v1 for some

u1 ∈ Hk/⟨dk⟩ and v1 ∈ G/Hk

σk(u1) if g = u1 + v1 + dk for some
u1 ∈ Hk/⟨dk⟩ and v1 ∈ G/Hk

(59)

τk(w) =


σk(u2) if w = u2 + v2 for some

u2 ∈ Hk/⟨dk⟩ and v2 ∈ G/Hk

σk(u2) if w = u2 + v2 + dk for some
u2 ∈ Hk/⟨dk⟩ and v2 ∈ G/Hk

(60)
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τk(g+w)=



σk(u1 + u2)

if g + w = (u1 + u2)+(v1 + v2)
for some
u1, u2, (u1 + u2) ∈ Hk/⟨dk⟩
and v1, v2, v1 + v2 ∈ G/Hk

σk(u1 + u2)

if g + w = (u1 + u2)
+(v1 + v2) + dk

for some
u1, u2, (u1 + u2) ∈ Hk/⟨dk⟩
and v1, v2, v1 + v2 ∈ G/Hk

(61)
There are four combinations of g and w that we will analyze
to prove it is a group homomorphism.

1) When g = u1 + v1 and w = u2 + v2 for some u1, u2 ∈
Hk/⟨dk⟩ and v1, v2 ∈ G/Hk, we have g + w = (u1 +
u2) + (v1 + v2), for some u1, u2, (u1 + u2) ∈ Hk/⟨dk⟩
and v1, v2, v1 + v2 ∈ G/Hk. From (61), we have

τk(g + w) = σk(u1 + u2) . (62)

On the other hand, based on (59), (60) and Lemma 2,
we have

τk(g) + τk(w) = σk(u1) + σk(u2) = σk(u1 + u2) (63)

Comparing (62) and (63), we have τk(g+w) = τk(g)+
τk(w).

2) When g = u1 + v1 + dk, and w = u2 + v2 + dk for
some u1, u2 ∈ Hk/⟨dk⟩ and v1, v2 ∈ G/Hk, we have
g+w = (u1+u2)+(v1+v2) for some u1, u2, (u1+u2) ∈
Hk/⟨dk⟩ and v1, v2, v1 + v2 ∈ G/Hk. From (61) and
Lemma 2, we have

τk(g + w) = σk(u1 + u2) = σk(u1) + σk(u2) (64)

and

τk(g) + τk(w) = σk(u1) + σk(u2)

= 1k + σk(u1) + 1k + σk(u2)

= σk(u1) + σk(u2) (65)

Comparing (64) and (65), we have τk(g+w) = τk(g)+
τk(w).

3) When g = u1 + v1 and w = u2 + v2 + dk for some
u1, u2 ∈ Hk/⟨dk⟩ and v1, v2 ∈ G/Hk, we have g+w =
(u1+u2)+(v1+v2)+dk, for some u1, u2, (u1+u2) ∈
Hk/⟨dk⟩ and v1, v2, v1 + v2 ∈ G/Hk. We have

τk(g + w) = σk(u1 + u2)

= 1k + σk(u1 + u2)

= 1k + σk(u1) + σk(u2) (66)

and

τk(g) + τk(w) = σk(u1) + σk(u2)

= 1k + σk(u1) + σk(u2) . (67)

Comparing (66) and (67), we have τk(g+w) = τk(g)+
τk(w).

4) When g = u1 + v1 + dk and w = u2 + v2, for some
u1, u2 ∈ Hk/⟨dk⟩ and v1, v2 ∈ G/Hk, we have g+w =
(u1+u2)+(v1+v2)+dk, for some u1, u2, (u1+u2) ∈

Hk/⟨dk⟩ and v1, v2, v1 + v2 ∈ G/Hk. We obtain the
same result as the previous case by swapping g and w.

This proves τk to be group homomorphism. According to
the fundamental homomorphism theorem, we have Ker(τk) =
G/Hk. �
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