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Abstract—We study a class of random matrices that appear in
several communication and signal processing applications, and
whose asymptotic eigenvalue distribution is closely related to
the reconstruction error of an irregularly sampled bandlimited
signal. We focus on the case where the random variables charac-
terizing these matrices are �-dimensional vectors, independent,
and quasi-equally spaced, i.e., they have an arbitrary distribution
and their averages are vertices of a �-dimensional grid. Although
a closed form expression of the eigenvalue distribution is still
unknown, under these conditions we are able i) to derive the
distribution moments as the matrix size grows to infinity, while its
aspect ratio is kept constant, and ii) to show that the eigenvalue
distribution tends to the Marčenko-Pastur law as ����. These
results can find application in several fields, as an example we
show how they can be used for the estimation of the mean square
error provided by linear reconstruction techniques.

Index Terms—Error analysis, signal reconstruction, signal
sampling.

I. INTRODUCTION

C ONSIDER the class of random matrices1 of size
, with entries given by

(1)

for , . The scalars are in-
dependent random variables characterized by a probability den-
sity function (pdf) , with . These matrices are
of Vandermonde type with complex exponential entries; they
appear in many signal/image processing applications and have
been studied in a number of recent works (see, e.g., [1]–[6]).
More specifically, in the field of signal processing for sensor
networks, [1] studied the performance of linear reconstruction
techniques for physical fields irregularly sampled by sensors. In
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1Column vectors and matrices are denoted by bold lowercase and bold upper
case letters, respectively. ��� is the ��� �� entry of the matrix�. The conju-
gate transpose operator is denoted by ��� .

such scenario, the random variables in (1) represent the coor-
dinates of the sensor nodes. The work in [2] addressed the case
where these coordinates are uniformly distributed and subject to
an unknown jitter. In the field of communications, the study in
[6] presented a number of applications where these matrices ap-
pear, which range from multiuser MIMO systems to multifold
scattering.

In spite of their numerous applications, few results are known
for the Vandermonde matrices in (1). In particular, a closed
form expression for the eigenvalue distribution of the Hermi-
tian Toeplitz matrix , as well as its asymptotic behavior,
would be of great interest. As an example, in [1] and [4], it has
been observed that the performance of linear techniques for re-
constructing a signal from a set of irregularly spaced samples
with known coordinates is a function of the asymptotic eigen-
value distribution of .

In general, given an Hermitian matrix , the
empirical cumulative distribution function (or empirical
spectral distribution) of its eigenvalues is defined as[13]

where
are the eigenvalues of and is the indicator function.
Since is Hermitian, the function has support in .
If converges as , the corresponding limit is
denoted by . The asymptotic pdf (i.e., the asymptotic
eigenvalue distribution of ) is denoted by . In particular,
for the class of matrices defined in (1), the
asymptotic eigenvalue distribution of the Hermitian matrix

is defined in the limit of and growing to infinity
while the matrix aspect ratio2 is kept constant.

In this paper, we consider a general formulation which ex-
tends the random variables in (1) to a -dimensional domain:
we study the properties of random matrices of size

and entries given by

(2)

where the vectors have independent en-
tries, characterized by the pdf , ,

, and is the vector size. The invertible function

(3)

maps the vector of integers ,
onto a scalar index, i.e., the row index of the

2The aspect ratio of� is the ratio between the number of rows and the number
of columns of the matrix.
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matrix . Notice that, when , reduces to (1). By
defining

as the aspect ratio of , we consider the properties of the Her-
mitian random matrix where the coefficient
is used for normalization purposes. In general, the asymptotic
eigenvalue distribution of , denoted by , depends
on the parameters and : how to derive an analytic expression
of such distribution is still an open problem.

A. Novel Contributions

For the matrix model in (2), we study the interesting case
where are independent, quasi-equally spaced random vari-
ables in the -dimensional hypercube . In other words,
we assume that the averages of are the vertices of a -dimen-
sional grid in . Note that the distribution of the random
variables can be of any kind, the only assumption we make
is on their averages being equally spaced. Such kind of matrices
appear in many practical applications. For example when ana-
lyzing measurement systems affected by jitter, or when consid-
ering a sensor network sampling a physical field, where sensors’
coordinates are quasi-equally spaced, due to terrain conditions
and deployment practicality [7].

Under these conditions on the matrix , the main contribu-
tions of this work can be summarized as follows:

• in Section III we derive a closed form expression for the
moments of ;

• this enables us to show in Section IV that, as ,
the asymptotic eigenvalue distribution of tends to the
Marčenko-Pastur law [10];

• moreover in Section V we show some numerical results
and present some applications where the moments derived
in Section III and the asymptotic approximation found in
Section IV can be of great use.

II. PREVIOUS RESULTS

Before presenting the details of our novel contributions, we
briefly review previous results on the matrices.

For the case
i) the work in [1] considered an irregularly sampled ban-

dlimited signal, which is reconstructed using linear tech-
niques. The samples coordinates, were assumed to be
known. The performance of the reconstruction system
was shown to be a function of the eigenvalue distribution

of the matrix ;
ii) an explicit expression of the moments

was attained in [3], for the specific
case where are i.i.d. and uniformly distributed in

;
iii) in the case where are independent, quasi-equally

spaced random variables, the analytic expression of
, was obtained in [2];

iv) in [5] the moments were derived for i.i.d.
random variables with arbitrary distribution .

For the multidimensional case ,
i) the work in [3] considered the case where the entries of

the vectors are i.i.d, uniformly dis-
tributed in the hypercube and under such assump-
tion derived an analytic expression of the moments of

, for any given and ;
ii) in [3] it was also shown that, when the vectors are i.i.d

and uniformly distributed in , tends to
the Marčenko-Pastur law [10] as .

III. CLOSED FORM EXPRESSION OF THE MOMENTS OF THE

ASYMPTOTIC EIGENVALUE PDF

Here we first introduce the problem under study and our
system assumptions, then we derive an analytic expression of
the moments of . In Appendix A we report a list of
the main symbols used in the derivation of our results.

A. Problem Formulation

We consider the matrix class in (2) and assume that the vec-
tors , are independent, quasi-equally spaced
random variables in the -dimensional hypercube , i.e.,
the averages of are the vertices of a -dimensional grid in

.
We define as the number of vertices per dimension, thus, the

total number of vertices is . We denote the coordinate of
a generic vertex of the grid by the vector , where

, is an integer vector and .
For simplicity and in analogy with (3), we identify the vertex
with coordinate by the scalar index

(4)

Note that is an invertible function that
uniquely maps the vector to the integer , which represents
the column index of . Then, we have
where we assume that the entries of the vectors are zero
mean i.i.d. with pdf , which does not depend on , , or

. The average is the coordinate of the vertex
identified by the scalar label .

By using this notation, the entries of are then given by

while its aspect ratio is

(5)

It follows that the entries of the Hermitian Toeplitz matrix
are given by

(6)

where represents a -dimensional sum over all vectors
such that , .
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Following the approach adopted in [11], [12], in the limit for
and growing to infinity with constant aspect ratio and

dimension , we compute the closed form expression of ,
which can be obtained from the powers of as [13]

(7)

In (7) the symbol identifies the matrix trace operator, and
the average is computed over the set of random variables

. Notice that (7) links the moment analysis
to the matrix . As an intuitive explanation consider that the
eigenvalues of are those of but raised to the th power.
The trace operator performs the summation of these powers
which, in the limit for the matrix size growing to infinity, is
equivalent to an integration.

Using (6), the term in (7) can be written as

(8)

where and are sets of integer matrices such that

, for , and for . In
(8), the power is the product of copies of . By substi-
tuting (6) to each of these copies, we obtain exponential terms,
whose exponents are given by a sum of terms of the form

. The average of this sum depends on the
number of distinct vectors , and all possible cases can be de-
scribed as partitions of the set . In particular, the
case where in the set there are distinct
vectors, corresponds to a partition of in subsets. It follows
that a fundamental step to calculate (7) is the computation of all
possible partitions of set , by using a set partitioning strategy.
Before proceeding further in our analysis, we therefore intro-
duce some useful definitions related to set partitioning.

Definitions

Let the integer denote the moment order and let the vector
be a possible combination of integers. In our

specific case, each entry of the vector is given by the expres-
sion in (4), i.e., and, thus, can range between 0 and

. We define:
• the scalar integer as the number of distinct

entries of the vector ;
• as the vector of integers, of length , whose en-

tries , , are the entries of without
repetitions, in order of appearance within ;

• as the set of indices of the entries of with value
, ;

• the vector such that, for any
given , we have if ,

.
Furthermore, we define

• as the set of partitions of ;
• as the set of partitions of in subsets, ,

with .

Example 1: Let , then
since the entries of take 5 distinct values (i.e., ).
Such values, taken in order of appearance in form the vector

. The value appears at position
1 in , therefore . The value appears at
positions 2 and 5 in , therefore . Similarly

, , and . By using
the sets we build the vector, . For each we
assign the value to every such that . For example,

since the integers 2 and 5 are in . In conclusion
.

Note that: (i) the cardinality of , denoted by ,
is the th Bell number [14] and (ii) the cardinality of , de-
noted by , is a Stirling number of the second
kind [15]. From the above definitions, it follows that:

1) the vector induces a partition of the set which is iden-
tified by the subsets . These subsets have the proper-

ties , for . Even

though the partition identified by is often represented as
, by its definition, an equivalent represen-

tation of such partition is given by the vector . There-
fore, from now on we will refer to as a partition of
the element set induced by (for simplicity, however,
often we will not explicit the dependency of on );

2) , since the entries of take all possible values
in the set ;

3) , for .
At last, we define as the set of inducing the same

partition of .
Example 2: Let and . Since

and , , we have possible
vectors , namely, .
Each identifies a partition , with , as
described in Example 1. The sets of partitions , are given
by , ,
and , and have cardinality ,
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, and , respectively. The set of vectors
identifying the partition , i.e., ,

is given by: .
Similarly

B. Closed Form Expression of

By using the definitions in Section III-B and by applying set
partitioning strategy to (8), we can state our first main result.

Theorem 3.1: Let be a Hermitian
random matrix as defined in (6), where the properties of the
random vectors are described in Section III-A. Then, for
any given and , the th moment of the asymptotic eigenvalue
distribution of is given by

(9)

where and where

(10)
In (10) we defined

(11)

(12)

the set as the -dimensional hypercube ,
as the characteristic function of , and

as the Dirac’s delta. Moreover ,
, , and . In particular, for

, we have .
Proof: The proof can be found in Appendix A.

With the aim to give an intuitive explanation of the above
expressions, note that the right-hand side (RHS) of (9) counts
all possible partitions of the set , in (10)
accounts for the generic distribution of the variables , and the
quantity represents the indices pairing that appears in the
exponent of the generic entry of the power .

TABLE I
PARTITION SETS � FOR � � �� �� �, AND � � � � �. EACH PARTITION

IS REPRESENTED THROUGH ITS ASSOCIATED VECTOR ���

AND THE VALUE OF ������

To further clarify the moments computation, Table I reports
an example of partition sets for and

, while Example 3 shows the computation of the second
moment of the eigenvalue distribution.

1) Example 3: We compute the analytic expression of
. Using (9), we get

By expanding this expression and using Table I, we ob-
tain

. By using (10) we have ,
, and

IV. CONVERGENCE TO THE MARČENKO-PASTUR DISTRIBUTION

Here we show that the asymptotic eigenvalue distribu-
tion of the matrix tends to the Marčenko-Pastur law
[10], as , i.e.,

where ,
, . This is equivalent to prove that, as

, the th moment of tends to the th moment of
the Marčenko-Pastur distribution with parameter , for every

.
Theorem 4.1: Let be a Hermitian

random matrix as defined in (6), where the properties of the
random vectors are described in Section I-A. Let
be the th moment of the asymptotic eigenvalue distribution of

, given by Theorem 3.1. Then, for any given

where are the Narayana numbers [16], [17] and
are the Narayana polynomials, i.e., the moments of

the Marčenko-Pastur distribution [10].
Proof: We first look at the expression of the th asymptotic

moment and observe that, for , the contribution of the term
in the RHS of (9) reduces to

(13)
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The cardinality of is and
. Thus, we only consider .

Moreover, using the definition of after (10) we have
since each subset has cardi-

nality 1, . Therefore, the term in (13) becomes
. Using (10) for

we have: .
Hence, the contribution to the th moment reduces to

(14)

In [3] it is shown that, as , (14) tends to the Narayana
polynomial of order . Thus, to prove the theorem, it is enough
to show that, for , the contribution of the term in the
RHS of (9), to the expression of the th asymptotic moment,
vanishes as . For example, we have to show that, for each

and , with

(15)

or, equivalently, that .
By using (10), we first notice that for

(16)

since by (12) . Moreover, from (11) and the
definition of the characteristic function of , we have

(17)

Next, we make the following observations:
i) the equality in (17) arises when , else if

, the strict inequality holds;
ii) since we consider partitions of the set in

subsets , , with , then at least
one of the sets has cardinality ;

iii) from the definition in (12) the term in (16)
gives a nonzero contribution to the integral in (16) only
when , for every .
The number of terms in the argument of the func-
tion equals , for every .

Thus, if for some , , the corresponding
arguments of the function will contain two or more

Fig. 1. Comparison between the Marčenko-Pastur distribution and the empir-
ical distribution for � � ���� and � � �� �� � in the quasi equally space case,
and uniform � ���.

terms, whose sum need to be zero in order to provide a nonzero
contribution to (16). By consequence, there always exist some

providing a nonzero contribution to the integral
in (16). Therefore, by using observation i) the strict inequality

always holds for at least an integer .
We can then write
which proves the claim (15).

When , again, there is a measurable subset of for
which , hence,

i.e., the strict inequality holds and (15) is proved.
In Fig. 1, we show the empirical eigenvalue distribution of

the matrix for , , and uniformly
distributed in . The empirical distribution is compared to
the Marčenko-Pastur distribution (solid line). We observe that
as, increases, the Marčenko-Pastur distribution law becomes a
good approximation of . In particular, the two curves
are relatively close for small , already for . Curves for

are not shown since for large numerically deriving the
eigenvalue distribution leads to cumbersome computations.

V. APPLICATIONS

Here we present some applications where the results derived
in this work can be used.

The closed form expression of the moments of ,
given by (9), can be a useful basis for performing deconvolu-
tion operations, as proposed in [6]. As for the asymptotic ap-
proximation, we show below how to exploit our results for the
estimation of the mean square error (MSE) provided by linear
reconstruction techniques of irregularly sampled signals.

Let us assume a general linear system model affected by ad-
ditive noise. For simplicity, consider a one-dimensional signal,

. When observed over a finite interval, it admits an infinite
Fourier series expansion [1]. We can think of the largest index

of the nonnegligible Fourier coefficients of the expansion as
the approximate one-sided bandwidth of the signal. We there-
fore represent by using complex harmonics as
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Fig. 2. MSE as a function of the signal-to-noise ratio for � � �� �� �. The
curves are compared with the results obtained through our asymptotic analysis
(MP) and with the equally spaced case.

Now, consider that the signal is observed within one period in-
terval and sampled in points placed at positions

, , . The com-
plex numbers represent amplitudes and phases of the har-
monics in . The signal samples
can be written as , where the matrix is given
in (2). The signal discrete spectrum is given by the
complex vector . We can now
write the linear model for a measurement sample vector

taken at the sampling points as

where is a random vector representing measurement noise.
The general problem is to reconstruct or given the noisy mea-
surements [3]. A commonly used parameter to measure the
quality of the estimate of the reconstructed signal is the MSE.
In [1] and [2], it has been shown that, when linear reconstruc-
tion techniques are used and the sample coordinates are known,
the asymptotic MSE (i.e., as the number of harmonics and the
number of samples tend to infinity while their ratio is kept con-
stant) is a function of the asymptotic eigenvalue distribution of
the matrix , i.e.,

(18)

where the random variable has distribution and
is the signal-to-noise ratio on the measure. Expression

(18) also hold for the -dimensional case, with the pdf of given
by . We therefore exploit our asymptotic approxima-
tion to to compute (18).

Fig. 2 shows the MSE obtained as a function of the signal-to-
noise ratio . The curves with markers labeled by “

” refer to the cases where the signal has dimension and
the sampling points are quasi-equally spaced with jitter , uni-
formly distributed over , and . The curve labeled
by “MP” (thick line) reports the results derived through our
asymptotic approximation to the eigenvalue distribu-
tion. The curve labeled by “Equally spaced” (dashed line) repre-
sents the MSE achieved under a perfect equally spaced sample

Fig. 3. MSE as a function of the signal-to-noise ratio for � � ���� ���. The
curves are obtained for � � � and compared against both the equally spaced
case and the results derived through our asymptotic analysis (MP).

placement, i.e., when the jitters described in Section III-A
are given by , for . In such case it is
straightforward to show that is the identity matrix and that
its eigenvalue distribution is given by .
Notice that in Fig. 2 the MSE grows as increases and tends
to the MSE obtained by a Marčenko-Pastur eigenvalue distribu-
tion. Instead, as expected, the “Equally spaced” curve represents
a lower bound to the system performance.

Fig. 3 presents similar results but obtained for and
different values of . We observe that the MSE obtained
through our asymptotic approximation (the curve labeled by
“MP”) gives excellent results for values of as small as 0.2,
even when compared against the numerical results derived by
fixing . For (i.e., when the ratio of the number
of signal harmonics to the number of samples increases), the
approximation becomes slightly looser, and the MSE computed
by using the Marčenko-Pastur distribution gives an upper limit
to the quality of the reconstructed signal. Note that the smaller
the , the higher the oversampling rate relative to the equally
spaced minimal sampling rate . We thus observe how our
bound becomes tighter as the oversampling rate increases.

To conclude, we describe some areas in signal processing
where the above system model and results find application.

i) Spectral estimation with noise. Spectral estimation from
high precision sampling and quantization of bandlimited
signals uses measurement systems which are usually af-
fected by jitter [18]. In such applications the quantization
noise corresponds to the measurement noise and the jitter
is caused by the limited accuracy of the timing circuits.
In this case the sampling points are mismatched with re-
spect to the nominal values, thus for we have:

with some sampling rate . Note that
the exact positions of the samples are not known and the
case studied in this paper (i.e., MSE with exact positions)
gives a lower bound to the reconstruction error.

ii) Signal reconstruction in sensor networks. Sensor net-
works, whose nodes sample a physical field, like air
temperature, light intensity, pollution levels or rain falls,
typically represent an example of quasi-equally spaced
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sampling [2], [7], [19], [20]. Indeed, often sensors are
not regularly deployed in the area of interest due to
terrain conditions and deployment practicality and, thus,
the physical field is not regularly sampled in the space
domain. Sensors report the data to a common processing
unit (or sink node), which is in charge of reconstructing
the sensed field, based on the received samples and on
the knowledge of their coordinates. If the field can be
approximated as bandlimited in the space domain, then
an estimate of the discrete spectrum can be obtained by
using linear reconstruction techniques [2], [21], even in
presence of additive noise. In this case, our approxima-
tion allows to compute the MSE on the reconstructed
field.

iii) Stochastic sampling in computer graphics and image pro-
cessing. Jittered sampling was first examined by Balakr-
ishnan in [22], who analyzed it as an undesirable effect
in sampling continuous time functions. More than twenty
years later, Cook [23] realized that the effect of stochastic
sampling can be advantageous in computer graphics to re-
duce aliasing artifacts, and considered jittering a regular
grid as an effective sampling technique. Another example
of sampling with jitter was recently proposed in [24], for
robust authentication of images.

VI. CONCLUSIONS

We studied the behavior of the eigenvalue distribution of a
class of random matrices, which find large application in signal
and image processing. In particular, by using asymptotic anal-
ysis, we derived a closed-form expression for the moments of
the eigenvalue distribution. Using these moments, we showed
that, as the signal dimension goes to infinity, the asymptotic
eigenvalue distribution tends to the Marčenko-Pastur law. This
result allowed us to obtain a simple and accurate bound to the
signal reconstruction error, which can find application in sev-
eral fields, such as jittered sampling, sensor networks, computer
graphics and image processing.

APPENDIX A
TABLE OF SYMBOLS

Random variables and distributions

pdf of the random variable

cdf of the random variable

characteristic function of the random variable

Random matrices

random matrix of size

aspect ratio of matrix , equal to

Hermitian Toeplitz matrix given by

asymptotic eigenvalue distribution of

th moment of

function mapping the vertex coordinate to
the column index of

function mapping the vector of integers to the
row index of

Set partitioning

set of integers

set of partitions of

set of partitions of in subsets

set of partitions of

set of partitions of in subsets

partition,

partition,

set of indices such that

set of vectors inducing the partition

APPENDIX B
SET PARTITIONING

To prove Theorem 3.1, first we apply the definitions in
Section III-B to rewrite (8) using set partitioning. In particular,
by considering the vector where

and is the th column of , we observe the
following:

• the vector is uniquely defined by , and a given
uniquely defines a matrix since is an invert-
ible function;

• a given induces a partition ;
• since is the number of values that the entries can take,

there exist matrices generating a
given partition of made of subsets. In other words

distinct ’s yield the same partition .
Since the random vectors and are independent

for , for any given the average operator in (8) factor-
izes into terms, i.e.,

(19)

indeed, for every , we have . In the last line
of (19), we defined and

(20)

Also, note that, in the product in (19), each factor depends on
a single random vector, . Since
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and is invertible then, by defining we have
and

(21)

In the last term of (21) we removed the subscript from the
argument of the average operator, since the distribution of
does not depend on . Summarizing, the term in (7)

can be written as

Since each is uniquely identified by a vector , we can ob-
serve that

for every function . represents the set of inducing
a given partition .

From the definitions in Section III-B, it follows that, if in-
duces , then , , and

, . Therefore,

(22)

In (22) we defined

(23)

where and are the th entries of and , respec-
tively. In the equality “(a)” we exploited the fact that the term

does not depend on and can be factored from the

sum over . As for the term , we have
the following lemma.

Lemma B.1: Let , let be vectors of
size with integer entries, defined as in (20). Let be the
set of vectors inducing . Then

where
and is the Kronecker’s delta function. Moreover

, ,
and is the set of vectors of size , representing the
partitions of the set in subsets, namely,

.
Proof: The proof can be found in Appendix C.

By applying the result of Lemma B.1 to (22), we get

(24)

Since by
using (23) we have

(25)

where the subscript of the function highlights the de-
pendency of on . From (25) we note that

where is the characteristic

function of . Moreover, by using (5), we observe that
. In conclusion, we compute , by

evaluating the limit in (7). To this end, we use (25), and (24) in
(7), and we obtain

(26)
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The second equality in (26) holds since, for any given , the
sums and are over a finite number of terms,
and the coefficients are finite and do not depend on .
Therefore, the limit operator can be swapped with the summa-
tions. In (26) the term is defined as

(27)

We now consider three possible cases:
• if , then , thus we only consider

. Then, and the argu-

ment of the function in (25) is given by

and by consequence . Hence
by passing to the limit in (27) we obtain

(28)

where , and in analogy with
(20), we defined , ,

and we denoted by the vector ;
• if , the argument of the function in

(25) is always a function of the indices . Thus
is given by where

and denotes
the Dirac’s delta;

• if , the cardinality of is
and . Thus, we only consider

. It follows that:

Since then
. Moreover , then we have

As a last remark, if , we have and
. Then . Using (28), we

obtain

APPENDIX C
PROOF OF LEMMA B.1

Recall that denotes the set of vectors
inducing a given partition . As defined in Section III-B, if

, then each contains distinct values, namely,
where , and

for each and . Therefore, from (B.1) we
can write

where the symbol indicates a sum over the variables

with the constraint that for every
and . Notice that the values are

the scalar counterparts of the integer vectors ,
, , , through the

invertible function , i.e., , . Hence,
by definition of , we have and

(29)

We now compute the last term of (29) by summing over one
variable at a time. We first notice that, for every set
of distinct vectors

In particular when , .
Let us arbitrarily choose the variable . If by hypothesis

, then by summing (29) over we get

(30)
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We compute separately each of the contributions in (30).
In particular, the generic th term is given by

We now proceed by summing over the variable . If by hy-
pothesis , this summation produces terms.
Again, we consider each term separately. This procedure re-
peats until a subset of is found, such that

.
In this case, the contribution of the th sum is given by

where is the cardinality of . Overall, after
sums the total contribution is

The factor accounts for the number of permutations of
the elements in , once the first element is fixed (remember that
we arbitrarily chose the first variable of the summation). The
factor takes into account that we summed times
with the condition , which implies sign changes.
Eventually, the term is

similar to the last term in (29) where only variables are
involved.

This procedure repeats until we sum over all variables . This
is equivalent to check if for all possible partitions of
in subsets , the condition

holds, with ,
, and . In this case, the contribution is given by

and it is 0 otherwise.
Here

. In conclusion, we can
write

where
and is the Kronecker’s delta function,

and is
a polynomial in of degree . For large , , thus,
proving the lemma.
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