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Line-of-Sight 2 × nr MIMO With Random
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Lakshmi Natarajan, Yi Hong, Senior Member, IEEE, and Emanuele Viterbo, Fellow, IEEE

Abstract—Line-of-sight (LoS) multiple-input multiple-output
(MIMO) gives full spatial-multiplexing gain when the antenna ar-
ray geometry and orientation are designed based on the interter-
minal distance. These known design methodologies that hold for
antenna arrays with fixed orientation do not provide full MIMO
gains for arbitrary array orientations. In this paper, we study LoS
MIMO channels with random array orientations when the number
of transmit antennas used for signaling is 2. We study the impact
of common array geometries on error probability, and identify the
code design parameter that describes the high signal-to-noise ra-
tio (SNR) error performance of an arbitrary coding scheme. For
planar receive arrays, the error rate is shown to decay only as
fast as that of a rank 1 channel, and no better than SNR−3 for a
class of coding schemes that includes spatial multiplexing. We then
show that for the tetrahedral receive array, which uses the smallest
number of antennas among nonplanar arrays, the error rate de-
cays faster than that of rank 1 channels and is exponential in SNR
for every coding scheme. Finally, we design a LoS MIMO system
that guarantees a good error performance for all transmit/receive
array orientations and over a range of interterminal distances.

Index Terms—Antenna array, array geometry, coding scheme,
line-of-sight, multiple-input multiple-output, probability of error.

I. INTRODUCTION

THE large swathes of raw spectrum available in the
millimeter-wave frequency range are expected to provide

an attractive solution to the high data-rate demands of the fu-
ture 5G cellular networks [1]. The small carrier wavelength
of millimeter-wave frequencies allows for reduced spacing be-
tween the antenna elements when multiple antennas are used
at the transmitter and receiver. This implies that multiple-input
multiple-output (MIMO) spatial multiplexing gains can be ob-
tained even in the presence of a strong line-of-sight (LoS) com-
ponent when operating in such high frequencies [2].

In LoS environment, the MIMO channel matrix H is a deter-
ministic function of the positions of the transmitter and receiver
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and the geometry of the antenna arrays used at either termi-
nals. If the positions of the communicating terminals are fixed
and known a priori, the geometry of the antenna arrays can
be designed to optimize the performance of the communication
system. The LoS MIMO channel quality, in terms of capacity,
multiplexing gain, coverage, and channel eigenvalues, has been
studied in [2]–[9] as a function of the interterminal distance and
the interantenna spacing of transmit and receive arrays, when
the antennas are to be arranged in a rectangular, circular, or a
linear array. However, these design techniques assume that the
position and the orientation of the antenna arrays are fixed, and
the resulting criteria may be difficult to be satisfied if either of
the communicating terminals is mobile or if the positions of the
wireless terminals are not known a priori. Systems designed
according to these known criteria degrade gracefully with vari-
ations in the geometric parameters, and may be adequate in cer-
tain scenarios in which the changes in the orientation are limited,
such as in a sectored communication cell where the variation
of the base station orientation with respect to the direction of
propagation is limited. However, these designs, which utilize
two-dimensional (2-D) antenna arrays, do not provide MIMO
spatial multiplexing gains for arbitrary array orientations.

In [10], the mutual information rates of a predominantly
LoS channel with arbitrary antenna array orientations were
studied using simulations and direct measurements in an indoor
environment. The results show that the three-dimensional (3-D)
antenna arrays obtained by placing the antennas on the faces
of a tetrahedron or a octahedron provide mutual information
rates that are largely invariant to the rotation of antenna arrays
under indoor LoS conditions. Previous studies of 3-D antenna
arrays for wireless communications have mainly studied the
capacity of the resulting MIMO system in a rich scattering
environment. In [11], a compact MIMO antenna was proposed
that consists of 12 dipole antennas placed along the edges of a
cube. A 24-port and a 36-port antenna were designed in [12] by
placing antennas along the edges and faces of a cube. In [13]
and [14], 6-port and 16-port antennas were designed on a cube,
respectively, and the performance of the MIMO system in
terms of capacity and channel eigenvalues in a richly scattering
environment was studied. The objective of [11]–[14] has been
to design a compact array by densely packing the antenna
elements while exploiting the degrees of freedom available in
an environment that provides abundant multipath components.

To the best of our knowledge, there has been no prior the-
oretical study of LoS MIMO channels where the transmit or
receive antenna array orientations are arbitrary, as may be
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experienced in wireless mobile communications. Furthermore,
all previous works have focused on optimizing the mutual infor-
mation rates of the MIMO channel. To achieve the information
theoretic limits, we need code design criteria based on an er-
ror performance analysis of the communication channel. In this
paper, we consider LoS MIMO channels where the number of
transmit antennas used for signaling is 2 and both the trans-
mit and receive arrays have random orientations. We study the
impact of the geometry of the antenna arrays on the system
error performance and design a LoS MIMO system that guar-
antees a minimum channel quality and good error performance
for arbitrary transmit and receive orientations over a range of
interterminal distances.

We model the 2-transmit antenna nr -receive antenna LoS
MIMO channel H using the upper triangular matrix R obtained
from its QR-decomposition (see Section II). This allows us to
derive bounds on pairwise error probability and identify the code
parameter that determines the high signal-to-noise ratio (SNR)
error performance of arbitrary coding schemes in LoS MIMO
channels.

We show that for any planar, i.e., 2-D, arrangement of receive
antennas (such as linear, circular, and rectangular arrays), the
rate of decay of error probability is similar to that of a rank 1 LoS
MIMO channel whenever the receiver undergoes random rota-
tions. Furthermore, for some coding schemes, including spatial
multiplexing (SM) [15]–[17], the error rate with any planar re-
ceive array decays no faster than SNR−3 even though the chan-
nel is purely LoS and experiences no fading (see Section III).

We consider the smallest number of receive antennas nr = 4
that can form a 3-D, i.e., nonplanar, arrangement, and derive
bounds on error performance when they form a tetrahedral ar-
ray. In this case, the error probability decays faster than that of
a rank 1 channel and is always exponential in SNR irrespective
of the coding scheme used (see Section IV-A). We then design a
LoS MIMO system with a good error performance for all trans-
mit and receive array orientations over a range of interterminal
distances by using a tetrahedral receive array and adaptively
choosing two transmit antennas from a triangular/pentagonal
array at the transmitter (see Section IV-B). Finally, we present
simulation results to support our theoretical claims (see
Section V).

Notation: Matrices and column vectors are denoted by bold
upper-case and lower-case symbols, respectively. The sym-
bols Aᵀ, A†, and ‖A‖F denote the transpose, the conjugate-
transpose, and the Frobenius norm of a matrix A. The symbol
‖ · ‖ denotes the 2-norm of a vector. For a complex number z,
arg(z) and Re(z) denote its phase and real part, respectively.
The expectation operator is denoted by E(·).

II. 2 × nr LOS MIMO CHANNEL

We consider MIMO LoS transmission with nt = 2 antennas
at the transmitter and nr ≥ 2 antennas at the receiver. Assum-
ing that the large-scale fading effects, such as path loss, are
accounted for in the link budget, we take the magnitude of the
complex channel gain between any transmit–receive antenna
pair to be unity. If rm,n is the distance between the nth transmit

and the mth receive antennas, then the (m,n)th component of
channel matrix H ∈ Cnr ×2 is [4]

hm,n = exp
(

i
2πrm,n

λ

)
(1)

where λ is the carrier wavelength and i =
√
−1. The re-

sulting wireless channel is yRx =
√

SNRHx + wRx, where
yRx ∈ Cnr is the received vector, x ∈ C2 is the transmitted
vector, wRx ∈ Cnr is the circularly symmetric complex white
Gaussian noise with unit variance per complex dimension, and
SNR is the SNR at each receive antenna. The power constraint
at the transmitter is E

(
‖x‖2

)
≤ 1. We assume that the channel

matrix H is known at the receiver but not at the transmitter.
Let h1,h2 ∈ Cnr denote the two columns of H, and H = QR
be its QR decomposition where Q ∈ Cnr ×2 has orthonormal
columns, i.e., Q is a semi-unitary matrix, and

R =

⎡
⎢⎢⎢⎢⎢⎣

‖h1‖
h†

1h2

‖h1‖

0

√√√√‖h2‖2 − |h†
1h2|

2

‖h1‖2

⎤
⎥⎥⎥⎥⎥⎦

.

Let μ denote the correlation between the two columns h1 and
h2 of H, and θμ be the phase of h†

1h2, i.e.,

μ =
|h†

1h2|
‖h1‖ ‖h2‖

and θμ = arg
(
h†

1h2

)
.

From (1), we have ‖h1‖ = ‖h2‖ =
√

nr , and hence

R =
√

nr

[
1 eiθμ μ

0
√

1 − μ2

]
. (2)

Since Q is semi-unitary and wRx is a white Gaussian noise
vector,y = Q†yRx is a sufficient statistic forx. Hence, in the rest
of the paper we will consider the following equivalent channel:

y =
√

SNRRx + w (3)

where R is given in (2), and w = Q†x is a 2-D circularly
symmetric complex white Gaussian noise with zero mean and
unit variance per complex dimension.

A. Modeling the R matrix

To analyze the error performance of arbitrary coding schemes
in LoS MIMO channels, we model the phase θμ as independent
of μ and uniformly distributed in [0, 2π). Deriving the proba-
bility distribution of θμ and μ appears difficult; however, we
provide an analytical motivation and numerical examples to
support the validity of our model.

We follow the notations from [3] and [4] to describe the geom-
etry of the transmit and receive antenna positions, as illustrated
in Fig. 1.

We denote the interantenna distance at the transmitter by dt ,
and define the origin O of the 3-D reference coordinate system
as the midpoint between the two transmit antennas. Define the
z-axis of the coordinate system to be along the line connecting
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Fig. 1. Illustration of the parameters used in the system model.

the two transmit antennas, i.e., the positions of the two trans-
mit antennas are

[
0, 0, dt

2

]ᵀ
and

[
0, 0, − dt

2

]ᵀ
, respectively.

Choose the x-axis of the coordinate system such that the cen-
troid O′ of the receive antenna array lies on the x–z plane. Let O′

be at a distance of R from O and at an angle β to the x-axis, i.e.,
at the point

[
R cos β, 0, R sinβ

]ᵀ
. Consider an auxiliary co-

ordinate system with O′ as the origin and the three axes x′, y′, z′

defined as follows: the x′ axis is along the direction OO′, i.e.,
along the vector

[
cos β, 0, sinβ

]ᵀ
, z′ axis is on the x–z plane,

and y′ is parallel to y. Let (dm , θm , φm ) be the spherical coor-
dinates of the mth receive antenna with respect to this auxiliary
coordinate system, where dm is the radial distance, θm is the
polar angle, and φm is the azimuthal angle. The distance rm,n

between the nth transmit and mth receive antennas satisfies [5]1

rm,n ≈ R + dm sin θm cos φm + (−1)n dt

2
sin β +

(dm sin θm sin φm )2 + (dm cos θm + (−1)n dt

2 cos β)2

2R
.

Therefore, the difference rm,2 − rm,1 is given by

rm,2 − rm,1 = dt sin β +
(dm cos θm + dt

2 cos β)2

2R

−
(dm cos θm − dt

2 cos β)2

2R

= dt sin β +
dtdm cos β cos θm

R
. (4)

1The angle β is equal to the parameter θt used in [3] and [4].

Let F (β) = h†
1h2 denote the inner product between the two

columns of H as a function of β. Using (1) and (4), we obtain

F (β) = h†
1h2 =

nr∑
m=1

h†
m,1hm,2

= exp
(

i2πdt sinβ

λ

) nr∑
m=1

exp
(

i2πdtdm cos β cos θm

Rλ

)
.

(5)

Let f1(β) = exp (i2πdt sin β/λ) and

f2(β) =
nr∑

m=1

exp
(

i2πdtdm cos β cos θm

Rλ

)
.

Then, F (β) = f1(β)f2(β), arg F = arg f1 + arg f2, and since
|f1| = 1, we also have |F | = |f2|.

We now upper bound the magnitude of the derivative of μ
with respect to β. The derivative of df2/dβ equals

nr∑
m=1

−i2πdtdm sin β cos θm

Rλ
exp

(
i2πdtdm cos β cos θm

Rλ

)
.

(6)
Note that |df2/dβ| ≤ b, where b = 2πdt

∑ n r
m = 1 dm

Rλ
. For an

infinitesimal change Δβ in the value of β

|f2(β + Δβ)| − |f2(β)| =
∣∣∣f2(β) +

df2

dβ
Δβ

∣∣∣− |f2(β)|.

Using the fact that
∣∣ |u + w| − |u|

∣∣ ≤ |w| for any u,w ∈ C, we
have ∣∣∣ |f2(β + Δβ)| − |f2(β)|

∣∣∣ ≤
∣∣∣∣df2

dβ

∣∣∣∣ |Δβ| ≤ b|Δβ|.

It follows immediately that |d|f2|/dβ | ≤ b. Using the fact that
μ = |F (β)|/nr = |f2(β)|/nr , we have∣∣∣∣dμ

dβ

∣∣∣∣ =
1
nr

∣∣∣∣d|f2|
dβ

∣∣∣∣ ≤ b

nr
. (7)

Note that θμ = arg F = arg f1 + arg f2, and hence,
dθμ/dβ = d(arg f1)/dβ + d(arg f2)/dβ. Now, arg f1 = 2πdt

sinβ/λ, and hence, d(arg f1)/dβ = 2πdt cos β/λ. Using (7)
and the fact that the range of transmission R is much larger than
dm , we have

d(arg f1)
dβ

=
2πdt cos β

λ
	 2πdt

λ

∑nr

m=1 dm

R nr
=

b

nr
≥
∣∣∣∣dμ

dβ

∣∣∣∣ .
Hence, we expect dθμ/dβ 	 |dμ/dβ|, i.e., a small change in
the value of β, that causes a negligible change in μ, changes the
phase θμ by an entire cycle of 2π rad. This motivates the channel
model where θμ is independent of μ and uniformly distributed
in the interval [0, 2π).

Example 1: Consider a 2 × 2 LoS system operating in
E-band at the frequency of 72 GHz over a distance R = 10 m.
Let the two receive antennas be positioned such that θ1 = 0,
θ2 = π, φ1 = φ2 = 0, and d1 = d2 = dr/2. Then, using (5), we
have

h†
1h2 = 2 exp

(
i2πdt sinβ

λ

)
cos

(
πdtdr cos β

Rλ

)
.
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Fig. 2. Joint probability density function f (θμ , μ) of Example 2.

It follows that

μ = cos
(

πdtdr cos β

Rλ

)
and θμ =

2πdt sinβ

λ
. (8)

Suppose the antenna geometry is to be configured so that H is
unitary, i.e., μ = 0, under the assumption that β = 0. This can
be achieved by choosing dt and dr so that

dtdr cos β

Rλ
=

dtdr

Rλ
=

1
2
.

This is the criterion for uniform linear arrays (ULAs) given
in [3]–[5]. With λ = 4.2 mm, the choice of dt = dr =√

Rλ/2 = 0.145 m yields μ = 0. With this choice of dt and
dr , through direct computation using (8), we observe that
as β undergoes a small variation in value from 0 through
0.029 rad (1.66◦), the corresponding value of μ changes from 0
to 6.6 × 10−4, while θμ ranges over the entire interval from 0 to
2π rad.

Example 2: Continuing with the 2 × 2 system of Example 1,
now assume that the transmit and receive arrays are affected by
independent random rotations about their respective centroids.
The random rotations are uniformly distributed over the space
of all 3-D rotations. The channel matrix H and the parameters
θμ and μ are now random variables. The joint probability den-
sity function f(θμ , μ) obtained using Monte-Carlo methods is
shown in Fig. 2 . We computed f(θμ , μ) over a rectangular grid
of 625 points using 107 randomly generated instances of H.
For any fixed μ, we observe that f(θμ , μ) is essentially constant
across all values of θμ , implying that θμ is uniformly distributed
in [0, 2π) and is independent of μ.

Example 3: Consider a 2 × 4 LoS MIMO system, with a
rectangular array at the receiver, carrier frequency of 72 GHz,
and interterminal distance of R = 10 m. The receive antennas
are placed at the vertices of a square whose edges are of length
dr . We choose dt = dr =

√
Rλ/2, which yields the ideal chan-

nel (i.e., μ = 0) if the transmit and receive arrays are placed
broadside to each other [5]. The joint probability density func-
tion f(θμ , μ), obtained using Monte-Carlo methods, when the
transmit and receive arrays undergo uniformly random rotations
about their centroids is shown in Fig. 3 . As in Example 2, the
numerical result supports the validity of our channel model.

Fig. 3. Joint probability density function f (θμ , μ) of Example 3.

In the rest of the paper, we model the 2 × nr LoS channel
using the 2 × 2 matrix [cf. (3)]

R =
√

nr

[
1 eiΘμ

0
√

1 − μ2

]
(9)

where Θ is uniformly distributed in [0, 2π) and

μ =
1
nr

∣∣∣∣∣
nr∑

m=1

exp
(

i2πdtdm cos β cos θm

Rλ

)∣∣∣∣∣ . (10)

B. Coding Schemes

We analyze the error performance of an arbitrary coding
scheme for two transmit antennas with a finite transmission
duration. Let T ≥ 1 denote the transmission duration of a given
communication scheme and C ⊂ C2×T the finite set of all pos-
sible transmit codewords. The rows of the codewords X ∈ C
correspond to the two transmit antennas and the columns to
the T time slots. All codewords are equally likely to be trans-
mitted and the optimal decoder, i.e., the maximum-likelihood
(ML) decoder, is used at the receiver. We further assume that the
communication scheme satisfies the average power constraint∑

X∈C ‖X‖2
F ≤ |C |T . Our analysis holds for arbitrary codes

C , including space-time block codes (STBCs) [18].
We now briefly recall two specific coding schemes that will be

used in our simulations (in Section V) to illustrate our analytical
results. SM [15]–[17], which is also known as VBLAST in the
literature, is a simple yet powerful scheme wherein independent
information symbols are transmitted across different antennas
and time slots. The codebook C ⊂ C2×1 corresponding to SM
occupies T = 1 time slot, and is given by

C =

{[
s1

s2

] ∣∣∣ s1, s2 ∈ A
}

whereA is a complex constellation, such as quadratic-amplitude
modulation (QAM) or phase-shift keying.

The Golden code [19] is an STBC for two transmit antennas
occupying T = 2 time slots, and is given by

C =

{[
α(s1 + τs3) α(s2 + τs4)

iᾱ(s2 + μs4) ᾱ(s1 + μs3)

] ∣∣∣ s1, . . . , s4 ∈ A
}
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where A is a QAM constellation, τ = (1 +
√

5)/2, μ = 1/τ ,
α = 1 + iμ, and ᾱ = 1 + iτ . Unlike SM, the Golden code
spreads the information symbols across time and antennas.

Both SM and Golden code have been well studied in the case
of non-LoS MIMO fading channels. The SM scheme provides
high data rate with low complexity encoding and decoding,
while the Golden code provides high data rate, full-diversity
as well as a large coding gain at the cost of higher decoding
complexity in fading channels.

C. Error Probability Analysis for a Fixed μ

We now analyze the error performance of a given arbitrary
coding scheme for a fixed value of μ. Let C ⊂ C2×T be any code
and Xa ,Xb ∈ C be two distinct codewords. Let ΔX = Xa −
Xb be the pairwise codeword difference matrix. The pairwise
error probability between Xa and Xb for a fixed μ and a given
realization Θ = θ is [18]

PEP (Xa → Xb |μ,Θ = θ) = Q
(√

SNR‖RΔX‖2
F

2

)

whereQ is the Gaussian tail function. Using the Chernoff bound

Q(x) ≤ exp(−x2/2)
2 , we have the upper bound

PEP ≤ 1
2

exp
(
−SNR

4
‖RΔX‖2

F

)
. (11)

Denoting the two rows of the matrix ΔX as Δxᵀ
1 and Δxᵀ

2 ,
we obtain the following expression for the squared Euclidean
distance between the codewords at the receiver:

‖RΔX‖2
F = nr

(
‖Δx1‖2 + ‖Δx2‖2 + 2μRe(eiθΔx†

1Δx2)
)

= nr

(
‖Δx1‖2 + ‖Δx2‖2 + 2μ cos θ′|Δx†

1Δx2|
)

(12)

where θ′ = θ + arg(Δx†
1Δx2) mod 2π.

1) Worst-Case Error Probability Over θ: For a given μ,
the value of θ that minimizes the squared Euclidean distance
‖RΔX‖2 at the receiver is θ∗ = π + arg(Δx†

1Δx2) since it
leads to cos θ′ = −1 in (12). Using the notation

d(μ,ΔX) = ‖Δx1‖2 + ‖Δx2‖2 − 2μ|Δx†
1Δx2| (13)

the worst-case squared Euclidean distance is

min
θ∈[0,2π )

‖RΔX‖2
F = nrd(μ,ΔX).

Thus, the worst-case PEP for a fixed μ satisfies

PEP∗(μ) ≤ 1
2

exp
(
−nr SNR d(μ,ΔX)

4

)
. (14)

2) Average Error Probability Over Θ: Since Θ is uniformly
distributed in [0, 2π), so is Θ′ = Θ + arg(Δx†

1Δx2) mod 2π.
Using (11) and (12), the error probability averaged over Θ, for

a fixed μ, can be upper bounded as follows:

EΘ (PEP) ≤ EΘ

(
1
2

exp
(
−SNR

4
‖RΔX‖2

F

))

=
1
2

exp
(
−SNRnr (‖Δx1‖2 + ‖Δx2‖2)

4

)

× 1
2π

∫ 2π

0
exp

(
−SNRnr

4
2μ cos θ′|Δx†

1Δx2|
)

dθ′

=
1
2

exp
(
−SNRnr (‖Δx1‖2 + ‖Δx2‖2)

4

)

× I0

(
SNRnr

2
μ|Δx†

1Δx2|
)

where

I0(x) =
1
π

∫ π

0
exp (x cos θ′) dθ′ =

1
2π

∫ 2π

0
exp (x cos θ′) dθ′

=
1

2π

∫ 2π

0
exp (−x cos θ′) dθ′

is the modified Bessel function of the first kind and zeroth order.
For large x, we have [20]

I0(x) =
ex

√
2πx

(
1 + O

(
x−1

))
. (15)

Using (13) and the first-order approximation (15), we get the
following approximate upper bound when μ > 0:

EΘ (PEP) � 1√
4πnr SNRμ|Δx†

1Δx2|

× exp
(
−nr SNR

4
d(μ,ΔX)

)
. (16)

Since the exponential function decays more rapidly than
SNR−1/2, the high SNR behavior is dictated by d(μ,ΔX).

In this section, we derived bounds on PEP for a fixed μ. In
Sections III and IV, we analyze the effects of random rotations
of the terminals on μ and error performance.

III. ERROR PERFORMANCE OF PLANAR RECEIVE ARRAYS

Assume that the receive antenna system is affected by a ran-
dom 3-D rotation U ∈ R3×3 about its centroid O′. Let the rota-
tion U be uniformly distributed on the set of all 3-D rotations,
i.e., the special orthogonal group

SO3 =
{
U ∈ R3×3 |UUᵀ = I,det(U) = 1

}
.

In Theorem 1, we provide a lower bound on the average pairwise
error probability over a LoS MIMO channel with a planar re-
ceive array. To do so, we derive a lower bound on the probability
that a random rotation U would lead to a “bad” channel matrix
with μ close to 1, i.e., μ ≥ 1 − ε for some small positive ε. By
analyzing the PEP for this class of bad channels, and letting ε
decay suitably with SNR, we arrive at a lower bound for the
average PEP at high SNR.
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Theorem 1: Let the receive antenna array be any planar ar-
rangement of nr antennas, nr ≥ 2, undergoing a uniformly dis-
tributed random rotation U about its centroid. At high SNR, for
any transmit orientation β, we have

E(PEP) ≥
exp

(
−nr c |Δx†

1Δx2|
2

)

2nr SNR3
√

2π2|Δx†
1Δx2|

(
‖ΔX‖F + 1√

nr SNR

)

× exp
(
−nrSNR

4
d(1,ΔX)

)
(17)

where c = maxnr

m=1 2πdtdm /Rλ.
Proof: Let {ex , ey , ez} be the standard basis in R3. When

the receive system undergoes no rotation, i.e., when U = I, let
the position of the mth receive antenna relative to the centroid
O′ of the receive antenna system be dm rm , where rm ∈ R3 is
a unit vector. Since the receive array is planar and the random
rotation U is uniformly distributed, without loss of generality,
we assume that the vectors r1, . . . , rnr

are in the linear span
of ex and ez . From Fig. 1, we see that θm in (5) is the angle
between the orientation Urm of the mth receiver and the unit
vector ṽ =

[
− sin β, 0, cos β

]ᵀ
along z′-axis, i.e., cos θm =

rᵀ
mUᵀṽ. Note that Uᵀ has the same distribution as U, and

v = Uᵀṽ is uniformly distributed on the unit sphere in R3.
The resulting random variable |eᵀ

y v| is known to be uniformly
distributed in the interval [0, 1].

For a small positive number δ > 0, consider the event E :
|eᵀ

y v|2 ≥ 1 − δ2. The probability of E is

P (E) = P
(
|eᵀ

y v| ≥
√

1 − δ2
)

= 1 −
√

1 − δ2 ≈ δ2

2

for small values of δ. We will now derive an upper bound for the
PEP for the case when E is true. Using the following inequali-
ties, we first show that | cos θm | ≤ δ, for all m = 1, . . . , nr

| cos θm |2 = |rᵀ
mv|2

≤ |eᵀ
xv|2 + |eᵀ

z v|2 (since rm ∈ span(ex , ez ))

= ‖v‖2 − |eᵀ
y v|2

≤ 1 − (1 − δ2) = δ2.

Let cm = 2πdtdm cos β/Rλ and cmax = max{c1, . . . , cnr
}.

From (10), we have

μ =
1
nr

∣∣∣∣∣
nr∑

m=1

exp (icm cos θm )

∣∣∣∣∣ .
We will now show that the value of μ is close to 1 when E is
true. If εm = 1 − exp(icm cos β), then

|εm |2 = (1 − cos(cm cos θm ))2 + sin2 (cm cos θm )

= 2 − 2 cos(cm cos θm )

≈ 2 − 2

(
1 − c2

m cos2(θm )
2

)

= c2
m cos2(θm ) ≤ δ2c2

max

where the approximation follows from Taylor’s series expansion
of the cos(·) function and the fact that |cm cos θm | ≤ cm δ is
small. Now

μ =
1
nr

∣∣∣∣∣
nr∑
1

(1 − εm )

∣∣∣∣∣ =
1
nr

∣∣∣∣∣nr −
nr∑
1

εm

∣∣∣∣∣

≥ 1 − 1
nr

nr∑
1

|εm | ≥ 1 − δcmax .

Thus, μ ≥ 1 − δcmax whenever E is true.
The pairwise error probability for fixed μ and Θ = θ is

Q(
√

SNR‖RΔX‖2
F /2). Since we need a lower bound on the

probability of error, we use the following lower bound for the
Gaussian tail function [21]:

Q(x) ≥ 2
√

2π
(
x +

√
x2 + 4

) exp
(
−x2

2

)
, for x ≥ 0.

Using x2 + 4 ≤ (x + 2)2 for x ≥ 0, we obtain a more relaxed
bound

Q(x) ≥ 1√
2π(x + 1)

exp
(
−x2

2

)
.

In our case x =
√

SNR‖RΔX‖2
F /2, and we use the exact value

of x from (12) for the exponent, and the following upper bound
for the denominator:

x =

√
SNR

2
‖RΔX‖F ≤

√
SNR

2
‖R‖F ‖ΔX‖F

=
√

nrSNR‖ΔX‖F .

Thus, we have the following lower bound for a fixed μ and
Θ = θ:

PEP ≥
exp

(
−SNR

4 ‖RΔX‖2
F

)
√

2π
(√

nr SNR‖ΔX‖F + 1
) . (18)

Since the denominator is independent of the phase Θ, we can
use the same method as in Section II-C2 to obtain the average of
the above lower bound over the uniformly distributed random
variable Θ. Averaging (18) over Θ and using the approximation
to the Bessel function (15), we obtain

EΘ(PEP) �
exp

(
−nr SNR

4 d(μ,ΔX)
)

nr SNR
√

2π2μ|Δx†
1Δx2|

(
‖ΔX‖F + 1√

nr SNR

) .

Using the trivial upper bound μ ≤ 1 in the denominator

EΘ (PEP) �
exp

(
−nr SNR

4 d(μ,ΔX)
)

nr SNR
√

2π2|Δx†
1Δx2|

(
‖ΔX‖F + 1√

nr SNR

) .

(19)

Since d(μ,ΔX) is a decreasing function of μ, if E is true, the
numerator in the right-hand side of (19) can be lower bounded
by exp(−nr SNR

4 d(1 − δcmax ,ΔX)). The expression (19) is a
lower bound on the average PEP for a given μ. We now derive
a lower bound for the PEP when averaged over both μ and Θ



5140 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 66, NO. 6, JUNE 2017

as follows:

E(PEP) = P (E)P (Xa → Xb |E) + P (Ec)P (Xa → Xb |Ec)

≥ P (E)P (Xa → Xb |E)

≥
δ2 exp

(
−nr SNR

4 d(1 − δcmax ,ΔX)
)

2nr SNR
√

2π2|Δx†
1Δx2|

(
‖ΔX‖F + 1√

nr SNR

) .

(20)

From the definition (13) of d(μ,ΔX), we have

d(1 − δcmax ,ΔX) = d(1,ΔX) + 2δcmax |Δx†
1Δx2|.

Using the above relation and choosing δ = SNR−1, which is
small for high SNR, we obtain

E(PEP) ≥
exp

(
−nr cm a x |Δx†

1Δx2|
2

)
exp

(
−nr SNR

4 d(1,ΔX)
)

2nr SNR3
√

2π2|Δx†
1Δx2|

(
‖ΔX‖F + 1√

nr SNR

) .

Using cos β ≤ 1 in cm = 2πdtdm cos β/Rλ we obtain cmax ≥
maxm 2πdtdm /Rminλ. This completes the proof. �

We compare the lower bound (17) on PEP for planar receive
arrays undergoing random rotations, with the upper bound (16)
for a channel with fixed μ = 1. The dominant term dictating
the rate of decay of error probability for both these channels
is exp(−nr SNR

4 minΔX d(1,ΔX)), where the minimization is
over all nonzero codewords difference matrices ΔX = Xa −
Xb of the code C . Note that μ = 1 minimizes the performance
metric d(μ,ΔX), and corresponds to the worst-case scenario
in which both H and R have rank 1. While planar receive
arrays, such as the well-studied linear, rectangular, and circular
arrays, provide an array gain (an nr -fold increase in received
SNR), their asymptotic coding gain minΔX d(1,ΔX) provides
no improvement over that of any rank 1 channel.

Theorem 1 further implies that when minΔX d(1,ΔX) = 0,
the error probability is no more exponential in SNR but decays
at the most as fast as SNR−3. Hence, although the channel is
purely LoS and experiences no fading, the error performance
with a planar arrangement of antennas can decay slowly, similar
to a fading channel.

The parameter d(1,ΔX) satisfies the following tight
inequality:

d(1,ΔX) = ‖Δx1‖2 + ‖Δx2‖2 − 2|Δx†
1Δx2|

≥ ‖Δx1‖2 + ‖Δx2‖2 − 2‖Δx1‖ ‖Δx2‖

= ( ‖Δx1‖ − ‖Δx2‖ )2. (21)

The second line follows from the Cauchy–Schwarz inequality,
which is tight if and only if Δx1 and Δx2 are linearly dependent.
Thus, d(1,ΔX) = 0 if and only if Δx1 and Δx2 are linearly
dependent and ‖Δx1‖ = ‖Δx2‖, i.e., if and only if Δx1 =
αΔx2 for some complex number α of unit magnitude. We use
this observation in Example 4 to show that the widely used
SM coding scheme suffers from such a slowly decaying error
probability with planar receive arrays.

Example 4: Performance of spatial multiplexing with planar
receive array. The codeword difference matrices of the SM

Fig. 4. Receive antennas are placed at the vertices 1, . . . , 4 of the tetrahedron.
Also shown in the figure are the centroid O ′, the distances d3 and d4 of the
antennas 3 and 4 from O ′, and the interantenna distance dr .

scheme are of the form

ΔX =

[
Δs1

Δs2

]

where Δs1,Δs2 ∈ ΔA and ΔA = {x − y |x, y ∈ A} is the set
of pairwise differences of the complex constellation A. When
Δs1 = Δs2, the two rows of the codeword difference matrix
ΔX are equal resulting in d(1,ΔX) = 0. Hence, for the SM
scheme, minΔX d(1,ΔX) = 0, and from Theorem 1, the rate
of decay of the average error probability will be no faster than
SNR−3. Note that this result is valid for any number of antennas
nr used in any planar arrangement of the receive array. This
theoretical result is validated by our simulations (see Figs. 10
and 13) in Section V.

IV. ERROR PERFORMANCE OF TETRAHEDRAL RECEIVE ARRAY

The smallest number of antennas that can form a nonplanar
arrangement is 4. In this section, we consider the case wherein
nr = 4 receive antennas are placed at the vertices of a regular
tetrahedron (see Fig. 4). The interantenna distance dr is the same
for any pair of receive antennas, and this is related to the distance
dm of each antenna from the centroid O′ of the receive array
as dm =

√
3/8 dr , m = 1, . . . , 4. Let us define the deviation

factor η as in [3] and [4] as follows:

η =
R λ

2dtdr cos β
. (22)

In the case of a tetrahedral receiver, using (10) and (22)

μ =
1
4

∣∣∣∣∣
4∑

m=1

exp

(
i
π

η

√
3
8

cos θm

)∣∣∣∣∣ .
The parameter η captures both the distance R and the transmit
orientation β, while the variables θ1, . . . , θ4 jointly determine
the receive orientation U. To upper bound the error probability
using (14), we need the maximum value of μ over all possible
η and U. Let

μ∗(η) = max
U∈SO3

1
4

∣∣∣∣∣
4∑

m=1

exp

(
i
π

η

√
3
8

cos θm

)∣∣∣∣∣ (23)
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Fig. 5. Tetrahedron arrangement illustrating the vertices 1, . . . , 4, the refer-
ence O ′ at the centroid of the tetrahedron, and the directions of a few of the unit
vectors rm and gm ,� .

be the maximum channel correlation over all receive orientations
as a function of η. If one is aware of the range of values that
R and β may assume, then one can upper bound the worst-case
PEP using (14) as

PEP∗ ≤ 1
2

exp
(
−nr SNR

4
d(max

η
μ∗(η),ΔX)

)

=
1
2

exp
(
−SNR d(max

η
μ∗(η),ΔX)

)
. (24)

A. Upper Bound on μ∗(η)

In this section, we derive an upper bound on μ∗(η) for all
η ≥ 1. This result will allow us to show that the high SNR
error performance of the tetrahedral array is better than any
planar receive array when η ≥ 1, and the receiver undergoes
a uniformly random rotation. To derive this upper bound, we
first show that when η ≥ 1, irrespective of the receive array
orientation, the 4 × 2 channel matrix H contains at least one
2 × 2 submatrix Hsub such that the correlation μsub between
the two columns of Hsub is at the most cos(π/2

√
2η). This

latter problem is equivalent to finding the maximum distortion
when a unit vector in R3 is quantized using a codebook G
consisting of 12 unit vectors that correspond to the six edges of
the tetrahedron along with the polarities ±1. The computation
of this maximum distortion is then simplified by showing that
G is a group code [22].

We first introduce some notation to capture the geometri-
cal properties of the tetrahedral array. Consider the tetrahe-
dron shown in Fig. 5 with the centroid O′. Let rm ∈ R3 be
the unit vector in the direction of the mth receive antenna
with respect to the reference O′. Hence, the position vector
of the mth receive antenna is dm rm . If one applies a 3-D ro-
tation U ∈ R3×3 on the receive system about O′, the position
of the mth receive antenna is dmUrm . It is straightforward to
show that the polar angle θm of the mth rotated receive an-
tenna (cf. Fig. 1) satisfies cos θm = rᵀ

mUᵀṽ, where the unit
vector ṽ =

[
− sin β, 0, cos β

]ᵀ
. Since U is an arbitrary rota-

tion matrix, the set of all possible values assumed by the vector
v = Uᵀṽ is the sphere S2 consisting of all unit vectors in R3.

From (10), the correlation μ for a tetrahedral receiver is

μ =
1
4

∣∣∣∣∣
4∑

m=1

exp
(

i2πdtdm cos β cos θm

Rλ

)∣∣∣∣∣
where cos θm = rᵀ

mUᵀṽ = rᵀ
mv, and v ∈ S2 captures the ef-

fect of the rotation undergone by the receive array. For any
m �= �, the unit vectors rm and r� satisfy ‖rm − r�‖ =

√
8/3.

Let

gm,� =
rm − r�

‖rm − r�‖
=

√
3
8

(rm − r�)

be the unit vector along rm − r� , i.e., along the edge of the
tetrahedron between the vertices m and � (see Fig. 5).

Let Hsub be the 2 × 2 submatrix of H formed using the
mth and �th rows. Note that Hsub is the channel response seen
through the receive antennas m and �. Using the fact that dm =
d� =

√
3/8 dr , the correlation between the columns of Hsub

can be written as

μsub =
1
2

∣∣∣ exp
(

i2πdtdm cos β rᵀ
mv

Rλ

)

+ exp
(

i2πdtd� cos β rᵀ
� v

Rλ

) ∣∣∣

=
1
2

∣∣∣∣1 + exp
(

i2πdtdm cos β(rm − r�)ᵀv
Rλ

)∣∣∣∣

=
1
2

∣∣∣∣∣1 + exp

(
i2πdtdm

√
8/3 cos β gᵀ

m,�v

Rλ

)∣∣∣∣∣
=

1
2

∣∣∣∣1 + exp
(

i
π

η
gᵀ

m,�v
)∣∣∣∣

=
∣∣∣∣cos

(
π

2η
gᵀ

m,�v
)∣∣∣∣ (25)

where the fourth equality follows from (22), and the last equality
uses straightforward algebraic manipulations. Given an “orien-
tation” v, we intend to find the submatrix Hsub with the least
correlation μsub . If η ≥ 1, we have∣∣∣∣ π

2η
gᵀ

m,�v
∣∣∣∣ ≤ π

2
.

Since cos is decreasing function in the interval [0, π/2],
from (25), the problem of finding μsub translates to finding the
edge gm,� of the tetrahedron that has the largest inner product
with v.

We will now show that for any v ∈ S2 there exists a gm,�

such that
√

1/2 ≤ gᵀ
m,�v ≤ 1. Since

‖v − gm,�‖2 = ‖v‖2 + ‖gm,�‖2 − 2 gᵀ
m,�v = 2

(
1 − gᵀ

m,�v
)

this is equivalent to finding the maximum squared Euclidean
error when the set of vectors G = {gm,� |m �= �} is used as a
codebook for quantizing an arbitrary unit vector v in R3. The
set G contains 12 vectors, corresponding to the six edges of the
tetrahedron together with the polarity ±1.

Proposition 1: For any v ∈ S2, there exist m, � ∈
{1, 2, 3, 4}, m �= �, such that gᵀ

m,�v ≥
√

1/2.
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Proof: With some abuse of notation, we will denote the ele-
ments of G as g1, . . . ,g12. For each i = 1, . . . , 12, let

Di =
{
v ∈ S2 |gᵀ

i v ≥ gᵀ
j v, for all j �= i

}
(26)

be the set of unit vectors that are closer to gi than any other
gj ∈ G. Since ∪iDi = S2, it is enough to show that

min
i

min
v∈Di

gᵀ
i v =

√
1
2
.

As we now show, the regions D1, . . . ,D12 are congruent to
each other. Let H be the symmetry group of the tetrahedron,
i.e., the set of all orthogonal transformations on R3 that map
the tetrahedron onto itself. It is known that the group H is
isomorphic to the symmetric group S4 of degree 4, and every
element of H is uniquely identified by its action on the set of
vertices, which is isomorphic to the action of the corresponding
element in S4 on the set {1, 2, 3, 4} (see [23]). Since for any two
given pairs (m1, �1) and (m2, �2), with m1 �= �1 and m2 �= �2,
there exists a permutation on {1, 2, 3, 4} that maps m1 to m2 and
�1 to �2, we see that there exists an orthogonal transformation
M ∈ H such that

rm 2 = Mrm 1 and r�2 = Mr�1 .

This can be extended to a group action on G as

Mgm 1,�1
= M

(
rm 1 − r�1

‖rm 1 − r�1‖

)
=

√
3
8
M (rm 1 − r�1)

=

√
3
8

(rm 2 − r�2) = gm 2,�2 .

Thus, we see that the group H acts transitively on G, i.e.,

G = {Mgi |M ∈ H} for every i = 1, . . . , 12.

This makes G a group code, and consequently, the regions
D1, . . . ,D12 are congruent to each other [22], i.e., for ev-
ery 1 ≤ i < j ≤ 12, there exists an orthogonal transformation
M ∈ H such that

Dj = MDi = {Mv |v ∈ Di} .

Since orthogonal transformations conserve inner products and
since gi ∈ Di for all i, we have

min
v∈Di

gᵀ
i v = min

v∈Dj

gᵀ
j v for any i �= j.

Thus, to complete the proof, it is enough to show that

min
v∈D1

gᵀ
1 v =

√
1
2
.

We now restrict ourselves to one particular region D1 and
find the smallest value of gᵀ

1 v. Note that when v ∈ S2, the
inner product of v with gi decreases with increasing distance
‖v − gi‖. Thus, from (26), D1 is the intersection of S2 with
the set of all points in R3 that are closer to g1 than any other
gi ∈ G. The region D1 is called a fundamental region of the
group code G and is bounded by 2-D planes passing through
the origin [22]. The half-spaces Pi that define this fundamental

Fig. 6. Illustration of the cones S and R1 used in the proof of Proposition 1.
The cone S is circular with axis g1 (dashed line). The cone R1 is bounded by
hyperplanes, and its edges are along the vectors q1, . . . , q6. The edge q3 is the
farthest from the axis g1 and lies on the surface of S .

region are

Pi =
{
x ∈ R3 | ‖x − g1‖ ≤ ‖x − gi‖

}
=
{
x ∈ R3 | (g1 − gi)

ᵀx ≥ 0
}

and are related to D1 as

D1 = S2 ∩R1, where R1 = ∩12
i=2Pi .

The group code G and the 11 half-spaces Pi can be explicitly
calculated starting from the geometry of the tetrahedron, and it
can be verified that R1, and hence D1, is bounded by exactly
6 planes arising from 6 of the 11 half-spaces Pi . The region
R1 is a convex cone [22] generated from the six edges running
along the vectors q1, . . . ,q6 that are the intersections between
the six hyperplanes, i.e., R1 is the infinite cone generated from
the convex hull of the set {q1, . . . ,q6}. Fig. 6 shows an illus-
tration of the geometry considered in this proof (the depiction
of q1, . . . ,q6 is not exact). Since

min
v∈D1

gᵀ
1 v = min

x∈R1

gᵀ
1 x

‖x‖ (27)

and since gᵀ
1 x/‖x‖ is the cosine of the angle between x and g1,

our problem is to find a vector in R1 that makes the largest angle
with g1. The set of points that make a constant angle with g1

form the surface of an infinite circular cone with g1 as its axis.
Thus, (27) is equivalent to finding the smallest circular cone S,
with g1 as the axis, that contains the conical region R1. Since
R1 is generated by q1, . . . ,q6, S is the smallest circular cone
that contains the vectors q1, . . . ,q6, and has g1 as the axis. It
follows that S contains on its surface the vector qi , from among
q1, . . . ,q6, that makes the largest angle with g1. Thus,

min
v∈D1

gᵀ
1 v = min

x∈R1

gᵀ
1 x

‖x‖ = min
x∈S

gᵀ
1 x

‖x‖ .

The numerical value mini∈{1,...,6} gᵀ
1 qi / ‖qi‖ = 1/

√
2 is ob-

tained by a direct computation of the half-spaces P1, . . . ,P11,
and the resulting vectors q1, . . . ,q6 arising from the tetrahedral
geometry. �

Proposition 2: If a tetrahedral array is used at the receiver
and η ≥ 1, then for every receive orientation U, there exists a
2 × 2 submatrix Hsub of the channel matrix H such that

0 ≤ μsub ≤ cos
(

π

2
√

2η

)
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where μsub is the correlation between the two columns of Hsub .
Proof: From Proposition 1, there exist m �= � such that

gᵀ
m,�v ≥

√
1/2. Let Hsub be the submatrix of H formed by

the mth and �th rows. From (25) and the hypothesis that η ≥ 1,

we have μsub = | cos( π
2η gᵀ

m,�v)| ≤ cos( π
2η

√
1
2 ). �

The following upper bound on μ∗(η) follows immediately
from Proposition 2.

Theorem 2: For a tetrahedral receive array and η ≥ 1

μ∗(η) ≤ 1
2

(
1 + cos

(
π

2
√

2η

))
.

Proof: Let H = [hm,n ] be the 4 × 2 channel matrix. From
Proposition 2, assume without loss of generality that the 2 × 2
submatrix formed from the first two rows has correlation μsub ≤
cos(π/2

√
2η). Then

μ =
1
4

∣∣∣h†
1,1h1,2 + h†

2,1h2,2 + h†
3,1h3,2 + h†

4,1h4,2

∣∣∣
≤ 1

4

∣∣∣h†
1,1h1,2 + h†

2,1h2,2

∣∣∣+ 1
4

∣∣∣h†
3,1h3,2 + h†

4,1h4,2

∣∣∣
=

1
2
μsub +

1
4

∣∣∣h†
3,1h3,2 + h†

4,1h4,2

∣∣∣
≤ 1

2
cos

(
π

2
√

2η

)
+

2
4

where the last inequality follows from Proposition 2 and the fact
that all hm,n have unit magnitude. �

The upper bound (1 + cos(π/2
√

2))/2 on μ∗(η) is less than
1 for η ≥ 1. Since d(μ,ΔX) is a decreasing function of μ, we
have d(μ∗(η),ΔX) > d(1,ΔX). Hence, the geometry of the
tetrahedral arrangement allows the error probability to decay
faster than that of rank 1 LoS MIMO channels, and provides
performance improvement over any planar arrangement nr = 4
of antennas, irrespective of the code used at the transmitter. Note
that this gain of the tetrahedral arrangement over planar arrays
is not due to larger interantenna distances dt and dr .

From (21), we have d(1,ΔX) ≥ (‖Δx1‖ − ‖Δx2‖)2. Using
μ∗ < 1, we obtain

d(μ∗,ΔX) > d(1,ΔX) ≥ (‖Δx1‖ − ‖Δx2‖)2 ≥ 0.

Hence, unlike the planar case, the error probability of a tetrahe-
dral receiver is exponential in SNR for any code C .

Example 5: Performance of spatial multiplexing with tetra-
hedral receive array. Consider the SM scheme signaled over
nt = 2 antennas using 4-QAM symbols. Let the transmit
orientation β = 0 be fixed, the interterminal distance R =
10 m, λ = 4.2 mm, and dt = dr = 0.145 m. Then, η =
Rλ/(2dtdr cos β) = 1, and from Theorem 2, μ∗(η) ≤ 0.722.
An exhaustive numerical computation over all pairs of code-
words yields minΔX d(0.722,ΔX) = 0.556. Using (24), the
pairwise error probability of SM for fixed transmit orientation
and random receive orientation can be upper bounded as

E(PEP) ≤ PEP∗ ≤ 1
2

exp (−SNR μ∗(1))

≤ 1
2

exp (−SNR × 0.556) .

Fig. 7. Triangular arrangement of transmit antennas.

On the other hand, as shown in Example 4, for any planar
receiver array, the error rate is not better than SNR−3. �

B. System Design for Arbitrary Array Orientations

In Section IV-A, we assumed that η was fixed, i.e., the transmit
orientation β and interterminal distance R were fixed, and we
studied the effect of an arbitrary rotation U of the receive array
on μ and error probability. We now design a system that allows
arbitrary transmit and receive array orientations and a range of
values Rmin ≤ R ≤ Rmax . It is desirable that the LoS MIMO
system guarantees a minimum channel quality, i.e., μ ≤ μmax ,
for some μmax < 1. Using (24), for such a system

E(PEP) ≤ PEP∗ ≤ 1
2

exp
(
−nr SNR

4
d(μmax ,ΔX)

)
.

Using union bound, the average codeword error rate and bit
error rate of the system can be upper bounded by

|C |
2

exp
(
−nr SNR

4
min
ΔX

d(μmax ,ΔX)
)

.

Hence, the coding gain of an arbitrary coding scheme C over
this LoS MIMO system is minΔX d(μmax ,ΔX).

When the number of transmit antennas nt = 2, by choosing
β = π/2, we observe from (10) that the worst-case correlation
μmax = 1 irrespective of the array geometry used at the receiver.
Hence, to have μmax < 1, we need more than two antennas at
the transmitter.

Suppose the transmitter uses an array of nt ≥ 3 antennas.
Based on the transmit array orientation, one can choose two
of the nt antennas for signal transmission so that the angle β
corresponding to the chosen pair of antennas is minimum. For
example, let nt = 3 antennas be placed at the vertices of an
equilateral triangle with interantenna distance dt , as shown in
Fig. 7. Let tm,n be the unit vector in R3 in the direction of the
position of transmit antenna m with respect to the position of
transmit antenna n. Note that the vectors tm,n vary with changes
in the transmit array orientation. If antennas m and n are used for
transmission and if u ∈ R3 is the unit vector along the direction
OO′ of transmission, then sin β = uᵀtm,n (cf. Fig. 1, where
tx1 and tx2 correspond to txm and txn , respectively). The six
vectors in the set

T = {tm,n |m,n = 1, 2, 3, m �= n}
are arranged symmetrically in a 2-D plane at regular angular
intervals of π/3. Let u‖ and u⊥ be the components of u parallel
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Fig. 8. Functions μ∗, μ∗
pent, upper bound on μ∗, and the line μm ax = 2/3.

and perpendicular to the plane of T , respectively. Since the
vectors in T divide the plane into regular conical regions of
angular width π/3, there exists at least one vector tm,n ∈ T
such that the angle between tm,n and u‖ lies in the interval
[−π/6,+π/6], i.e.,

|uᵀ
‖ tm,n |
‖u‖‖

≤ sin
(π

6

)
=

1
2
.

We can, thus, upper bound |uᵀtm,n |2 as follows:

|uᵀtm,n |2 = |uᵀ
⊥tm,n |2 + |uᵀ

‖ tm,n |2 ≤ 0 + ‖u‖‖2 1
4
≤ 1

4
.

Thus, there exists a tm,n such that

| sin(β)| = |uᵀtm,n | ≤
1
2

i.e., β ∈ [−π/6, π/6]. Hence, if the transmit array is an equi-
lateral triangle, by appropriately choosing two out of the three
available antennas for signaling, one can ensure |β| ≤ π/6.

The upper bound on μ∗(η) of Theorem 2 is not tight and
is available only for η ≥ 1. Since this bound cannot be used
as a good estimate of μ∗(η) and the analytical computation of
the exact expression (23) of μ∗(η) appears to be difficult, we
use numerically computed values of μ∗(η) for system design.
The function μ∗(η) and the upper bound of Theorem 2 are
shown in Fig. 8. Using the exact function μ∗(η), the requirement
on channel quality μ ≤ μmax can be translated into a criterion
η ∈ [ηmin , ηmax]. From (22), for fixed dt , dr , λ, and |β| ≤ βmax ,
we have

ηmin =
Rminλ

2dtdr
and ηmax =

Rmaxλ

2dtdr cos βmax
. (28)

The range [Rmin , Rmax] can thus be obtained from (28).
Example 6: Suppose we require μmax = 2/3 with λ =

4.2 mm. Using a triangular transmit array, we have βmax =
π/6. From Fig. 8, the criterion μ∗(η) ≤ 2/3 is equivalent to
ηmin = η1 = 0.62, and ηmax = η2 = 1.22. If each side of the
triangular transmit array has length dt = 6 cm, and the tetra-
hedral receive array has dr = 25 cm, then from (28), we have
Rmin = 4.43 m and Rmax = 7.75 m. �

Fig. 9. Left: Any pair of neighboring antennas in a pentagonal array has an
interantenna distance of dt . Right: Any pair of non-neighboring antennas has
distance (1 +

√
5)dt /2.

The narrow range of [Rmin , Rmax] in Example 6 can be at-
tributed to the small value of η2 − η1 in Fig. 8. This can be
improved by using a pentagonal transmit array as follows. As
shown in Fig. 9, with a regular pentagon, the choice of the trans-
mit antenna pair can be divided into the following two cases: 1)
the two antennas are the neighboring vertices of the pentagon
with interantenna distance equal to the length dt of the edge of
the regular pentagon, or 2) the antennas are non-neighboring
with interantenna distance (1 +

√
5)dt/2.

Irrespective of the class from which the antenna pair is chosen,
it is straightforward to show that |β| ≤ π/10 can be always
guaranteed. While the value of η for the first case is given
by (22), in the second case, it reduces by a factor of (1 +

√
5)/2

because of the larger interantenna distance. Thus, the maximum
correlation with pentagonal transmit array is

μ∗
pent(η) = min

{
μ∗(η), μ∗

(
2η

1 +
√

5

)}

where μ∗(η) is given in (23). From Fig. 8, the value of ηmax
improves from η2 to η3, thereby widening [Rmin , Rmax].

Example 7: As in Example 6, let μmax = 2/3, λ = 4.2 mm,
dt = 6 cm, and dr = 25 cm. With a pentagonal transmit array,
βmax = π/10, and using the function μ∗

pent, we have ηmin =
η1 = 0.62, and ηmax = η3 = 2. Using (28), Rmin = 4.43 m,
and Rmax = 12.7 m. �

V. SIMULATION RESULTS

We use the system parameters λ, dt , dr , Rmax , and Rmin from
Example 7. We assume that the transmit and receive arrays un-
dergo independent uniformly random 3-D rotations about their
centroids, and the distance R between the terminals is uniformly
distributed in [Rmin , Rmax]. In all the simulations, the channel
matrix H was synthesized using (1) and the exact distances
{rm,n} between the transmit and the receive antennas. We con-
sider the following three coding schemes with the transmission
rate of 4 bits per channel use:

1) the Golden code [19] using 4-QAM alphabet,
2) SM [15]–[17] with 4-QAM, and
3) uncoded 16-QAM transmitted using only one transmit

antenna [single-input multiple-output (SIMO)].



NATARAJAN et al.: LINE-OF-SIGHT 2 × nr MIMO WITH RANDOM ANTENNA ORIENTATIONS 5145

Fig. 10. Comparison of Pent × Tetr with ULA × URA.

Gray mapping is used at the transmitter to map information
bits to constellation points, and unless otherwise stated, ML
decoding is performed at the receiver. While we used pairwise
error probability for the performance analysis in Sections II, III,
and IV, we simulate the bit error rate to compare the average
error performance.

A. Error Performance With nr = 4

Fig. 10 shows the performance of the three schemes with
two different antenna geometries: 1) ULA at the transmitter
with nt = 2, and uniform rectangular array (URA) at receiver2

with nr = 4, and 2) selecting two antennas from a pentago-
nal array at the transmitter, and using a tetrahedral array at the
receiver. The values of dt , dr are ideal for the ULA × URA con-
figuration [5] at the distance R = 2dtdr/λ = 7.14 m, which is
near the midpoint of the interval [Rmin , Rmax]. The performance
of the single-antenna transmission scheme is independent of the
receive antenna geometry since, from (1), all the channel gains of
the SIMO channel have unit magnitude. Also, Fig. 10 shows the
performance of the ideal channel with μ = 0, i.e., R =

√
nr I2,

which is a pair of parallel additive white Gaussian noise chan-
nels, each carrying a 4-QAM symbol. From Fig. 10, we see
that, with ULA × URA, the performance of both SM and the
Golden code is worse than SIMO at high SNR. Furthermore,
since minΔX d(1,ΔX) = 0 for SM, the error probability de-
cays slowly with SNR, confirming our theoretical results. With
the proposed pentagon×tetrahedron geometry, both codes show
improved performance, close to that of the ideal channel.

The above error performance is succinctly captured by the
coding gain minΔX d(μ,ΔX) shown in Fig. 11 as a function
of μ. From Example 7, μ ≤ 2/3 for the new antenna geometry.
From Fig. 11, we see that the coding gains of SM and the Golden
code are both equal to 1 for all μ ≤ 1/2 and are larger than the
SIMO coding gain for μ ≤ 2/3, which explains their superiority
to SIMO. On the other hand, the coding gain for linear and
rectangular arrays is minΔX d(1,ΔX). For μ = 1, from Fig. 11,

2The performance of uniform linear array at receiver is worse than that of
URA, and hence has been omitted.

Fig. 11. Coding gain for bit rate of 4 bits per channel use.

Fig. 12. Performance of different tx arrays with tetrahedral rx array.

we observe that SIMO has the largest coding gain followed by
the Golden code and then SM. The error performances in Fig. 10
show this same trend for the rectangular array at high SNR.

Fig. 12 compares the performance of different transmit array
geometries when a tetrahedral array is used at the receiver. The
nt = 2 case (ULA) performs poorly since μmax = 1. While
the triangular array with the Golden code achieves most of
the available gain, the pentagonal array has near ideal perfor-
mance.

B. Error Performance With Large Number
of Receive Antennas

The LoS MIMO system analyzed in Section IV employs
the tetrahedral receive array—a 3-D antenna array for nr = 4
antennas—to enable smaller error rates than planar arrays. The
geometry of the receive array is relevant even if the number of
receiving antennas nr is large. Theorem 1 and Example 4 show
that the probability of error of the SM scheme is lower bounded
up to a constant factor by SNR−3 for any value of nr , if a
planar receive array is used. On the contrary, from Example 5,
the SM scheme can achieve exponential rate of decay of error
probability, if nr = 4 antennas are placed at the vertices of a
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Fig. 13. Error probability of spatial multiplexing with triangular transmit array
when the receive array is (i) three-dimensional, and (ii) rectangular. Results are
shown for nr = 16 and nr = 64 antennas.

regular tetrahedron. It follows that for any nr ≥ 4, a careful
3-D arrangement of nr antennas can ensure that the error rate
is exponential in SNR. For instance, if the 3-D arrangement
includes a subset of four antennas that form a tetrahedron, it
immediately follows from Example 5 that a suboptimal decoder
that bases its decision only on the signals received by these four
antennas achieves exponential error rate. Hence, the optimal
ML decoder that utilizes all the nr receive antennas achieves an
exponential error probability as well.

Fig. 13 compares the error performance of SM scheme under
planar and 3-D receive antenna arrays when nr = 16, 64. A
triangular array is used at the transmitter, 4-QAM is chosen as
the modulation scheme, and ML decoding is performed at the
receiver. For both values of nr , we consider a URA (rectangular
arrangement of receive antennas) for the planar arrangement
of antennas. The 3-D array is chosen as a set of nr points on
the surface of a sphere so that the minimum distance between
the points is large. A table of such arrangements of points,
which are known as spherical codes, is available online [24].
For fairness, the diameter of the sphere is set equal to the width
of the rectangular array. The coordinates of the nr points on the
sphere were obtained from [24]. As with previous simulations,
we set the values of dt, λ, Rmax , and Rmin as in Example 7. The
interantenna distance dr of the URA is chosen to be 12.5 cm
when nr = 16 and to be 6.25 cm when nr = 64. This is the
optimal interantenna distance for the URA when the transmit
and receive arrays are oriented broadside to each other, and the
interterminal distance R = 7.14 m [5].

It is evident from Fig. 13 that array geometry is an important
design parameter even when nr is large. The error rates of
rectangular arrays shown in Fig. 13 decay as SNR−2 at high
SNR. The gain due to the 3-D array is about 7 dB at an error
rate of 10−5 for both nr = 16 and 64.

VI. CONCLUSION

We studied the error performance of arbitrary coding schemes
in 2 × nr LoS MIMO channels where the communicating ter-

minals have random orientations. We analyzed the effects of
some receive array geometries on error probability and showed
that, unlike linear, circular, and rectangular arrays, the error rate
with a tetrahedral array decays faster than that of a rank 1 chan-
nel. Using tetrahedral and polygonal arrays, we designed a LoS
MIMO system that provides a good error performance for all
transmit and receive orientations. By modeling the R matrix,
we derived error probability bounds for the case when the num-
ber of transmit antennas used for signaling is 2. Analysis of the
performance when more than two transmit antennas are used is
yet to be addressed.
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