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Abstract— Multicasting K independent messages via multiple-
input multiple-output channels to multiple users where each
user already has a subset of messages as side information is
studied. A general framework of constructing layered space-time
index coding (LSTIC) from a large class of space-time block
codes (STBC), including perfect STBC, is proposed. We analyze
the proposed LSTIC and show that it provides minimum deter-
minant gains that are exponential with the amount of information
contained in the side information for any possible side information.
When constructed over a perfect STBC, the proposed LSTIC is
itself a perfect STBC and hence many desired properties are pre-
served. To illustrate, we construct LSTIC over the following well-
known STBCs: Golden code; 3×3, 4×4, and 6×6 perfect STBCs;
and Alamouti code. Simulation results show that the obtained side
information gain can be well predicted by our analysis.

Index Terms— Index coding, broadcast channels, side informa-
tion, space-time block codes, MIMO channel.

I. INTRODUCTION

THE index coding problem [1], [2] studies the problem of
optimally broadcasting independent messages via noise-

less links to multiple receivers where each receiver demands a
subset of messages and already has another subset of messages
as side information. The side information at a receiver is
described by an index set and could be obtained from various
means depending on the application. For example, in retrans-
missions in broadcast channel [1], the side information is
decoded from the previously received signals; in the coded
caching technique [3], [4], the side information is prefetched
into users’ local cache memories during off-peak hours; and
in wireless relay networks [5]–[7], the side information is the
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users’ own data and/or is decoded/overheard from the previous
sessions.

At the physical layer, the index coding problem can in
fact be modeled as the noisy broadcast channel with receiver
side information. This problem has recently been investigated
from two different perspectives and most of the prior works
can be categorized accordingly into two groups. The first
one including [5], [6], [8]–[11] focuses on characterizing
the capacity region of the AWGN broadcast channel with
message side information. The capacity region of the two-
user broadcast channel with receiver message side information
has been completely characterized [5], [8]. However, since the
number of possible index sets increases exponentially with
the number of users in the network, the problem quickly
becomes intractable as the number of users increases. As a
result, the capacity region for the three-user case has not
been fully characterized for some index sets [9]–[11] and our
knowledge about more than three users is limited to some
special cases [12], [13].

The second category including [14]–[18] considers design-
ing codes/constellations that possess some desired properties
in the finite dimension regime. The main objective is to design
codes such that the probability of error will decrease by an
amount that is proportional to the amount of information
contained in the side information. In [14], Mahesh and Rajan
consider the AWGN broadcast channel and assume that the
transmitter knows all the index sets, i.e., the side information
configuration is available at the transmitter. The scheme pro-
posed in [14] consists of a linear index coding followed by an
algorithm that maps coded bits onto a phase shift keying (PSK)
modulation. It is shown in [14] that this scheme indeed can
provide a reduction in probability of error proportional to the
amount of side information.

Another line of research within this category ([15]–[18]),
which seamlessly scales to any number of users, considers the
scenario where the transmitter is oblivious of the index sets.
This enables to handle large numbers of users, when the index
sets to feedback to the transmitter require excessive resources
and/or the complexity of designing the specific index code
becomes excessive. The objective then becomes designing
coding schemes that are fair to every possible index set.
As a starting point, only the multicasting case is considered
in [15]–[18] where all the receivers demand all the messages.

In [15] and [16], Natarajan et al. study code design for
the AWGN broadcast channel where minimum distance
is one of the most crucial parameters to be maximized.
They first propose a coding scheme in [15] by partitioning
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multi-dimensional pulse amplitude modulation (PAM) into
subsets via computer search for up to five messages with
the message size up to 26. Exploiting the algebraic structure
induced by the Chinese remainder theorem (CRT), a novel
coding scheme, lattice index coding, is then proposed in [16]
to accommodate any number of messages with message
sizes relatively prime to each other. Both the schemes
in [15] and [16] are shown to provide gains in minimum
distance exponential with the rate of the side information, for
any index set and any side information content.

In [17], Huang considers the same multicasting problem
with message side information, where each link experiences
a Rayleigh fading channel on top of the AWGN noise. It is
well-known that in contrast to the AWGN channel, maximizing
minimum distance alone is far from enough for the Rayleigh
fading channel and the minimum product distance dominates
the performance [19]–[21]. The lattice index coding scheme
proposed in [17] generalizes the idea of [16] from some
famous principal ideal domains to any ring of algebraic
integers. It is shown that codes thus constructed over rings
of algebraic integers of totally real number fields provide
gains in minimum product distance that is exponential with
the rate of the side information for any index set and any side
information content. The multicasting problem with message
side information is then considered in [18] under the 2 × 2
MIMO setting where the transmitter and the receivers are
equipped with two antennas. For such a MIMO setting,
the minimum determinant of the code serves as one of the
most important parameters to be maximized [21], [22] and
algebraic space-time block codes (STBC) constructed from
cyclic division algebras [23]–[26] are a class of codes that
possess many desired properties. Since CRT does not hold
for non-commutative rings such as cyclic division algebras,
the trick used in [16] and [17] does not work here in general.
In [18], the problem is circumvented by using the bijective
mapping between the Golden algebra and a commutative
ring found in [27] together with some special ideals whose
group structure is preserved by the mapping. As a result,
we successfully construct Golden-coded index coding from
Golden code, a subclass of perfect codes for the case with two
transmitter and receiver antennas, and show that the minimum
determinant increases exponentially with the rate of the side
information for any index set.

We note that in the absence of side information at receivers,
the considered problem reduces to multicasting a common
message over the MIMO channel to multiple receivers. For
this setting, the code design problem is essentially identical for
every receiver and one can focus on a single generic receiver;
this makes the code design problem identical to that for the
point-to-point MIMO channel that has been intensively inves-
tigated (see [22] and references therein). However, since con-
ventional space-time codes do not take into account potential
availability of side information at receivers, there is no guar-
antee that these codes can efficiently translate side information
into performance gain. Of course having side information will
never hurt, but asking steady and fair side information gain
regardless of the content and the configuration of side informa-
tion poses a new challenge. In fact, even for the single-antenna

AWGN channel, Example 3 of [16] has shown that careless
designs based on the Ungerboeck’s set partitioning rule [28]
may have bad performance for some side information config-
uration/content.

A. Contributions

We consider the problem of multicasting over n ×n MIMO
channel with message side information. Since the bijective
mapping in [27] and the special ideals identified in [18]
only work for the golden algebra, the cyclic division algebra
underlying golden code, it is unclear how to construct good
lattice index codes for a general n × n MIMO channel.
In this work, we overcome this challenge by recognizing and
leveraging the layered structure of algebraic lattice space-time
codes to propose layered space-time index coding (LSTIC),
a general framework of constructing lattice space-time index
codes from algebraic STBC. We exploit the algebraic structure
of these codes to encode the different messages into subcodes,
which preserve all the good properties of the STBC, such as
non-vanishing determinant and power efficiency.

Any receiver that has some of the messages as side infor-
mation will be decoding a subcode that has an improved
performance in terms of error probability. We provide a lower
bound on the side information gain for any side information
configuration. The side information gain essentially measures
the SNR reduction (normalized by the rate of the side infor-
mation) to achieve the same error probability, given the side
information. This lower bound implies an exponential increase
of minimum determinant and is universal in the sense that
it holds for any possible index set and any side information
content.

We apply the proposed framework with the Golden code,
3 × 3, 4 × 4, 6 × 6 perfect STBCs, and Alamouti code, and
show that our analysis well predicts the actual side information
gains obtained from simulations. For each of the above codes,
we also provide a table of the corresponding prime ideal
factorizations for p < 100, over which the LSTIC can be
constructed according to the desired message sizes.

We note that the technique used in [18] attempts to partition
the golden algebra into left ideals and requires the code to be
constructed over some special left ideals whose group structure
are preserved by the bijective mapping of [27]. In contrast,
the proposed LSTIC partitions the cyclic division algebra layer
by layer, where the partition in each layer can be done via CRT.
When specialized to the Golden code, the proposed LSTIC is
not a special case of the Golden-coded index coding in [18]
and vice versa.

B. Notations

Throughout the paper, the following notations are used.
Matrices are written in capital boldface, for example X. Let
i �

√−1 and ω � ei2π/3 be the primitive cube root of unity.
We denote by Z, Z[i] � {a + bi|a, b ∈ Z}, and Z[ω] �
{a + bω|a, b ∈ Z} the ring of integers, the ring of Gaussian
integers, and the ring of Eisenstein integers, respectively. Also,
we denote by Q, R, and C the field of rational numbers,
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the field of real numbers, and the field of complex numbers,
respectively.

C. Organization

The rest of the paper is organized as follows. In Section II,
we state the problem of physical-layer index coding over
MIMO channel and formally define the side information gain,
the performance measure that we will use throughout the
paper. Background knowledge on algebra, algebraic number
theory, and cyclic division algebra is given in Section III.
The LSTIC is then proposed and analyzed in Section IV.
In Sections V-IX, we construct LSTIC over Golden code,
3×3 perfect STBC, 4 ×4 perfect STBC, 6×6 perfect STBC,
and Alamouti code. We then conclude the paper in Section X.

II. PROBLEM STATEMENT

Consider the network shown in Fig. 1 where there is a base
station broadcasting messages to L users. The base station
is equipped with nt antennas and each user is equipped with
nr antennas. There are K independent messages {w1, . . . , wK }
collocated at the base station and each wk is uniformly distrib-
uted over {1, . . . , Mk}. Each user demands all the K messages
and already has a subset of the messages as side information.
For user �, we denote by S� ⊆ {1, . . . , K } the index set and the
side information at the user is wS�

� {ws |s ∈ S�}. The base
station encodes the messages across space (nt antennas) and
time (T symbol durations) into an nt × T codeword matrix X
where each entry x j t ∈ C and the codeword is subject to
the power constraint E[�X�2] = nt T . In a space-time code,
each codeword X is used to transmit r information-bearing
real symbols. We denote by Rk = log2(Mk)/r the rate of
the message wk measured in bits per real symbol. The signal
model between the base station and the user � is given by

Y� = H�X + Z�,

where Y� is of size nr ×T , H� is a random nr ×nt matrix with
each element i.i.d. ∼ CN (0, 1), and Z� is a random nr × T
matrix with each element i.i.d. ∼ CN (0, σ 2

l ). Each user is
assumed to know the channel matrix H� associated with its
received signal, i.e., channel state information at the receiver
is assumed. The signal-to-noise power ratio (SNR) is defined
as SNRl � nt

σ 2
l

.

Let φ be a bijective encoding function that maps the mes-
sages (w1, . . . , wK ) to the transmitted signal X. The codebook
C is the collection of codewords given by

C = {X = φ(w1, . . . , wK )|wk ∈ {1, . . . , Mk },∀k} .

Based on the received signal Y� and side information wS�
,

the user � forms {ŵ(�)
1 , . . . , ŵ

(�)
K } (or equivalently X̂(�)) an

estimate of {w1, . . . , wK } (or equivalently X). The probability
of error is defined as

p(�)
e � Pr{{w1, . . . , wK } �= {ŵ(�)

1 , . . . , ŵ
(�)
K }}

= Pr{X �= X̂(�)},
where the second expression is often called the codeword
error rate (CER). We emphasize here that the index set S�

Fig. 1. Multicasting {w1, . . . , wK } over MIMO channel to L receivers
where each receiver � ∈ {1, . . . , L} has a subset of messages wS�

as side
information.

can be any subset of {1, . . . , K } and is oblivious to the base
station. This makes the problem of every � identical for the
base station. We therefore focus on a generic user and drop the
subscript (superscript in some cases) �. The dummy variable �
is then released for later use.

Following [22], we define A � (X − X	)(X − X	)† for any
pair of codeword matrices X, X	 ∈ C. Let r be the rank of A.
For the generic user with S = ∅, in the high SNR regime,
the probability of mistaking X	 for X can be bounded as

Pr(X → X	) ≤
(

SNR�1/r

4 nt

)−rnr

,

where � = ∏r
m=1 λm with λ1, . . . , λm being the non-zero

eigenvalues of A. Moreover, for full rank codes, i.e., r = nt

and

� =
nt∏

m=1

λm = det(A) �= 0,

we define the minimum determinant of C as follows,

δ(C) � min
X �=X	∈C

det(A).

If C is carved from a lattice 
 [29], we have

δ(C) = min
X �=0∈


det(X)2. (1)

To estimate the probability of error more accurately, let us
define NX the number of codewords X	 ∈ C resulting in
det(A) = δ(C) and define

NC � 1

|C|
∑
X∈C

NX, (2)
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the average of NX over X ∈ C. For a STBC carved from a
lattice, we can now approximate the probability of error as

pe = 1

|C|
∑
X∈C

P

⎛
⎝ ⋃

X	 �=X

X → X	
⎞
⎠

(a)≈ 1

|C|
∑
X∈C

NX

(
SNRδ(C)1/nt

4 nt

)−nt nr

= NC
(

SNRδ(C)1/nt

4nt

)−nt nr

, (3)

where the approximation in (a) will become quite accurate in
the high SNR regime.

Having had the approximation in (3), we can now fol-
low [18] to derive the side information gain as follows.
We first note that with the knowledge of side information
ws = vs ,∀s ∈ S, the generic user can throw away all the
codewords that do not correspond to this side information.
The codebook then becomes

CS �
{

X = φ(d1, . . . , dK )

∣∣∣∣ dk = vk, k ∈ S;
dk ∈ {1, . . . , Mk}, otherwise.

}
,

a subcode of C. Since CS ⊆ C, the minimum determinant of
CS , δ(CS ), will be no less than δ(C). Let us now see how
gains in minimum determinant can be translated into SNR
gains. Following [18], we let SNR and SNRS be the SNR
required for the codebooks C and CS , respectively, to achieve
a same error probability pe. Then (3) says that

NC
(

SNRδ(C)1/nt

4 nt

)−nt nr

≈ NCS
(

SNRSδ(CS)1/nt

4 nt

)−nt nr

(⇔) 10 log10(SNR) − 10 log10(SNRS )

≈ 1

nt nr
10 log10

(
NC

NCS

)
+ 1

nt
10 log10

(
δ(CS )

δ(C)

)
, (4)

which represents the SNR gain in dB provided by the side
information wS . As mentioned in [18] and many other work
in the space-time code literature, it is in general not an easy
task to keep tracking both NCS and δ(CS ) for lattice codes;
we thereby focus solely on δ(CS ) as our design guideline and
define the SNR gain as 10 log10 (δ(CS)/δ(C))1/nt dB. To get
a fair comparison for every possible side information, we then
normalize this side information gain by the rate of the side
information and define the normalized side information gain
as

�(C,S) �
10 log10

(
δ(CS )
δ(C)

)
nt RS

, (5)

where the rate of the side information is defined as
RS �

∑
s∈S Rs and is measured in bits per real symbol, which

makes the normalized side information gain having the unit
“dB/bits per real symbol". The side information gain essen-
tially serves as an approximation of the SNR gain provided by
side information wS , normalized by the rate of wS . We note
that involving the first term of (4) into the definition of side
information gain results in a better approximation. Hence,

although we use (5) as the design guideline throughout the
paper, (4) is also used to confirm the simulation results.

III. BACKGROUND

In this section, we first review basic knowledge including
algebra and algebraic number theory. We then focus on cyclic
division algebra and its connection to lattice STBC. To make
the paper concise, we only review the minimum required
background for understanding the discussion that follows. For
details, please refer, for example, to [20], [22], and [30]–[32].

A. Algebra

Let R be a commutative ring equipped with two operations
addition + and multiplication ·. An ideal I of R is an
additive subgroup of R with respect to + that absorbs the
multiplication of R, i.e., it satisfies a · r ∈ I for a ∈ I and
r ∈ R. An ideal I is a principal ideal if it can be generated
by a singleton, i.e., I = aR for some a ∈ R. A proper ideal
I is an ideal that is at the same time, a proper subset of R,
i.e., ∅ �= I ⊂ R.

For an ideal I and any two elements a, b ∈ R, a is
congruent to b modulo I if and only if a − b ∈ I, which
defines an equivalence relation. The quotient ring R/I of R
by I is the collection of equivalence classes with addition and
multiplication defined as the original ones followed by modulo
I operation as follows,

(a + I) + (b + I) = (a + b) + I, and

(a + I) · (b + I) = (a · b) + I,

respectively. A prime ideal p of R is a proper ideal satisfying
that whenever ab ∈ p for a, b ∈ R, then either a ∈ p or b ∈ p.
We now define the sum and product of ideals. Let I1 and I2
be two ideals of R, the sum of two ideals is itself an ideal
and is defined as

I1 + I2 � {a + b : a ∈ I1, b ∈ I2} .

The product of I1 and I2 is again an ideal and is defined as

I1I2 �
{

n∑
i=1

aibi : ai ∈ I1, bi ∈ I2, n ∈ N

}
.

In general, I1I2 ⊆ I1∩I2. Two ideals are said to be relatively
prime if R = I1 + I2. When I1 and I2 are relatively prime,
we further have I1I2 = I1∩I2. We say I1 divides I2, denoted
as I1|I2, if I2 = I1I3 for some ideal I3 and consequently
I2 ⊆ I1.

Consider two commutative rings R1 and R2 with two oper-
ations (+, ·) and (⊕,�), respectively. A ring homomorphism
between R1 and R2 is a function σ : R1 → R2 such that

σ(a + b) = σ(a) ⊕ σ(b), ∀a, b ∈ R1,

σ (a · b) = σ(a) � σ(b), ∀a, b ∈ R1.

In other words, a ring homomorphism preserves the ring
structure. A homomorphism is a monomorphism if it is
injective and is an isomorphism if it is bijective. Moreover,
an isomorphism σ : R1 → R1 is called automorphism.
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We now review two classical results in ring theory whose
proofs can be found in a standard textbook.

Lemma 1 (Second isomorphism theorem [30, Th. 2.12]):
Let R be a commutative ring, I1 and I2 be two ideals. We have
the following isomorphism,

I1/(I1 ∩ I2) ∼= (I1 + I2)/I2.
In fact, the second isomorphism theorem holds for the more
general case where I1 is only a subring and not necessarily
an ideal.

Lemma 2 (Chinese remainder theo-
rem [30, Corollary 2.27]): Let I1, . . . ,In be ideals of
a commutative ring R. Moreover, I1, . . . ,In are relatively
prime. We have

R/�n
i=1Ii ∼= R/I1 × . . . × R/In .

where × stands for Cartesian product and the operations of
the right hand side are defined componentwise.

We provide a quick example for what have been reviewed
above.

Example 3: Consider Z the set of all integers with ordinary
addition + and multiplication ·. Clearly, it forms a commu-
tative ring. 2Z is the principal ideal of Z consisting of all
the even integers. Moreover, it is a prime ideal. The quotient
Z/2Z = Z2 forms a ring with addition + mod 2Z and
multiplication · mod 2Z. Also, for 3Z another principal prime
ideal of Z, we have the quotient ring Z/3Z = Z3. Since
2 · (−1) + 3 · 1 = 1, 2Z + 3Z = Z and thus 2Z and 3Z

are relatively prime. One can easily verify that 2Z ∩ 3Z is
precisely 6Z. Now, the CRT guarantees the existence of a
ring isomorphism between Z6 = Z/6Z and Z2 × Z3. One can
verify that M(v1, v2) = 3v1 − 2v2 mod 6Z where v1 ∈ Z2
and v2 ∈ Z3 is a ring isomorphism.

B. Algebraic Numbers and Algebraic Integers

An algebraic number is a complex number that is a root
of some polynomial with coefficients in Z. Let L be a field
and K ⊂ L be a subfield; L is said to be a field extension
of K, which is usually denoted as L/K. L can be viewed as
a vector space over K. The degree of L over K, denoted by
[L : K], is defined as the dimension of the vector space L

over K. A number field is a field extension of Q with finite
degree, i.e., a finite extension K/Q. Every number field K

can be generated from Q by adjoining an algebraic number θ ,
i.e., K = Q(θ). An algebraic integer is a complex number that
is a root of some polynomial with the leading coefficient 1 and
other coefficients in Z. For a number field K, we denote by
OK the ring of integers of K which comprises all the algebraic
integers in K.

Let L/K be a field extension of K with degree
[L : K] = n. Throughout the paper, we will further assume
that L/K is a Galois extension. There are exactly n dis-
tinct K-automorphisms σi : L → L for i ∈ {1, . . . , n},
i.e., automorphisms that fix K. Such automorphisms are
called (relative) embeddings. It can be shown that Gal(L/K) �
{σ1, . . . , σn} form a group under function composition, which
is called the Galois group. For α ∈ L, we define the norm of

α as

NL/K(α) =
n∏

i=1

σi (α),

where σ2(α), . . . , σn(α) are called the conjugates of
σ1(α) = α. Let {α1, . . . , αn} be an integral basis for OL, such
that any element in OL can be uniquely written as a linear
combination of the basis element with coefficients Z. The
discriminant of a number field L is defined as

dL � det

⎛
⎜⎜⎜⎝

σ1(α1) σ1(α2) . . . σ1(αn)
σ2(α1) σ2(α2) . . . σ2(αn)

...
...

. . .
...

σn(α1) σn(α2) . . . σn(αn)

⎞
⎟⎟⎟⎠

2

.

Let I be an ideal in OL, then I can be generated by at most
two elements, i.e., I = αOL +βOL for some α, β ∈ OL. The
norm of I is defined as

N(I) � |OL/I|.

Moreover, if I = αOL is principal, N(I) = |NL/Q(α)|.
Let p be a prime ideal in OL, the ring of integers of L with

[L : Q] = n. We say that p lies above a prime p if p∩Z = pZ.
For a prime p, the principal ideal pOL can be factorized into
1 ≤ g ≤ n prime ideals as

pOL = p
e1
1 · . . . · peg

g ,

where ei , i ∈ {1, . . . , g}, is the ramification index of pi . Also,
for each pi , we have N(pi ) = p fi and OL/pi ∼= Fp fi where
1 ≤ fi ≤ n is the inertial degree. Overall, it can be shown
that

∑g
i=1 ei fi = n. For a Galois extension, we have e1 =

e2 = . . . = eg = e and f1 = f2 = . . . = fg = f , which
implies that e f g = n. A prime p is ramified in OL if not all
ei = 1 in the factorization of pOL. Ramified primes in OL

are precisely those p that divides the discriminant dL.
Example 4: Consider Q(i) the field extension obtained from

Q by adjoining i. Every element in Q(i) has the form a + bi
where a, b ∈ Q; thus, it is a number field with degree 2.
The two Q-automorphisms are σ1(a + bi) → a + bi and
σ2(a + bi) → a − bi. The Galois group is cyclic and can
be generated by σ2. Since σ1 is the identity mapping and σ2
sends an element to its complex conjugate, the norm defined
in this number field coincides with the Euclidean norm. The
ring of integers is Z[i], the Gaussian integers, having integral
basis {1, i}. The discriminant is computed as follows,

dQ(i) = det

(
1 i
1 −i

)2

= −4.

Since 2|dQ(i), 2Z[i] = p2 ramifies where p = (1 + i)Z[i]. This
is the only ramified prime in Q(i). Also, 5Z[i] = p1p2 splits
into two prime ideals p1 = (1 + 2i)Z[i] and p2 = (1 − 2i)Z[i]
with e = 1 and f = 1. Another example is that 3Z[i] is itself
a prime ideal with e = 1 and f = 2. In each case, we have
e f g = 2.
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C. Cyclic Division Algebra and Lattice Space-Time Codes

An algebra A over a field L is a set satisfying: i) it is a
vector space over L; ii) it is a ring with respect to addition and
multiplication by elements of A; and iii) (αa)b = a(αb) =
α (ab) for any α ∈ L and a, b ∈ A. Let L/K be a field
extension of K of degree n whose Galois group is a cyclic
group generated by σ . One can construct a cyclic algebra
A = (L/K, σ, γ ) as

A = (L/K, σ, γ )

=
{

x0 + x1e + . . . + xn−1en−1|x0, . . . , xn−1 ∈ L

}
,

where en = γ ∈ K and λe = eσ(λ) for λ ∈ L. A is
said to be a division algebra if every non-zero element of
A is invertible. A cyclic division algebra is a cyclic algebra
that is at the same time a division algebra. In the space-time
coding literature (see [22] and reference therein), a cyclic
division algebra is usually constructed from a cyclic algebra
A = (L/K, σ, γ ) with carefully chosen γ such that none of
γ, γ 2, . . . , γ n−1 are norms of some element of L.

Consider nt = nr = T = n, an n × n STBC carved from
A corresponds to a finite subset of

ĀI =
{

x0 + x1e + . . . + xn−1en−1|x0, . . . , xn−1 ∈ I
}

, (6)

where I is an ideal in OL. More specifically, an n × n STBC
thus constructed can be obtained by putting ĀI into the matrix
form given by

CI =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

⎛
⎜⎜⎜⎝

x0 x1 . . . xn−1
γ σ(xn−1) σ (x0) σ (xn−2)

...
. . .

...
γ σ n−1(x1) γ σ n−1(x2) . . . σ n−1(x0)

⎞
⎟⎟⎟⎠

∣∣∣∣∣∣∣∣∣
x0, . . . , xn−1 ∈ I

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

. (7)

A layer � ∈ {0, . . . , n − 1} of the codeword in CI is the
collection of the entries in positions (m, (� + m) mod (n))
for m ∈ {1, . . . , n}. We note that each layer � ∈ {0, . . . , n −1}
corresponds to the same x� ∈ I. Here, we use the subscript
I in ĀI and CI to emphasize that the elements x� for all �
are restricted to the ideal I. For transmission with finite input
power constraint, one carves a subset from (a possibly shifted
and scaled version of) CI to form the codebook. From this
point onward, we restrict the discussion to K = Q(i) or Q(ω),
which corresponds to the case where each x� is a linear
combination of n QAM or HEX constellation symbols. One
observes that each codeword X ∈ CI conveys n symbols
of L, where each symbol x� is a linear combination of n
QAM or HEX symbols. Therefore, the STBC thus constructed
is full-rate. i.e., it uses an n × n matrix to transmit n2

symbols. Another consequence of having each x� being a
linear combination of n QAM or HEX symbols is that the
code may not be energy-efficient as compared to sending
QAM or HEX symbols directly. This drawback can often be
overcome by choosing a suitable ideal I such that CI becomes
a scaled and rotated version of Z[i]n or Z[ω]n .

The determinant of the codeword X ∈ CI corresponding to
x ∈ A is called the reduced norm of x . What is important
about having the structure of cyclic division algebra is that
when γ ∈ OK is not the norm of an element in L, it guar-
antees that the code is fully diverse and has non-vanishing
determinant (NVD). This is evident from [26, Corollary1 and
Corollary 2], which states that the reduced norm of x ∈ ĀOL

belongs to OK and thus δ(COL
) = 1. Now, since I ⊆ OL,

one has that δ(CI) ≥ 1. In fact, one can obtain better bounds
on δ(CI) as follows.

Lemma 5 ( [26, Corollary 3 and Corollary 4]): Let CI be
a STBC built over the cyclic division algebra A = (L/K, σ, γ )
as in (7), where γ ∈ OK not the norm of an element in L.
Then,

N(I) ≤ δ(CI) ≤ min
x∈I

NL/Q(x).

We end this section by providing the definition of a perfect
STBC as follows.

Definition 6: A n × n STBC is called a perfect STBC if
i) it is full-rate; ii) it is fully diverse and has NVD property;
iii) the energy used to send the coded symbol on each layer
is equal to that for sending the uncoded symbol themselves;
and iv) all the coded symbols have the same average energy.

IV. PROPOSED LAYERED SPACE-TIME INDEX CODING

In this section, we propose the LSTIC and show that for
any index set, it can provide SNR gain that is proportional
to the information contained in the side information. In the
proposed scheme, instead of directly tackling ĀOL

as done
in [18], we recognize the layered structure of STBC reviewed
in Section III-C and perform partition layer by layer. More
specifically, we split each message wk , k ∈ {1, . . . , K }, into n
sub-messages, namely wk,� for � ∈ {0, . . . , n −1}, and encode
w1,�, . . . , wK ,� into x� the layer �. The main advantage of
this approach is that now each layer’s signal is in OL and
thereby one can apply CRT for partitioning. In what follows,
we focus solely on cyclic division algebras with γ ∈ OK,
such that none of γ, γ 2, . . . , γ n−1 are norms of element in L.
We focus on full-rate STBC and split the discussion into two
parts depending on whether I is principal or not. The first case
includes constructions from 2 × 2, 3 × 3, and 4 × 4 perfect
STBC while the second case encompasses constructions from
the 6 × 6 perfect STBC. The similar approach can also be
applied to Alamouti code for constructing Layered Alamouti-
coded index coding, which will be discussed in Section IX.

Remark 7: We emphasize that the approach that we propose
in the following in fact applies to any cyclic division algebra
with the non-norm element γ with K = Q(i) or Q(ω). For
instance, the STBC design with non-norm element γ ∈ K

in [33] can also be used as the base STBC of our LSTIC. The
main reason that we particularly focus on γ ∈ OK is so that
we can rely on Lemma 5 to prove a lower bound on the side
information gain. Apart from this, the proposed method does
not require γ ∈ OK.

Remark 8: As will become clear in the following sections,
in the absence of side information, i.e., S = ∅, the overall
code of the proposed LSTIC is itself a lattice space-time
code carved from a lattice 
 and hence can be decoded by
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existing efficient decoding algorithms such as sphere decod-
ing [34], [35]. Moreover, in the presence of side information,
i.e., S �= ∅, the receiver will be decoding a subcode of the
overall code. In particular, each subcode corresponds to a
finite subset carved from a sublattice of 
 and again existing
efficient sphere decoding algorithms can be implemented for
decoding.

A. LSTIC With Principal I

Without loss of generality, we assume that I is generated
by some α ∈ OL, i.e., I = αOL. Then, (6) becomes

ĀI =
{

x0 + x1e + . . . + xn−1en−1|x0, x1, . . . , xn−1 ∈αOL

}
,

=
{
αx0+αx1e+. . .+αxn−1en−1|x0, x1, . . . , xn−1 ∈OL

}
,

and (7) can be rewritten as⎧⎪⎪⎪⎨
⎪⎪⎪⎩

D(α) ·

⎛
⎜⎜⎜⎝

x0 x1 . . . xn−1
γ σ(xn−1) σ (x0) σ (xn−2)

...
. . .

...

γ σ n−1(x1) γ σ n−1(x2) . . . σ n−1(x0)

⎞
⎟⎟⎟⎠

∣∣∣∣∣∣∣∣∣
x0, . . . , xn−1 ∈ OL

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

, (8)

where

D(α) �

⎛
⎜⎜⎜⎝

α 0 . . . 0
0 σ(α) . . . 0
...

...
. . .

...
0 0 . . . σ n−1(α)

⎞
⎟⎟⎟⎠

We emphasize here that, as mentioned in Section III-C,
the codebook that we actually use should be a scaled version of
the above codebook to satisfy the power constraint. However,
in our analysis, what we really care is the ratio between the
minimum determinants of the codebooks with and without side
information, where the scaling does not make any difference.
Therefore, throughout the paper, when analyzing the proposed
scheme, we ignore the scaling factor for the sake of brevity.
On the other hand, in our simulations, we do take the scaling
into account and normalize the codebook to make the para-
meters reflect the actual SNR.

We can now use the technique in [17] to partition OL.
Let q1, . . . , qK be K ideals in OL that are relatively prime
and have N(qk) = qk , k ∈ {1, . . . , K }. Note that qks are not
necessarily prime ideals and qks are not necessarily prime.
We have q1 ∩ . . .∩qK = q1 · . . . ·qK � q. From CRT, we have

OL/q ∼= OL/q1 × . . . × OL/qK ∼= Bq1 × . . . × BqK ,

where Bqk = OL/qk is a commutative ring1 with size qk . Let
M be an isomorphism that maps Bq1 ×. . .×BqK to a complete
set of coset leaders of OL/q having minimum energy.

1Depending on the ideal qk , this ring could be a finite field, a product of
finite fields, a product of finite rings and finite fields, or others. But it is
always commutative since a quotient ring of a commutative ring is always
commutative. Throughout the paper, we do not use the ring property of the
messages and therefore, we do not emphasize which type of ring it is.

Now, for k ∈ {1, . . . , K }, let wk ∈ B
n
qk

which can be rep-
resented as wk = (wk,0, . . . , wk,n−1) where each wk,� ∈ Bqk .
The encoder collects w1,�, . . . , wK ,� to form the signal of the
layer � ∈ {0, . . . , n − 1} as

x� = M(w1,�, . . . , wK ,�) ∈ OL/q, � ∈ {0, . . . , n − 1}.
The overall codebook corresponds to

Ā =
{
αx0 + αx1e + . . . + αxn−1en−1|

x0, . . . , xn−1 ∈ OL/q} ,

a subset of ĀI and has the matrix form as that in (8) with
x0, . . . , xn−1 ∈ OL/q.

For the proposed LSTIC within this class, we can show the
following theorem.

Theorem 9: For any S ⊂ {1, . . . , K }, the proposed LSTIC
with principal I provides a side information gain at least
6 dB/bits per real symbol, i.e., �(C,S) ≥ 6 dB/bits per real
symbol. Moreover, if all qk , k ∈ {1, . . . , K }, are principal,
then �(C,S) = 6 dB/bits per real symbol.

Proof: We first note that in the proposed scheme, since we
focus on full-rate STBC, each message is spread onto n layers
of signals, which are elements of the number field L of degree
[L : K] = n. Also, note that K = Q(i) or Q(ω). Therefore,
each codeword sends 2n2 real symbols and the rate of the
message wk is given by

Rk = 1

2n2 log2(q
n
k ) = 1

2n
log2(qk), bits per real symbol.

(9)

Consider a generic receiver with index set S, let the mes-
sages be ws = vs for s ∈ S. This means that ws,� = vs,� for
all � ∈ {0, . . . , n − 1} are known at the receiver. Let us first
take S = {s} for example. The �th layer’s signal can then be
rewritten as

x {s}
� = M(w1,�, . . . , ws−1,�, vs,�, ws+1,�, . . . , wK ,�)

(a)= M(0, . . . , 0, vs , 0, . . . , 0)

+M(w1,�, . . . , ws−1,�, 0, ws+1,�, . . . , wK ,�) + ζ
{s}
�

= ξ
{s}
� + x̃ {s}

� ,

where x̃ {s}
� � M(w1,�, . . . , ws−1,�, 0, ws+1,�, . . . , wK ,�) +

ζ
{s}
� , ζ

{s}
� ∈ q, and ξ

{s}
� � M(0, . . . , 0, vs , 0, . . . , 0) is known

at the receiver. The equality (a) above holds because M is an
isomorphism. From CRT, we have

(x {s}
� − ξ

{s}
� ) mod qs = 0,

which implies that x {s}
� belongs to a shifted version of qs . For

the general S, we can similarly show that

xS� = M(d1,�, . . . , dK ,�) + M(u1,�, . . . , uK ,�) + ζS�
= ξS� + x̃S� , (10)

where ζS� ∈ q, x̃S� = M(u1,,�, . . . , uK ,�) + ζS� , and ξS� �
M(d1,�, . . . , dK ,�) with

dk,� =
{
vk,�, k ∈ S;
0, k ∈ Sc,

(11)
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and

uk,� =
{

0, k ∈ S;
wk,�, k ∈ Sc.

(12)

Note that ξS� is known at the receiver. We now have(
xS� − ξS�

)
mod qs = 0, for all s ∈ S,

which shows that xS� belongs to a shifted version of ∩s∈Sqs =
�s∈Sqs . Therefore, after revealing wS , the code CS corre-
sponds to{

α(ξS0 + . . . + ξSn−1en−1) + α(x̃S0 + . . . + x̃Sn−1en−1)|
x̃S0 , . . . , x̃Sn−1 ∈ �s∈Sqs

}
,

Hence, thanks to that σ is a homomorphism, each codeword
X ∈ CS has the matrix form given by

X = VS + X̃S ,

where

VS = D(α) ·

⎛
⎜⎜⎜⎝

ξS0 ξS1 . . . ξSn−1
γ σ(ξSn−1) σ (ξS0 ) σ (ξSn−2)

...
. . .

...

γ σ n−1(ξS1 ) γ σ n−1(ξS2 ) . . . σ n−1(ξS0 )

⎞
⎟⎟⎟⎠ ,

and

X̃S = D(α) ·

⎛
⎜⎜⎜⎝

x̃S0 x̃S1 . . . x̃Sn−1
γ σ(x̃Sn−1) σ (x̃S0 ) σ (x̃Sn−2)

...
. . .

...

γ σ n−1(x̃S1 ) γ σ n−1(x̃S2 ) . . . σ n−1(x̃S0 )

⎞
⎟⎟⎟⎠ .

Note that the second part of X̃S is a codeword of the code

C�s∈Sqs =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

⎛
⎜⎜⎜⎝

x0 x1 . . . xn−1
γ σ(xn−1) σ (x0) σ (xn−2)

...
. . .

...

γ σ n−1(x1) γ σ n−1(x2) . . . σ n−1(x0)

⎞
⎟⎟⎟⎠

∣∣∣∣∣∣∣∣∣
x0, . . . , xn−1 ∈ �s∈Sqs

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

,

whose minimum determinant can be bounded by Lemma 5 as
follows,

δ(C�s∈Sqs ) ≥ N(�s∈Sqs). (13)

The receiver can now subtract the known VS and compute the
minimum determinant as

δ(CS ) = | det(D(α))|2δ(C�s∈Sqs )

= |NL/K(α)|2δ(C�s∈Sqs )

(a)= N(α)δ(C�s∈Sqs ),

where (a) follows from the fact that K = Q(i) or Q(ω) is
a quadratic extension. Plugging (13) into the above equation
results in

δ(CS ) ≥ N(α)N(�s∈S qs)

= N(α)�s∈S N(qs) = N(α)�s∈Sqs, (14)

where the last equality follows from the fact that the ideal
norm is multiplicative. Moreover, without revealing any side
information, the overall codebook would have

δ(C) = N(α)N(1) = N(α). (15)

Combining (9), (14), and (15) results in

�(C,S) ≥ 10 log10(�s∈Sqs)

n 1
2n

∑
s∈S log2(qs)

=
∑

s∈S 20 log10(qs)∑
s∈S log2(qs)

= 6 dB/bits per real symbol.

To prove the second statement, we note that if the ideal
�s∈Sqs is principal, then we can indeed find an element in
the ideal such that the inequality in (14) holds with equality.
Hence, if q1, . . . , qK are all principal, �(C,S) = 6 dB for
every S. �

B. LSTIC With Non-Principal I

We now construct LSTIC from a STBC based on a cyclic
division algebra A = (L/K, σ, γ ) and a non-principal ideal
I in OL as described in (6). Let q1, . . . , qK be K ideals in
OL that are relatively prime and have norm N(qk) = qk ,
k ∈ {1, . . . , K }. We again let q1 · . . . · qK = q. We further
assume that each qk and I are relatively prime, which also
implies that q and I are relatively prime. From the second
isomorphism theorem [30] and CRT, we have

I/Iq
(a)= I/I ∩ q

(b)∼= (I + q)/q

(c)= OL/q
(d)∼= OL/q1 × . . . × OL/qK

∼= Bq1 × . . . × BqK ,

where both (a) and (c) are due to the fact that q and I are
relatively prime, (b) follows from the second isomorphism
theorem, and (d) follows from CRT. We use Bqk to denote
the quotient ring that is isomorphic to OL/qk which has
size qk . Let M be an isomorphism that maps elements in
Bq1 × . . . × BqK to a complete set of coset leaders of I/Iq.

For k ∈ {1, . . . , K }, we again enforce wk =
(wk,0, . . . , wk,n−1) ∈ B

n
qk

where each � ∈ {0, . . . , n − 1}. The
sub-messages w1,�, . . . , wK ,� are collected and encoded into
x� the signal of the � ∈ {0, . . . , n − 1} layer as

x� = M(w1,�, . . . , wK ,�) ∈ I/Iq, � ∈ {0, . . . , n − 1}.
The overall codebook now corresponds to {x0 + x1e + . . . +
xn−1en−1|x0, . . . , xn−1 ∈ I/Iq} a subset of ĀI and has the
matrix form as that in (7) with x0, . . . , xn−1 ∈ I/Iq.

For the proposed LSTIC within this class, we can show the
following theorem.

Theorem 10: For any S ⊂ {1, . . . , K }, the side information
gain achieved by the proposed LSTIC with non-principal ideal
I is lower bounded as

�(C,S) ≥ 6 + γI dB/bits per real symbol,

where

γI = 20 log10

(
N(I)

minx∈I NL/Q(x)

)
, (16)
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is negative and is only a function of I. i.e., it is independent
of S.

Proof: We again note that the rate of the message wk is
given by

Rk = 1

2n2 log2(q
n
k ) = 1

2n
log2(qk), bits per real symbol.

(17)

We consider a generic receiver having index set S. Suppose
the messages ws = vs for s ∈ S are known, which means
that ws,� = vs,� for all � ∈ {0, . . . , n − 1} are known at the
receiver. Similar to (10), we have

xS� = M(d1,�, . . . , dK ,�) + M(u1,�, . . . , uK ,�) + ζS�
= ξS� + x̃S� ,

where dk,� and uk,� are defined in (11) and (12), respectively,
and ζS� ∈ Iq. Therefore, we have(

xS� − ξS�
)

mod Iqs = 0, for all s ∈ S,

which means that xS� belongs to a shifted version of

∩s∈SIqs
(a)= ∩s∈S (I ∩ qs)

= I ∩ (∩s∈Sqs)
(b)= I�s∈Sqs,

where (a) follows from that I and qs are relatively prime for
each s and (b) is due to the fact that q1, . . . , qK are relatively
prime.

After revealing wS , the code CS would correspond to{
(ξS0 + . . . + ξSn−1en−1) + (x̃S0 + . . . + x̃Sn−1en−1)|

x̃S0 , . . . , x̃Sn−1 ∈ I�s∈Sqs

}
,

We can now follow the steps in the proof of Theorem 9 to
write X = VS + X̃S where X̃S belongs to

CI�s∈Sqs =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

⎛
⎜⎜⎜⎝

x0 x1 . . . xn−1
γ σ(xn−1) σ (x0) σ (xn−2)

...
. . .

...

γ σ n−1(x1) γ σ n−1(x2) . . . σ n−1(x0)

⎞
⎟⎟⎟⎠

∣∣∣∣∣∣∣∣∣
x0, . . . , xn−1 ∈ I�s∈Sqs

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

,

whose minimum determinant can be bounded via Lemma 5
by

δ(CI�s∈Sqs ) ≥ N(I�s∈Sqs).

One can now remove the contribution of VS from the received
signal and bound the minimum determinant as

δ(CS ) ≥ N(I)N(�s∈S qs)

= N(I)�s∈S N(qs ) = N(I)�s∈Sqs . (18)

When no side information is available, we can again use
Lemma 5 to bound the minimum determinant as

N(I) ≤ δ(C) ≤ min
x∈I

NL/Q(x). (19)

Combining (17), (18), and (19) results in

�(C,S) ≥
10 log10

(
N(�s∈Sqs)

N(I)
minx∈I NL/Q(x)

)
n 1

2n

∑
s∈S log2(ps)

=
∑

s∈S 20 log10(qs)∑
s∈S log2(qs)

+
20 log10

(
N(I)

minx∈I NL/Q(x)

)
∑

s∈S log2(ps)

= 6 + γI,S dB/bits per real symbol.

Noting that γI,S ≤ 0 from (19) and γI,S ≥ γI completes the
proof. �

V. LAYERED GOLDEN-CODED INDEX CODING

In this section, we propose layered Golden-coded index
coding, a family of LSTIC constructed from Golden code.
To provide a concrete illustration of how the proposed scheme
works, we will walk through this example in detail. Before
proceeding, we note that the layered Golden-coded index
coding proposed here is different, in essence, from the Golden-
coded index coding in [18]. Here, we partition the code layer
by layer while in [18] we directly tackle the Golden algebra.
We would like to emphasize that neither of these two schemes
subsumes the other as a special case; however, the approach
taken in [18] only works for some particular primes.

Let L = Q(i,
√

5) a quadratic extension of K = Q(i) and
consider the non-trivial Q(i)-automorphism σ : √

5 → −√
5.

Also, let γ = i. The Golden code is built from the Golden
algebra given by

G = (Q(i,
√

5)/Q(i), σ, i) =
{

x0 + x1e|x0, x1 ∈ Q(i,
√

5)
}

,

where e2 = i and ze = eσ(z). The ring of integers of L is
OL = Z[i][θ ] where θ = 1+√

5
2 . Let I = αOL be the principal

ideal generated by α = 1 + iθ̄ where θ̄ � σ(θ). The Golden
code [25] corresponds to

GI = {x0 + x1e|x0, x1 ∈ αOL} ,

which can be put into the matrix form

CI =
{

1√
5

(
αx0 αx1

iσ(αx1) σ (αx0)

)∣∣∣∣ x0, x1 ∈ Z[i ][θ ]
}

=
{

1√
5

(
α(a + bθ) α(c + dθ)

iσ(α)(c + d θ̄ ) σ (α)(a+bθ̄ )

)∣∣∣∣ a, b, c, d ∈ Z[i]
}

.

The proposed layered Golden-coded index coding can be
categorized into the class in Section IV-A. Let q1, q2, . . . , qK

be prime ideals in OL that are relatively prime. Let
q1 . . . qK � q. Also, let |OK/qk | = N(qk) � qk for k ∈
{1, . . . , K } where qks are not necessarily primes. From CRT,
we have

OK/q ∼= OK/q1 × . . . × OK/qK ∼= Bq1 × . . . × BqK ,

where Bqk = OK/qk is a commutative ring with size qk . This
guarantees the existence of M : Bq1 × . . . × BqK → OL/q
an isomorphism that maps the messages to a complete set of
coset leaders of OL/q with minimum energy. In the proposed
layered Golden-coded index coding scheme, we let wk ∈ B

2
qk

and split it into wk,0, wk,1 ∈ Bqk .
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The sub-messages w1,�, . . . , wK ,�, for � ∈ {0, 1}, are
encoded onto OL/q via M to form

x� = M(w1,�, . . . , wK ,�) ∈ OL/q, � ∈ {0, 1}. (20)

The overall codebook becomes a Golden code

C =
{

1√
5

(
αx0 αx1

iσ(αx1) σ (αx0)

)∣∣∣∣ x0, x1 ∈ OL/q

}
. (21)

From Theorem 9, we obtain the following corollary. Note
that the proof of this corollary is almost identical to that of
Theorem 9. However, as mentioned earlier, in order to provide
a complete illustration, we still present the proof.

Corollary 11: For any S ⊂ {1, . . . , K }, the proposed lay-
ered Golden-coded index coding provides �(C,S) = 6 dB/bits
per real symbol.

Proof: The rate of the message wk is given by

Rk = 1

8
log2(N(qk)

2) bits per real symbol. (22)

Suppose some messages wS � {wk = vk |k ∈ S} are known;
this means that both wS,� � {wk,� = vk,�|k ∈ S} for � = 0 and
� = 1 are known. Therefore, from Section IV-A, x�, � ∈ {0, 1},
belongs to a shifted version of �k∈Sqk . Thus, after revealing
wS , the code CS becomes a shifted version of

{
1√
5

(
αx0 αx1

iσ(αx1) σ (αx0)

)∣∣∣∣ x0, x1 ∈ �k∈Sqk

}
.

For every codeword X̃S ∈ CS corresponding to x0, x1 ∈
�k∈Sqk , the determinant is given by

det(X̃S) = 1

5
det

(
αx0 αx1

iσ(αx1) σ (αx0)

)

(a)= 1

5
det

(
αx0 αx1

iσ(α)σ(x1) σ (α)σ (x0))

)

= 1

5
det

(
α 0
0 σ(α)

)
det

(
x0 x1

iσ(x1) σ (x0)

)

= 1

5
Nrd(α) det

(
x0 x1

iσ(x1) σ (x0)

)
,

where (a) is due to that σ is a homomorphism. Now, plugging
|Nrd(α)|2 = 5 results in

δ(CS) = 1

5

∣∣∣∣det

(
x0 x1

iσ(x1) σ (x0)

)∣∣∣∣
2

(a)= 1

5
N(�k∈Sqk)

(b)= 1

5
�k∈S N(qk), (23)

where (a) follows from [26, Corollary 3] and the fact that
OL = Z[i][θ ] is a principal ideal domain and (b) follows from
the fact that algebraic norm is multiplicative. Now, combining
what we have obtained in (22) and (23) and the fact that
δ(C) = 1/5 result in

�(C,S)= 10 log10(�k∈S N(qk ))

2 1
4

∑
k∈S log2 N(qk)

=6 dB/bits per real symbol.

�

Fig. 2. CER performance for the proposed layered Golden-coded index
coding. The curves with S = ∅ correspond to the overall codes.

A. Examples and Simulation Results

In Table I, we factorize each prime p < 100 into prime
ideals in OL via Magma [36]. Any pair of ideals in this table is
relatively prime and thus qk can be chosen as product of some
prime ideals that have not been selected for some qk	 , k 	 �= k.
In Table I, we show ideals and their inertial degrees f . The
ramification index of each prime ideal lying above p �= 2, 5
is 1 and is 2 for prime ideals lying above 2, 5. This can be
seen by observing that

dL = 52 · 42,

which has prime factors 2 and 5. Moreover, since OL is a
principal ideal domain, so every pOL can be factorized into
principal prime ideals.

Simulation results for the proposed layered Golden-coded
index coding are provided in Fig. 2. In this figure, three sets of
simulations are performed. In the first one, we constructed the
layered Golden-coded index coding with two principal ideals
generated by β1 = (θ̄ − iθ) and β2 = (θ̄ + iθ), respectively.
From Table I, we see that each of these ideals corresponds to
p = 3 and has inertial degree 2; thus, it has norm equal to
32 = 9. Thus, each message wk ∈ B

2
9, which is then split into

sub-messages wk,1, wk,2 ∈ B9. The sub-messages w1,� and
w2,� are then encoded into x� via (20), which is then put into
the matrix form in (21). Moreover, from Table I, we know that
3OL = β1β2OL. Therefore, the overall codebook corresponds
to (21) with x0, x1 ∈ OL/3OL. Simulation results in Fig. 2
show that revealing either message to the receiver provides
roughly 7.3 dB of SNR gain. This conforms with the analysis
that when reveal either message, we expect to achieve SNR
gain

1

4
10 log10

(
118

10

)
+ 1

2
10 log10 (9) ≈ 7.45 dB,

where 118 and 10 inside the first logarithm are NC and NCS ,
respectively and the 9 inside the second logarithm is the ratio
of δ(CS ) and δ(C).

In the second set of simulations, the two principal ideals
are replaced by those generated by β1 = (1 + iθ̄ )2 and
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TABLE I

PRIME FACTORIZATION OF p < 100 IN Z[i][θ ] WHERE θ = 1+√
5

2

β2 = (1 − iθ̄ )2, respectively. From Table I, we see that
(1 + iθ̄ ) and (1 − iθ̄ ) are both corresponding to p = 5 with
inertial degree 1; thus, β1OL and β2OL both have norm equal
to 52 = 25. Moreover, 5OL = β1β2OL; thereby, the overall
codebook corresponds to (21) with x0, x1 ∈ OL/5OL.
Simulation results in Fig. 2 show that revealing either
message to the receiver provides roughly 10 dB of SNR gain.
This again coincides with the analysis which says that by
revealing one side information, we can expect an SNR gain of

1

4
10 log10

(
656

32

)
+ 1

2
10 log10 (25) ≈ 10.27 dB,

where 656 and 32 inside the first logarithm are NC and NCS ,
respectively and the 25 inside the second logarithm is the
ratio of δ(CS) and δ(C). In the last set of simulations,
the two prime ideals corresponding to p = 7 are considered.
Simulation results show that a roughly 12.1 dB SNR gain can
be obtained by revealing either of the message. This again
can be well predicted by the analysis which indicates that we
can expect an SNR gain of

1

4
10 log10

(
2042

41

)
+ 1

2
10 log10 (49) ≈ 12.69 dB,

where 2042 and 41 inside the first logarithm are NC and NCS ,
respectively and the 49 inside the second logarithm is the
ratio of δ(CS ) and δ(C).

Remark 12: We end this section by showing that the pro-
posed layered Golden-coded index coding is not a special case
of the Golden-coded index coding in [18] and vice versa. The
Golden-coded index coding in [18] is constructed over Z[e][θ ]
with ideals of the form (α + βe)Z[e][θ ] where α, β ∈ Z[i].
Consider p = 17 for which [18, Example 6] indicates that
17Z[e][θ ] can be partitioned into 4 ideals, each with norm 172.

So the Golden-coded index coding can take messages of
size 172. To do the same for our layered scheme, it requires
an ideal in Z[i][θ ] to have norm 17, which is impossible
from the result in Table I. Now, let us consider p = 29
where Table I shows that 29Z[i][θ ] can be partitioned into
four ideals, each with norm 29. Hence, the proposed layered
Golden-coded index coding can take messages of size 292.
This will require 29Z[e][θ ] to be partitioned into ideals of the
form α+βe with norm 292. However, using Magma, we obtain
that 29Z[e][θ ] = I1I2I3I4 with I1 = (θ̄ + 2i)Z[e][θ ], I2 =
(θ̄−2i)Z[e][θ ], I3 = (θ+2i)Z[e][θ ], and I4 = (θ−2i)Z[e][θ ],
where none of these satisfies the form required by the Golden-
coded index coding.

VI. LSTIC BASED ON 3 × 3 PERFECT STBC

Let ζ7 be the 7th root of unity and let θ � ζ7 + ζ−1
7 =

2 cos
( 2π

7

)
. Also, let K = Q(ω) and let L = Q(ω, θ) the field

extension of K with [L : K] = 3. Consider the cyclic division
algebra

A = (L/K, σ, γ ) = {x0 + x1e + x2e2|x0, . . . , x2 ∈ L},
where σ : ζ7 + ζ−1

7 → ζ 2
7 + ζ−2

7 and e3 = γ � j . A 3 × 3
perfect STBC is constructed from

ĀI = {αx0 + αx1e + αx2e2|x0, . . . , x2 ∈ OL},
where α = 1 + ω + θ . The code will have the matrix form
shown in (8).

One can now follow Section IV-A to construct LSTIC based
on 3 × 3 perfect STBC. As a result, we have the following
corollary whose proof is identical to that of Theorem 9
together with the fact that OL = Z[ω][θ ] is a principal ideal
domain.
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TABLE II

PRIME FACTORIZATION OF p < 100 IN Z[ω][θ ] WHERE θ = ζ7 + ζ−1
7

Corollary 13: For any S ⊂ {1, . . . , K }, the proposed
LSTIC based on 3 × 3 perfect STBC provides �(C,S) =
6 dB/bits per real symbol.

A. Examples and Simulation Results

Here, we again factorize each prime p < 100 into prime
ideals via Magma. We show ideals and their inertial degrees f .
The ramification index of each prime ideal lying above p is
given by

e =
⎧⎨
⎩

2, p = 3;
3, p = 7;
1, otherwise.

This can be justified by observing that

dL = 3374,

which has prime factors 3 and 7. Again, since OL is a principal
ideal domain, every pOL can be factorized into principal
prime ideals as shown in Table II.

Simulation results for the 3 ×3 case are presented in Fig. 3
where we construct LSTIC from the 3 × 3 perfect STBC with
two principal ideals generated by β1 = ((ω−1)θ2+(ω−1)θ−
ω + 2) and β2 = ((−ω + 1)θ2 − (ω − 1)θ + 2ω − 1). From
Table II, we learn that both β1 and β2 correspond to p = 7
and we have β1β2OL = 7OL. Hence, the overall codebook
corresponds to (8) with x0, x1, x2 ∈ OL/3OL. Fig. 3 indicates
that by revealing either of the message to the receiver, one
obtains a roughly 10.5 dB SNR reduction. On the other hand,
our analysis shows that the SNR reduction one can expect is
roughly

1

9
10 log10

(
5.9 × 1010

652428

)
+ 1

3
10 log10 (343) ≈ 13.95 dB,

Fig. 3. CER performance for the proposed LSTIC constructed from 3 × 3
STBC. The curve with S = ∅ corresponds to the overall code.

where the parameters inside the first and second logarithms
are corresponding to gains in NC and δ(C), respectively. The
difference between the simulation results and our analysis is
largely due to the fact that the SNR gain is measured at 10−4

CER, which is far from the asymptotic regime for a 3 × 3
STBC. This is evident by observing that the CER curves have
not even exhibited the promised diversity order of 9.

VII. LSTIC BASED ON 4 × 4 PERFECT STBC

Let ζ15 be the 15th root of unity and let θ � ζ15 + ζ−1
15 =

2 cos
( 2π

15

)
. Also, let K = Q(i) and let L = Q(i, θ) the field

extension of K with [L : K] = 4. Consider the cyclic division
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algebra

A=(L/K, σ, γ )={x0 + x1e + x2e2 + x3e3|x0, . . . , x3 ∈ L},
where σ : ζ15 + ζ−1

15 → ζ 2
15 + ζ−2

15 and e4 = γ � i . A 4 × 4
perfect STBC is constructed from

ĀI = {αx0 + αx1e + αx2e2 + αx3e3|x0, . . . , x3 ∈ OL},
where α = (1 − 3i) + iθ2. The code will have the matrix form
shown in (8).

One can now follow Section IV-A to construct LSTIC based
on 4 × 4 perfect STBC. As a result, we have the following
corollary.

Corollary 14: For any S ⊂ {1, . . . , K }, the proposed
LSTIC based on 4 × 4 perfect STBC provides �(C,S) ≥
6 dB/bits per real symbol. Moreover, if all qk , k ∈ {1, . . . , K },
are principal, then �(C,S) = 6 dB/bits per real symbol.

A. Examples and Simulation Results

Here, we factorize each prime p < 100 into prime ideals
via Magma. In Table III, we show ideals and their inertial
degrees f . The ramification index of each prime ideal lying
above p is given by

e =
⎧⎨
⎩

2, p = 2, 3;
4, p = 5;
1, otherwise.

This can be justified by observing that

dL = 283456,

which has prime factors 2, 3, and 5. Also, note that in this
case, p = 3, 5, 29, 89 are factorized into non-principal prime
ideals.

In Fig. 4, two sets of simulation results are presented. Let
us consider ideals I1 = (3, (5i+2)θ3+7iθ2+(4i+4)θ+7i+7)
and I2 = (3, 2θ3+2iθ2+(7i+5)θ+8i+6). From Table III and
the ramification index of 3, we learn that 3OL = I2

1I
2
2 where

N(I2
1) = N(I2

2) = 81. Moreover, with some computation,
we have that I2

1 and I2
2 are principal ideals with generators

β1 = (i+1)θ3−3(i+1)θ+1 and β2 = (i−1)θ3−3(i−1)θ−1,
respectively. In the first set, we construct LSTIC from 4×4 per-
fect STBC with two principal ideals corresponding to p = 3
generated by β1 and β2, respectively. Each message consists
of four sub-messages from Z81 and the overall codebook
corresponds to the one in (8) with x0, x1, x2, x3 ∈ OL/3OL.
Fig. 4 indicates a roughly 5.5 dB SNR gain by revealing either
message to the receiver. We note that the analysis predicts a
roughly

1

16
10 log10

(
4.89 × 109

9099

)
+ 1

4
10 log10 (81) ≈ 8.35 dB,

where again the parameters inside the first and second loga-
rithms are corresponding to gains in NC and δ(C), respectively.

In the second set of simulations, we consider ideals I1 =
(5, (14i + 21)θ3 + (10i + 1)θ2 + (12i + 21)θ + 4i + 22) and
I2 = (5, (20i + 7)θ3 + (6i + 9)θ2 + (21i + 8)θ + 8i + 5) that
correspond to p = 5. Again from III and the ramification index
of 5, we learn that 5OL = I4

1I
4
2 where N(I2

1) = N(I2
2) = 625.

Fig. 4. CER performance for the proposed LSTIC constructed from 4 × 4
STBC. The curve with S = ∅ corresponds to the overall code.

We have that I4
1 and I4

2 are principal ideals with generators
β1 = 2i − 1 and β2 = 2i + 1, respectively. We again
construct LSTIC from 4 × 4 perfect STBC with two principal
ideals generated by β1 and β2, respectively. Simulation result
in Fig. 4 shows a roughly 8 dB SNR gain obtained by revealing
either message to the receiver. We again note that the analysis
predicts a SNR gain of roughly

1

16
10 log10

(
4.65 × 1014

2.18 × 106

)
+ 1

4
10 log10 (625) ≈ 12.19 dB.

In both the cases, one observes that there is a difference
between the simulation results and the analysis. This again
can be explained by that the CER where we measure the
side information gain is far from the asymptotic regime for
a 4 × 4 STBC, which is again evident by observing that the
CER curves have not exhibited the promised diversity order
of 16.

VIII. LSTIC BASED ON 6 × 6 PERFECT STBC

Let ζ28 be the 28th root of unity and let θ � ζ28 + ζ−1
28 =

2 cos
(

π
14

)
. Also, let K = Q(ω) and let L = Q(ω, θ) the field

extension of K with [L : K] = 6. Consider the cyclic division
algebra

A = (L/K, σ, γ ) = {x0 + x1e + . . . + x5e5|x0, . . . , x5 ∈ L},
where σ : ζ28 + ζ−1

28 → ζ 5
28 + ζ−5

28 and e6 = γ � −ω. A 6 ×6
perfect STBC is constructed from

ĀI = {x0 + x1e + . . . + x5e5|x0, . . . , x5 ∈ I},
where I is such that 7OL = I6Ī6.

One can now follow Section IV-B to construct LSTIC based
on 6 × 6 perfect STBC. As a result, we have the following
corollary.

Corollary 15: For any S ⊂ {1, . . . , K }, the side informa-
tion gain achieved by the proposed LSTIC based on 6 × 6
perfect STBC with non-principal ideal I is lower bounded as

�(C,S) ≥ 6 + γI dB/bits per real symbol,

where γI is as shown in (16).
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TABLE III

PRIME FACTORIZATION OF p < 100 IN Z[i][θ ] WHERE θ = ζ15 + ζ−1
15 . FOR p = 29, 89, WE ONLY LIST ONE OF THE EIGHT IDEALS

DUE TO THE SPACE LIMITATION; THE OTHER SEVEN IDEALS CAN BE OBTAINED AS THE CONJUGATES

In Table IV, we again factorize each prime p < 100 into
prime ideals via Magma. We show ideals and their inertial
degrees f . The ramification index of each prime ideal lying
above p is given by

e =
⎧⎨
⎩

2, p = 2, 3;
6, p = 7;
1, otherwise.

This can be justified by observing that

dL = 21236710,

which has prime factors 2, 3, and 7. In this case, for p < 100,
we note that p = 3, 7, 19, 31 are factorized into non-principal
prime ideals.

IX. LAYERED ALAMOUTI-CODED INDEX CODING

In this section, we construct space-time index codes for
2 × 1 MISO channel from Alamouti code [23]. Alamouti
code can be regarded as codes constructed over Hamilton
quaternions [37], the R-algebra of dimension 4 given by

H = {a + bi + cj + dk|a, b, c, d ∈ R},
where i2 = −1, j2 = −1, k2 = −1, and k = ij = −ji. We note
that H is a cyclic division algebra

H = (Q(i)/Q, σ,−1) = {x0 + jx1|x0, x1 ∈ Q(i)},

where σ : i → −i and λj = jσ(λ). This induces a layered
structure of the Alamouti code. Now, consider H̄ = {x0 +
jx1|x0, x1 ∈ Z[i]}, an Alamouti code corresponds to a finite
subset of

CZ[i] �
{(

x0 − x∗
1

x1 x∗
0

)∣∣∣∣ x0, x1 ∈ Z[i]
}

.

Thus, Alamouti code does not belong to the family of codes
considered in Section IV (which have base fields K =
Q(i) or Q(j)). Fortunately, one can follow the same approach
and obtain Alamouti-coded index coding as follows.

Note that Z[i] is a principal ideal domain; so every ideal can
be generated by a singleton. Let φ1, . . . , φK be K elements
in Z[i] that are relatively prime. Also, define q = �K

k=1φk

and define N(φk) = qk for k ∈ {1, . . . , K } where qks are not
necessarily primes. From CRT, we have

Z[i]/qZ[i]∼=Z[i]/φ1Z[i]×. . .×Z[i]/φK Z[i]∼=Bq1 ×. . .×BqK ,

where Bqk = Z[i]/φkZ[i] is a commutative ring with size qk .
Let M be an isomorphism that maps the messages onto a
complete set of coset leaders of Z[i]/qZ[i] with minimum
energy. For k ∈ {1, . . . , K }, we enforce wk ∈ B

2
qk

which can
be represented as wk = (wk,0, wk,1) where each wk,� ∈ Bqk .
The encoder maps w1,�, . . . , wK ,� into the signal of the layer
� ∈ {0, 1} as

x� = M(w1,�, . . . , wK ,�) ∈ Z[i]/qZ[i], � ∈ {0, 1}.
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TABLE IV

PRIME FACTORIZATION OF p < 100 IN Z[ω][θ ] WHERE θ = ζ28 + ζ−1
28

The overall codebook becomes a subset of CZ[i] given by

C �
{(

x0 − x∗
1

x1 x∗
0

)∣∣∣∣ x0, x1 ∈ Z[i]/qZ[i]
}

. (24)

For the proposed layered Alamouti-coded index coding,
we provide the following result without proof. The proof is
essentially identical to the proof of Theorem 9.

Theorem 16: For any S ⊂ {1, . . . , K }, the proposed
Alamouti-coded index coding provides �(C,S) = 6 dB/bits
per real symbol.

A. Examples and Simulation Results

Here, we list choices of φk lying above a prime p < 100.
In Table V, we show principal ideals and their inertial

degrees f . From dQ(i) = 4, we know that the ramification
index of each prime ideal lying above p �= 2 is 1 and is 2 for
prime ideals lying above 2.

Simulation results for using the proposed layered Alamouti-
coded index coding over the 2 × 1 MISO channel are pro-
vided in Fig. 5. In this figure, we construct the proposed
layered Alamouti-index coding with two ideals generated by
β1 = 1 + 2i and β2 = 1 − 2i, respectively. From Table V,
we know that 5Z[i] = β1β2Z[i] and each ideal has norm
equal to p = 5. Each message consists of two sub-messages
in Z5 and we encode the sub-messages of the same layer into
the signal of that layer. The overall codebook becomes (24)
with x0, x1 ∈ Z[i]/5Z[i]. The results in Fig. 5 indicates a
roughly 8.1 dB SNR gain when either message is revealed to
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TABLE V

PRIME FACTORIZATION OF p < 100 IN Z[i]

Fig. 5. CER performance for the proposed layered Alamouti-coded index
coding (ACIC). The curve with S = ∅ corresponds to the overall code.

the receiver. This can be accurately predicted by our analysis
that revealing either message leads to an SNR gain given by

1

2
10 log10

(
4

2

)
+ 1

2
10 log10 (25) ≈ 8.49 dB,

where 4 and 2 in the first logarithms are NC and NCS ,
respectively, and 25 inside the second logarithm corresponds
to the gain in determinant.

X. CONCLUSIONS

In this paper, we have studied the problem of multicasting
K independent messages via MIMO links to multiple receivers
where each of them already has a subset of messages as side
information. A novel scheme, LSTIC, constructed over STBC
has been proposed for exploiting side information without

prior knowledge of the side information configuration. It has
been shown that the proposed LSTIC possesses the nice
property that for any possible side information the minimum
determinant increases exponentially as the rate of the side
information increases. Moreover, when constructed over per-
fect STBC, the perfect STBC properties are preserved by our
construction and therefore the LSTIC is itself a perfect STBC.
Examples including constructions of LSTIC over Golden code,
3×3 perfect STBC, 4 ×4 perfect STBC, 6×6 perfect STBC,
and Alamouti code have been provided and simulations have
been conducted to corroborate our analysis. Since Alamouti
code also belongs to the family of orthogonal designs [38], it is
encouraged to see whether the proposed method can partition
other STBC designs which are not constructed from cyclic
division algebras. A potential future work is to extend the pro-
posed method to other STBCs that are of practical importance,
such as orthogonal designs, quasi-orthogonal designs [39], and
fast-decodable STBCs [40].
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