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Low Complexity Iterative Rake Decision Feedback
Equalizer for Zero-Padded OTFS Systems

Tharaj Thaj and Emanuele Viterbo , Fellow, IEEE

Abstract—This paper presents a linear complexity iterative rake
detector for the recently proposed orthogonal time frequency space
(OTFS) modulation scheme. The basic idea is to extract and co-
herently combine the received multipath components of the trans-
mitted symbols in the delay-Doppler grid using maximal ratio
combining (MRC) to improve the SNR of the combined signal.
We reformulate the OTFS input-output relation in simple vector
form by placing guard null symbols or zero padding (ZP) in the
delay-Doppler grid and exploiting the resulting circulant property
of the blocks of the channel matrix. Using this vector input-output
relation we propose a low complexity iterative decision feedback
equalizer (DFE) based on MRC. The performance and complexity
of the proposed detector favorably compares with the state of the
art message passing detector. An alternative time domain MRC
based detector is also proposed for even faster detection. We further
propose a Gauss-Seidel based over-relaxation parameter in the
rake detector to improve the performance and the convergence
speed of the iterative detection. We also show how the MRC detector
can be combined with outer error-correcting codes to operate as a
turbo DFE scheme to further improve the error performance. All
results are compared with a baseline orthogonal frequency division
multiplexing (OFDM) scheme employing a single tap minimum
mean square error (MMSE) equalizer.

Index Terms—DFE, decoder, delay–doppler channel, detector,
gauss seidel, maximal ratio combining, OTFS, rake, successive
over-relaxation, turbo.

I. INTRODUCTION

ORTHOGONAL time frequency and space (OTFS) is a
new two dimensional (2D) modulation technique that

transforms information symbols in the delay-Doppler domain
to the familiar time-frequency domain by spreading all the
information symbols (e.g., QAM) over both time and frequency
to achieve maximum effective1 diversity [1], [2]. As a result, a
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1Effective diversity introduced for OTFS in [2] is a more meaningful measure

of the actual diversity at practical SNR values, when the number of transmitted
symbols is large.

time-frequency selective channel due to multipath fading and
mobility, is converted into a separable and quasi-orthogonal
interaction, where all received information symbols experience
roughly the same localized impairment [1]. Hence, for each
information symbol, the received components in all the delay-
Doppler diversity branches can be separated and coherently
combined.

OTFS can also be interpreted as a two-dimensional code
division multiple access (CDMA) scheme, where information
symbols are spread in both time and frequency, differently from
conventional CDMA systems [1]. In direct sequence CDMA
operating in a multipath fading channel, a rake receiver works
by combining the delayed components (or echoes) of the trans-
mitted symbols extracted by using matched filters tuned to the re-
spective delay shifts. Similarly, in the case of OTFS, the received
delay shifted and Doppler shifted components of the transmitted
information symbols can be extracted and coherently combined
using linear diversity combining techniques to improve the SNR
of the accumulated signal.

Diversity combining techniques are well studied in the liter-
ature starting from Brennan’s paper on linear diversity combin-
ing [4]. Rake receivers for time domain combining using a vari-
ety of linear combining schemes like maximal ratio combining
(MRC), equal gain combining (EGC) and selection combining
(SC) are discussed in [5], [6]. MRC is shown to be optimal in the
case of correlated and uncorrelated branches, even for unequal
noise and interference power in the branches [7]. Moreover,
iterative rake combining schemes and its variants are shown
to combat inter-symbol interference better and are well investi-
gated in the literature for CDMA systems [8].

In this paper, we propose an iterative rake receiver for the
OTFS system using the maximal ratio combining scheme. Fol-
lowing [3], we group the delay-Doppler grid symbols into vec-
tors according to their delay index and reformulate the input-
output relation between the transmitted and received frames
in terms of these transmitted and received vectors. By placing
some null symbols (zero-padding (ZP)) in the delay-Doppler
domain we arrive at a reduced input-output relation, which
allows the use of the maximal ratio combining to design a
low complexity detector for OTFS. The overhead of the null
guard symbols, needed for the proposed detection scheme, also
allows to insert pilot symbols at no additional cost [10]. These
null symbols in the delay-Doppler domain act as interleaved
ZP guard bands in the time-domain. Taking advantage of this
interleaved time-domain ZP, we further present an alternate low
complexity time-domain MRC based detection for OTFS.
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OTFS with the ZP guard band as mentioned above is similar
to the Doppler-resilient orthogonal signal division multiplexing
(D-OSDM) scheme recently proposed in [11] for under water
acoustic channels [12] which is modelled as relatively faster
time-varying as compared to the vehicular channel model as-
sumption [13]. Even though the information symbols in both
schemes are transmitted in the delay-Doppler domain, the main
advantage of the general OTFS transceiver structure is the pro-
vision to insert arbitrary frequency domain windowing, which
is not a part of the D-OSDM scheme. Windowing allows OTFS
to select a subset of sub-carriers for transmission and recep-
tion, which is particularly useful in multi-user communication
schemes.

The rest of the paper is organized as follows. In Section II, we
discuss the system model and derive the input-output relation
in the vector form. To understand the operation of the proposed
detector, we look at the input-output relation in delay-time and
time domains in Section III. In Section IV, the proposed MRC
based iterative rake detector, its low complexity implementation
and the conditions for convergence are described. In Section V,
we propose further improvements to the rake detector providing
faster convergence and better error performance. The simula-
tion results are given in Section VI followed by a discussion
on the complexity of the proposed algorithm in Section VII.
Section VIII contains our concluding remarks and future re-
search directions.

II. OTFS SYSTEM MODEL

A. Notations

The following notations will be followed in this paper: a, a,
A represent a scalar, vector, and matrix, respectively; a(n) and
A(m,n) represent the n-th and (m,n)-th element of a and A,
respectively; A†, A∗ and An represent the Hermitian transpose,
complex conjugate and n-th power of A. The set of M ×N di-
mensional matrices with complex entries are denoted by CN×M .
Let � represent circular convolution,⊗, the Kronecker product,
◦, the Hadamard product (i.e., the element wise multiplication)
and, �, the Hadamard division (i.e., the element wise division).
Let |S| denote the cardinality of the set S , tr(A), the trace of
the square matrix A, vec(A), the column-wise vectorization of
the matrix A and vec−1

N,M (a) is the matrix formed by folding
a vector a into a N ×M matrix by filling it column wise.
Let FN be the normalized N point discrete Fourier transform
(DFT) matrix with elements FN (i, k) = N−1/2e−j2πik/N and
F†N the inverse discrete Fourier transform (IDFT) matrix, IM ,
the M ×M identity matrix. The vectors 0N and 1N denote a N
length column vector of zeros and ones, respectively. The scalar
z = e

j2π
MN .

B. Transmitter and Receiver Operation

The transmitter and receiver operations for the general OTFS
system are described in [9], [15]. We will be using the follow-
ing matrix/vector representation throughout the paper. Let X,
Y ∈ CM×N be the transmitted and received two-dimensional

delay-Doppler grid, forming a frame of M ×N Q-QAM sym-
bols, with unit average energy. Let xm,ym ∈ CN×1 be column
vectors containing the symbols in the m-th row of X and
Y, respectively:xm=[X(m, 0),X(m, 1), . . . ,X(m,N − 1)]T

and ym = [Y(m, 0),Y(m, 1), . . . ,Y(m,N − 1)]T, where m
and n denote the delay (row) and Doppler (column) indices,
respectively, in the two-dimensional grid. The total frame du-
ration and bandwidth of the transmitted OTFS signal frame are
Tf = NT and B = MΔf , respectively. We consider the case
where TΔf = 1, i.e., the OTFS signal is critically sampled for
any pulse shaping waveform.

1) Basic OTFS Transmitter and Receiver: The delay-
Doppler domain symbols inX is converted to the time-frequency
domain (Xtf) using the inverse symplectic fast Fourier trans-
form (ISFFT) operation.

Xtf = FM ·X · F†N (1)

The “Heisenberg transform modulator” generates the time do-
main signal from the time-frequency samples using an M-point
IFFT along with the pulse-shaping waveform gtx(t). The trans-
mitted signal can be written as

S = Gtx · (F†M ·Xtf) = Gtx · (X · F†N ) (2)

where the diagonal matrix Gtx has the samples of gtx(t)
as its entries: Gtx = diag[gtx(0), gtx(T/M), . . . , gtx((M −
1)T/M)] ∈ CM×M . Let X̃ be the matrix containing the delay-
time samples before applying pulse shaping waveform and is
related to the delay-Doppler domain symbols as

X̃
T
= [x̃0, . . . , x̃M−1] = F†N [x0, . . . ,xM−1] = F†N ·XT.

(3)

The time domain vector s ∈ CNM×1, to be transmitted into
the physical channel can be written as

s = vec(Gtx · X̃). (4)

These samples are pulse shaped and transmitted as a continuous
time signal s(t). At the receiver, the delay-time samples are
obtained from the sampled received time domain waveform r ∈
CNM×1 as

Ỹ = vec−1
N,M ((IM ⊗Grx) · r) , (5)

where the diagonal matrix Grx has the samples of grx(t)
as its entries: Grx = diag[grx(0), grx(T/M), . . . , grx((M −
1)T/M)] ∈ CM×M is the pulse shaping filter at the receiver.
The received delay-Doppler and delay-time domain symbols are
related as

YT = [y0, . . . ,yM−1] = FN [ỹ0, . . . , ỹM−1] = FN · ỸT
.
(6)

2) Rectangular Pulse Shaping Waveforms: In this paper,
we consider rectangular transmit and received pulse shaping
waveforms which is equivalent to time-domain windowing, i.e.,
Gtx = Grx = IM .2 The transmitted and received time domain

2In general, the pulse shaping waveforms (Gtx) could be circulant matrices
(equivalent to time-domain filtering).
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discrete samples s, r can then be written in terms of the delay-
time samples x̃m and ỹm as

s(m+ nM) = x̃m(n),

r(m+ nM) = ỹm(n). (7)

In this case, the transmitted and received discrete time domain
signal samples can be related to the delay-Doppler domain
information symbols as

s = vec(X · F†N ) and r = vec(Y · F†N ). (8)

The operation in (8) in the literature is known as the inverse
discrete Zak transform [16].

The simplified transmitter and receiver baseband equivalent
model for rectangular pulse shaping waveforms and two MRC
based detection methods (to be discussed in Section IV) are
shown in Fig. 1 (a) and (b). The last lmax symbol vectors
(rows) of the transmitted delay-Doppler grid, where lmax is
the maximum channel delay spread index, are made zero to
avoid inter-block interference in the time-domain. These zero
vectors aid in reducing the complexity of detection for OTFS
(explained in Section III-B) by allowing parallel processing of
the N independent time domain blocks of duration T .

For the rest of the paper, to differentiate with the basic OTFS
scheme, as discussed in [1], [9], we refer to the above scheme
including zero padding as the ZP-OTFS. Our main motivation
behind adding the delay-Doppler domain ZP is the design of a
low complexity detector for OTFS, [3]. Adding a ZP along the
delay dimension in the OTFS delay-Doppler grid can be seen
as analogous to the time-domain CP or ZP added in orthogonal
frequency division multiplexing (OFDM), which allows the de-
sign of a single tap equalizer in the time-frequency domain, and
hence contribute to reduction in detector complexity. Moreover,
in OTFS, the ZP can be used as guard band for the pilot in
the delay-Doppler domain [10], and hence reduction in detector
complexity can be achieved at little cost, which is convenient
for the ZP-OTFS system.

C. Continuous Time Baseband Channel Model

Consider a baseband equivalent channel model3 with P prop-
agation paths, where hi is the complex path gain, �i and κi

are the normalized delay shift and normalized Doppler shift, re-
spectively, associated with the i-th path, where �i, κi ∈ R are not
necessarily integers. The actual delay and Doppler shift for the
i-th path is given by τi =

�i
MΔf < τmax = �max

MΔf , νi =
κi

NT with
|νi| < νmax. We assume that the channel is under-spread, i.e.,
τmaxνmax � 1. Under the under-spread assumption, �max < M
and the normalized Doppler shifts −N/2 < κi < N/2. Since
the number of channel coefficients P in the delay-Doppler
domain is typically limited, the channel response has a sparse
representation [1], [9]:

h(τ, ν) =

P∑
i=1

hiδ(τ − τi)δ(ν − νi). (9)

3We do not consider the effects of carrier frequency and antenna gains in this
paper.

Alternatively, we can write,

h(τ, ν) =
∑
�∈L′

∑
κ∈K�

ν�(κ)δ(τ − �T/M)δ(ν − κΔf/N) (10)

whereL′ = {�i} is the set ofL′ = |L′| distinct normalized delay
shifts among the P paths in the delay-Doppler domain, K� =
{κi | � = �i} is the set of normalized Doppler shifts for each
path with normalized delay shift �i, and

ν�(κ) =

{
hi, if � = �i and κ = κi

0, otherwise.
(11)

is the �-th delay tap Doppler response. The magnitude of a
Doppler response function ν�(κ) evaluated at integer delay and
Doppler shifts is shown in Fig. 1.

The corresponding continuous time-varying channel impulse
response function can be written, for all � ∈ L′, as

g(τ, t) =

∫
ν

h(τ, ν)ej2πν(t−τ) dν. (12)

Substituting (11) into (12) and evaluating (12) at τ = �T/M ,
we get,

g(�T/M, t) =
∑
κ∈K�

ν�(κ)e
j2πκΔf

N (t−�T/M) (13)

which represents the delay-time channel response, for all � ∈ L′.

D. Discrete Time Baseband Channel Model

At the transmitter, the OTFS frame of bandwidth B = MΔf
is up-converted to a carrier frequency fc to occupy a pass
band channel, assuming fc 	 B. At the receiver, the channel
impaired signal is down-converted to baseband and sampled
at MΔf Hz, thereby limiting the received waveform to NM
complex samples. Therefore, from a communication system
design point of view, it is convenient to have a discrete baseband
equivalent representation of the system, [14].

In the previous section, we looked at the continuous time
model of the channel. The discrete time model is obtained
by sampling the received waveform r(t) at sampling inter-
vals t = qT/M , where 0 ≤ q ≤ NM − 1, which discretizes
the delay-time channel. The set of normalized delay shifts,
L′ is therefore replaced as L with the set of L = |L| discrete
delay taps representing delay shifts at integer multiples of the
sampling period T/M . Recall that Δf

N and T
M are the Doppler

and delay resolution, respectively, of the delay-Doppler grid,
given TΔf = 1. Following from the sampling theorem [14],
the discrete baseband delay-time channel model of (13) is given
as,

gs(l, q) =
∑
�∈L′

(∑
κ∈K�

ν�(κ)z
κ(q−l)

)
sinc(l − �) (14)

where sinc(x) = sin(πx)/(πx) and z = e
j2π
NM .

Note that, due to fractional delays, the sampling at the receiver
introduces interference between Doppler responses at different
delay shifts. This is due to sinc reconstruction of the delay-time
response at fractional delay points (�), [14]. However, under the
assumption that the channel delay shifts can be modelled as
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Fig. 1. Discrete baseband model of the ZP-OTFS system for N = 6,M = 8 for (a) transmitter (b) receiver and (c) the discrete delay-Doppler channel at the
set of discrete delay tap indices L = {0, 1, 2}. The samples shown using the same colour in (c) represent the Doppler response in the same delay tap. In (b), two
versions of the proposed Rake receiver are presented (see Section IV). The receiver chain on the top part of (b) operates directly in the information symbol domain,
i.e., the delay-Doppler domain (see Algorithm 1 in Section IV.A) and the bottom part of (b) is the faster version (see Algorithm 2 in Section IV.B) which operates
in the delay-time domain.

integer delay shifts without loss of accuracy, i.e., when L′ = L
and hence � = l′ ∈ Z, the sinc function in (14) reduces to

sinc(l − l′) =
{

1, if l′ = l
0, otherwise.

(15)

Consequently, the relation between the actual Doppler response
and the sampled time-domain channel at each integer delay tap
l ∈ L in (14) reduces to

gs(l, q) =
∑
κ∈Kl

νl(κ)z
κ(q−l). (16)
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Here we want to remind the readers that the effective channel as
seen by the receiver depends on the actual channel response as
well as the operation parameters (delay and Doppler resolution)
of the receiver.

For the rest of the paper, to clearly differentiate between the
real continuous channel and the effective discrete channel as
seen by the receiver, we use � and κ to denote the normalized
delay and Doppler shifts (not necessarily integers) associated
with the channel whereas l and k is used only to denote integer
delay and Doppler shift indices, respectively, associated with the
channel sampled on the OTFS delay-Doppler grid.

E. Input-Output Relations in Delay-Doppler Domain

In this section, we reformulate the input-output relation with
rectangular pulse shaping waveforms, for the ZP-OTFS system
shown in Fig. 1.

Starting from the received time-domain signal r(t), the con-
tinuous time domain input-output relation can be written as

r(t) =

∫ τmax

0
g(τ, t)s(t− τ) d τ. (17)

From (14), the corresponding discrete time-domain input-
output relation when the transmitted and received time-domain
signals are sampled at t = qT/M can be written as

r(q) =
∑
l∈L

gs(l, q)s(q − l) (18)

where r(q) = r(q T
M ), s(q) = s(q T

M ). Using the relations in (7),
we split the time index q = 0, . . . ,MN − 1 in terms of the
delay and Doppler frame indices as q = (m+ nM), where the
m = 0, 1, . . . ,M − 1 and n = 0, 1, . . . , N − 1. Then replacing
ν̃ννm,l(n) = gs(l,m+ nM), we can rewrite (18) in terms of the
delay-time symbol vectors as

ỹm(n) =
∑
l∈L

ν̃ννm,l(n)x̃m−l(n) (19)

where ν̃ννm,l ∈ CN×1 is given as

ν̃ννm,l(n) =
∑
�∈L′

(∑
κ∈Kl

ν�(κ)z
κ(m−l)e

j2πκn
N

)
sinc(l − �). (20)

For integer delay tap channel assumption, i.e., l = � ∈ Z, (20)
becomes,

ν̃ννm,l(n) =
∑
κ∈Kl

νl(κ)z
κ(m−l)e

j2πκn
N . (21)

We can note from (21) that the discrete delay-time response
ν̃ννm,l(n) for each delay tap l at time instants t = m

M T + nT is
related to the inverse Fourier transform of the Doppler response
νl(κ) of the l-th delay tap sampled at time t = m

M T . We may
ignore the case in (19) when m− l < 0 i.e., when there is
inter-block interference due to channel delay spread, by making
x̃m(n) = 0 for all n when m− l < 0 such that,

ν̃ννm,l(n)x̃m−l([n− k]N ) = 0, if m < l (22)

This is equivalent to placing null symbol vectors 0N in the last
lmax rows of X (zero padding along the delay dimension of the

OTFS grid). Hence, we can set, for n = 0, . . . , N − 1,

xm(n) = x̃m(n) = 0, if m ≥M − lmax (23)

The delay-Doppler domain received symbols can be obtained
by taking an N -point FFT of the delay-time received symbol
vectors (6)

ym = FN · ỹm =
∑
l∈L

FN · (ν̃ννm,l ◦ x̃m−l)

=
∑
l∈L

(FN · ν̃ννm,l)� (FN · x̃m−l)

=
∑
l∈L

νννm,l � xm−l (24)

where,

νννm,l(k) =
1√
N

N−1∑
n=0

ν̃ννm,l(n)e
−j2πkn

N (25)

for 0 ≤ k ≤ N − 1, 0 ≤ m < M − lmax, is the discrete
Doppler spread vector in the l-th channel delay tap, experienced
by all the symbols in the (m− l)-th row of the M ×N OTFS
delay-Doppler grid. Fig. 1 (c) shows the discrete Doppler spread
vectors νννl,l for x0. Substituting (14), (21) and (20) in (25), we
can write the discrete Doppler spread vector νννm,l ∈ CN×1 in
terms of the channel Doppler response ν�(κ), for a channel
model assuming:

1) Fractional Delay and Fractional Doppler Shifts:

νννm,l(k)=
1√
N

∑
�∈L′

(∑
κ∈K�

ν�(κ)z
κ(m−l)ζN (κ−k)

)
sinc(l−�)

(26)

where �, κ ∈ R and the periodic sinc function ζ(·) includes the
extra phase and magnitude variations in the Doppler spread
vectors due to fractional Doppler shifts, given as

ζN (x) =
1√
N

N−1∑
n=0

e
j2πxn

N =
1√
N

sin (πx)

sin(πx/N)
e

jπx(N−1)
N (27)

2) Integer Delay and Fractional Doppler Shifts: For integer
values of (l − �), the function sinc(l − �) evaluates to 1 when
l = � and zero else where. Hence (26) reduces to

νννm,l(k) =
1√
N

∑
κ∈Kl

ν�(κ)z
κ(m−l)ζN (κ− k) (28)

for l = � ∈ Z and κ ∈ R
3) Integer Delay and Integer Doppler Shifts: For integer

values of x, the function ζN (x) evaluates to
√
N when x = 0

and zero else where. Hence (28) reduces to the simple form

νννm,l(k) =

{
ν�(κ)z

κ(m−l), if l = � and k = [κ]N
0, otherwise.

(29)

for �, κ ∈ Z.
Remark – The above three cases result in phase changes

zκ(m−l) due to the rectangular pulse shaping waveforms. For the
ideal pulse shaping waveform assumption, it was shown in [3],
[9] that the Doppler spread vectors νννm,l are invariant on the 2-D
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Fig. 2. Delay-Doppler domain input-output relation y = H · x after adding
null symbols only contains the shaded blocks for N = M = 8 and lmax = 3.

delay-Doppler grid and hence not dependent on the row index
m. The phase variations zκ(m−l) can be ignored in (26), (28)
and (29). As a result (24) is a simple time-invariant 2-D circular
convolution as shown in [3], [9]. It is important to note that
ignoring such phase variations in the detection process results
in significant performance degradation. �

For the rest of the paper and simulations, we assume inte-
ger delays and fractional Doppler shifts for rectangular pulse
shaping waveforms, i.e., we consider the discrete input-output
relation of the form given in (24) and (28) where L′ = L ∈ Z.

The OTFS delay-Doppler domain discrete system for the ZP
OTFS system can be expressed in the matrix form as

y = H · x+w; (30)

where x,y,w ∈ CNM×1 and H ∈ CNM×NM is the OTFS
channel matrix when transmitted and received symbol-
vectors, xm,ym ∈ CN×1 are grouped and stacked as
y = [yT

0 ,y
T
1 , . . . ,y

T
M−1]

T, x = [xT
0 ,x

T
1 , . . . ,x

T
M−1]

T and w =
[wT

0 ,w
T
1 , . . . ,w

T
M−1]

T is independent and identically distributed
(iid) additive white guassian noise (AWGN) with variance σ2

w.
Referring to the vectorized form shown in Fig. 2, we convert the
circular convolution between two vectors into the product of a
matrix and a vector by defining Km,l ∈ CN×N to be a banded
matrix for l ∈ L and an all zero matrix otherwise

Km,l = circ[νννm,l(0), . . . , νννm,l(N − 1)]

=

⎡
⎢⎢⎢⎣

νννm,l(0) νννm,l(N − 1) · · · νννm,l(1)
νννm,l(1) νννm,l(0) · · · νννm,l(2)

...
. . .

. . .
...

νννm,l(N − 1) νννm,l(N − 2) · · · νννm,l(0)

⎤
⎥⎥⎥⎦ .

We note that the band width of each submatrix Km,l of H is
equal to the maximum Doppler spread kmax ≤ N/2 and the full
channel matrix H has a band width equal to N(lmax + 1). We
can then write (24) as

ym =
∑
l∈L

Km,l · xm−l. (31)

Note that Km,l (or νννm,l) can be considered as the linear time-
variant channel between the receiver grid delay index m and

transmitter grid delay index m− l in the OTFS delay-Doppler
grid. Now (24) and (31) gives us a very simple equation relating
the transmitted and received symbol-vectors that we defined at
the start of this section.

III. INPUT-OUTPUT RELATION IN OTHER DOMAINS

In this section, we discuss the ZP-OTFS input-output relation
between the transmitted and received delay-time symbol vectors
and discuss the advantages of carrying out significant part of the
OTFS receiver processing in the delay-time domain. We also
highlight some properties of the delay-time and time-domain
channel matrices to later analyze the convergence of the pro-
posed detector.

WhenN andM are sufficiently large, considering the channel
normalized delay and Doppler shifts (�i and κi) as integers has
negligible effect on the accuracy of the channel representation.
However, the effect of fractional Doppler is more pronounced
for short OTFS frames, [22]. WhenN is small, a single path with
fractional Doppler shift is seen as a cluster of paths with integer
Doppler shifts at the receiver. Depending on the resolution, more
channel coefficients along the Doppler dimension are required to
fully represent the channel state information needed for accurate
detection at the receiver, [9]. This increases the total number of
paths P for the discrete channel. To mitigate such problem, the
value of N may be increased, which, in turn, will increase the
frame duration NT . However, the frame duration is limited by
the delay-Doppler coherence time,4 i.e., the time over which the
delay-Doppler channel coefficients remain constant.

Another way of solving the fractional Doppler issue is by deal-
ing with the delay-Doppler channel coefficients in the delay-time
domain. As Doppler shifts cannot be resolved in this domain,
the number of delay-time channel coefficients is neither affected
by the fractional Doppler shifts nor by the Doppler spread of
that delay tap. Therefore, to fully take advantage of the OTFS
performance in a rich Doppler spread regime (i.e., large |Kl|’s),
it is convenient to design a receiver with low complexity that is
independent of the Doppler spread.

A. Delay-Time Domain

For the purpose of delay-time detection analysis in Section IV,
we look at the matrix representation of the delay-time input-
output relation. The matricesKm,l in the delay-Doppler domain
can be diagonalized to K̃m,l in the corresponding Fourier do-
main (delay-time domain) as

Km,l = FN · K̃m,l · F†N ,

⇒ K̃m,l = diag[ν̃ννm,l(0), . . . , ν̃ννm,l(N − 1)]

where ν̃ννm,l = F†Nνννm,l

thereby transforming the delay-Doppler domain channel matrix
H into the delay-time domain channel matrix H̃ by replacing
the sub-matrices Km,l in H with K̃m,l. Given the input-output

4This coherence time should not be confused with the traditional notion related
to the inverse of the Doppler spread, [3].
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Fig. 3. Delay-time domain input-output relation (ỹ = H̃ · x̃) after adding null
symbols for N = M = 8 and lmax = 3.

relation in (30) was simplified in (31) by placing null symbols
in the delay-Doppler grid as given in (23), the strictly upper
triangular blocks of H̃ can also be set to zero. The input-output
relation in the delay-time domain, illustrated in Fig. 3, can then
be written in the matrix form as

ỹ = H̃ · x̃+ w̃; (32)

where

ỹ = (IM ⊗ F†N ) · y, x̃ = (IM ⊗ F†N ) · x,
H̃ = (IM ⊗ F†N ) ·H · (IM ⊗ FN ), (33)

and w̃ is the time domain AWGN vector. In this domain, the
complexity of matrix multiplication is significantly reduced as
the sparsity L/N of H̃ is less than or equal to the sparsity P/N
of H, where L is the number of unique delay taps and P is
the total number of propagation paths. The delay-time domain
channel matrix H̃ is a banded block matrix (with a bandwidth
of Nlmax + 1), where K̃m,l ∈ CN×N are non-zero diagonal
matrices for m ≥ l and l ∈ L and zero matrices otherwise.
Consequently, the delay-Doppler domain input-output relation
in (24) becomes

ỹm =
∑
l∈L

ν̃ννm,l ◦ x̃m−l, x̃m = 0N for m ≥M − lmax.

(34)

in the delay-time domain, where x̃ = [x̃T
0 , . . . , x̃

T
M−1]

T and ỹ =
[ỹT

0 , . . . , ỹ
T
M−1]

T.

B. Time Domain

Here, we show how the time domain input-output relation
is connected to the delay-Doppler and the delay-time domain
input-output relations.

From (7), it can be seen that the delay-time vectors x̃ and ỹ in
(32) are simply shuffled versions of the time domain transmitted
and received vectors s and r, respectively. Let s and r be split
into N blocks each of size M , such that s = [sT

0 , . . . , s
T
N−1]

T

and r = [rT
0 , . . . , r

T
N−1]

T. Then x̃m = [s0(m), . . . , sN−1(m)]T

and ỹm = [r0(m), . . . , rN−1(m)]T.

Fig. 4. Time-domain input-output relation r = G · s after shuffling the matrix
H̃ as G = P · H̃ ·PT for N = M = 8 and lmax = 3.

Let

P =

⎡
⎢⎢⎢⎣
E1,1 E2,1 · · · EM,1

E1,2 E2,2 · · · EM,2
...

. . .
. . .

...
E1,N E2,N · · · EM,N

⎤
⎥⎥⎥⎦ ∈ CNM×NM (35)

be the row-column interleaver permutation matrix such that s =
P · x̃ and r = P · ỹ where Ei,j ∈ CM×N is defined as

Ei,j(i,
′ j ′) =

{
1, if i′ = i and j ′ = j
0, otherwise.

(36)

Such permutation is known in the literature as a perfect shuffle,
and has the following property [17]: given square matrices A
and B

A⊗B = P · (B⊗A) ·PT. (37)

The input-output relation in (32) can now be written as

(PT · r) = H̃ · (PT · s) + w̃. (38)

Multiplying both sides of (38) on the left by P, the input-output
relation can be expressed in terms of the time-domain channel
matrix G = P · H̃ ·PT as

r = G · s+ w̄. (39)

We note that G and H̃ are similar matrices and hence share
the same eigenvalues [18]. From (33) using the perfect shuffle
property in (37), the time domain channel matrix G can be
related to the delay-Doppler domain channel matrix H as

G = (F†N ⊗ IM ) · (P ·H ·PT) · (FN ⊗ IM ). (40)

As shown in Fig. 4 the null symbols added in the delay-
Doppler domain act as interleaved guard bands of length lmax in
the time-domain vector s and thus help in avoiding interference
between the time domain blocks rn for n = 0, . . . , N − 1. This
forces G to be a block-diagonal matrix. As a result, the large
matrix equation in (39) can be split intoN parallel smaller linear
matrix equations with the blocks G0, . . . ,GN−1 ∈ CM×M as
the corresponding channel matrices. Gn are the diagonal blocks
of G each with a bandwidth of lmax + 1. The system equation
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Fig. 5. MRC delay-Doppler domain operation for M = 7 and the set of discrete delay indices L = 0, 1, 2.

in (39) can be split and written as

rn = Gn · sn + w̄n where n = 0, . . . , N − 1. (41)

SinceG = P · H̃ ·PT, the non-zero entries of theM ×M time
domain channel sub-matrices Gn are related to the entries of the
N ×N delay-time channel sub-matrices K̃m,l and the time-
varying complex channel gain for each delay tap gs(l, q) as

gs(l, q) = Gn(m,m− l) = K̃m,l(n, n) = ν̃ννm,l(n) (42)

where q = m+nM , m∈{l≤ i<M |l∈L} and 0≤n<N .

IV. LOW COMPLEXITY ITERATIVE RAKE DETECTOR

We can think of the proposed MRC detector as the max-
imal ratio combining of the channel impaired signal compo-
nents received at L = |L| ≤ P different delay branches in the
delay-Doppler grid analogous to a CDMA rake receiver as
shown in Fig. 5. The noise plus interference (NPI) power in
each of these branches is different and depends on the channel
response. In each detector iteration, we cancel the estimated
inter symbol-vector interference in the branches selected for
combining, thereby iteratively improving the post MRC signal
to interference plus noise ratio (SINR).

The input output relation between the transmitted and received
symbol-vectors xm and ym in (24) is given by

ym+l =
∑
l∈L

Km+l,l · xm +wm+l (43)

where wm is iid AWGN noise with variance σ2
n. From (43),

due to the inter-symbol interference caused by delay spread
(lmaxT/M ), all symbol-vectors xm have a signal component
in L received symbol-vectors ym+l, for l ∈ L. Let bl

m ∈ CN×1

be the channel impaired signal component of xm in the received
ym+l vector at delay indexm+ l after removing the interference
of the other transmitted symbol-vectors xk for k �= m. Assum-
ing we have the estimates of symbol-vectors xm from previous

iterations, we can then write bl
m for l ∈ L as

bl
m = ym+l −

∑
l′∈L,l′ �=l

Km+l,l′ · x̂m+l−l′ . (44)

Then from (43) and (44) for l ∈ L, we have L equations for the
symbol-vector estimates x̂m given as

bl
m = Km+l,l · x̂m +wm+l + interference (45)

in the delay branch with index l due to error in the current
estimates of the interfering symbol-vectors xm+l−p for l �= p.
In the proposed scheme, instead of estimating the transmitted
symbol-vector x̂m separately from each of the L equations
in (45), we perform maximal ratio combining (46) of the es-
timates bl

m followed by symbol-by-symbol QAM demapping
using (49). The vector output of the maximal ratio combiner,
cm ∈ CN×1, is given by

cm = D−1
m · gm (46)

where

Dm =
∑
l∈L

K†m+l,l ·Km+l,l (47)

gm =
∑
l∈L

K†m+l,l · bl
m (48)

and the hard estimates are given by

x̂m(n) = arg min
aj∈Q

|aj − cm(n)| . (49)

where aj is signal from the QAM alphabet Q, with j =
1, . . . , |Q| and n = 0, . . . , N − 1. Let D(.) denote the decision
on the estimate cm in every iteration such that x̂(i)

m = D(c(i)m ).
Hard-decision function D(c) is given by the maximum likeli-
hood (ML) criterion in (49).

Once we update the estimate x̂m, we increment m and
repeat the same to estimate all M ′ = M − lmax information
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symbol-vectors x̂m using the updated estimates.5 of the
previously decoded symbol-vectors in the form of a decision
feedback equalizer (DFE) as shown in Fig. 5. Note that the DFE
action leads to sequential updates whereas alternatively, using
only the previous iteration estimates leads to parallel updates.
We verified experimentally that parallel updates result in slower
convergence. Algorithm 1 shows the delay-Doppler domain
MRC operation (also see Fig. 5).

A. Reduced Complexity Delay-Time Domain Implementation

In (44), for each symbol-vector xm, we need to compute L
vectorsbl

m. This operation requiresL(L− 1) products between
matricesKm,l and estimated symbol-vectors x̂m−l. We can take
advantage of the redundant operations to reduce the complexity.
Let us define the residual noise plus interference (RNPI) term
in the i-th iteration

Δy(i)
m = ym −

∑
l∈L

Km,l · x̂(i)
m−l (50)

which can be considered as the residual error in the reconstructed
received delay-Doppler domain symbols due to error in estima-
tion of the transmitted symbols. Note that symbol-vectors x̂m

are estimated in increasing order form = 0, . . . ,M ′ − 1. There-
fore, for estimating the symbol-vector xm, only the symbol-
vectors x̂m+p, for p < 0, have updated estimates available in
the current iteration. For p ≥ 0, the previous iteration estimates
are used. From (44) and (50), bl

m computation for estimating
the symbol-vector xm in the i-th iteration can be written as

bl
m = Δy

(i)
m+l +Km+l,l · x̂(i−1)

m . (51)

Substituting (51) for bl
m in (48), the direct computation of bl

m

can be avoided by writing g
(i)
m for the i-th iteration as

g(i)
m =

∑
l∈L

K†m+l,l ·Δy
(i)
m+l +

(∑
l∈L

K†m+l,l ·Km+l,l

)
· x̂(i−1)

m

=
∑
l∈L

Km+l,l ·Δy
(i)
m+l +Dm · x̂(i−1)

m . (52)

5Alternatively, a soft estimate can also be used in conjunction with an outer
coding scheme as described in Section V-B.

Then from (46) and (52), the MRC output at the i-th iteration
can be written as

c(i)m = x̂(i−1)
m +D−1

m ·Δg(i)
m (53)

where

Δg(i)
m =

∑
l∈L

K†m+l,l ·Δy
(i)
m+l (54)

The vector Δg
(i)
m in (54) is the maximal ratio combining of

the RNPI’s in all the delay branches (ym+l for l ∈ L) having a
component of xm in them.

In the i-th iteration, for every estimated symbol-vector xm,
L RNPI vectors Δy

(i)
m+l need to be updated. which costs L2

matrix-vector products. However, the complexity of (50) can
be reduced by storing and updating the initial RNPI vectors
Δy

(0)
m . The L RNPI vectors which have a component of the

most recently estimated symbol-vector are updated as follows,

Δy
(i)
m+l ← Δy

(i)
m+l −Km+l,l · (x(i)

m − x(i−1)
m ). (55)

The number of matrix-vector products required to compute
Δy

(i)
m has now been reduced from L2 in (50) to L in (55).

Moreover, as described in Section II-E, the matrix-vector prod-
ucts in (54) and (55) are products between circulant matrices
Km,l ∈ CN×N and column vectorsxm orΔym ∈ CN×1 which
can be converted to element-wise product of vectors ν̃ννm,l ◦ x̃m

or ν̃ννm,l ◦ Δ̃ym, respectively, in the delay-time domain with a
complexity of N complex multiplications. Let the superscript
∼ denotes the N -IFFT of a vector (i.e., ã = FH

N · a). The equa-
tions (53), (54) and (55) can now be written in corresponding
delay-time domain as

c̃(i)m = x̃(i−1)
m +Δg̃(i)

m � d̃m (56)

Δg̃(i)
m =

∑
l∈L

ν̃νν∗m+l,l ◦Δỹ
(i)
m+l (57)

Δỹ
(i)
m+l ← Δỹ

(i)
m+l − ν̃ννm+l,l ◦ (x̃(i)

m − x̃(i−1)
m ) (58)

where

d̃m =
∑
l∈L

ν̃νν†m+l,l ◦ ν̃ννm+l,l (59)

which can be computed in only NL complex multiplications.
1) Computational Complexity Per Iteration: Overall com-

plexity per iteration for calculating Δg̃(i)
m , c̃(i)m and Δỹ(i)

m for
all symbol-vectors is M ′(2L+ 1)N complex multiplications.
The redundant FFT computations can be avoided by storing the
Fourier transform of the M ′L Doppler spread vectors νννm,l, the

M ′ initial symbol-vector estimates x
(0)
m and the RNPI vectors

Δỹ(0)
m in (55). The hard decision estimates require the delay-time

vectors to be transformed into the delay-Doppler domain and
back using twoN -IFFT operations (which requires 2N log2(N)
complex multiplications) per symbol-vector. Algorithm 2 shows
the low complexity delay-time domain MRC implementation.
The detector iterations are stopped when the overall RNPI error
Δỹ = [ΔỹT

0 ,ΔỹT
1 , . . . ,ΔỹT

M−1]
T due to the estimation error in

symbol-vectors stops reducing.
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2) Initial Computational Complexity: In the proposed detec-
tor, the initial computations include generating all the entries of
the matrices H and H̃, which requires computing the vectors
νννm,l and their Fourier transform ν̃ννm,l for allm = 0, . . . ,M ′ − 1
and l ∈ L. Assuming the integer delay-Doppler channel pa-
rameters (hi, ki, li) are known for i = 1, 2, . . . , P , the channel
Doppler spread vectors νννm,l can be easily computed using the
relations given in (11) and (29).

Let Kl be the number of non-zero channel coefficients in
each vector νννm,l (or paths with different Doppler shift in the
same delay bin l ∈ L) such that total number of channel co-
efficients or propagation paths as seen by the OTFS receiver is
P =

∑
l∈LKl. The number of complex multiplications required

to compute the M ′L vectors νννm,l using (29) is M ′∑
l∈LKl =

M ′P . The OTFS channel matrix H (or equivalently the vectors
νννm,l) can then be generated in M ′P complex multiplications.

For the delay-time domain MRC operation in Algo-
rithm 2, ν̃ννm,l (N -IFFT of νννm,l) can be computed in
min{Nkl, N log2(N)} complex multiplications, since there
are only Kl non-zero channel coefficients in each delay tap
l. Then, the number of complex multiplications required to
compute H̃ (or equivalently all the ν̃ννm,l) is upper bounded by
M ′N

∑
l Kl = M ′NP .

Alternatively, for the fractional Doppler case, the complexity
of initial computations remains unaffected for the delay-time
domain detector as ν̃ννm,l can be generated directly from the
channel gains, delays, and Doppler shifts (hi, κi, �i) of the P
paths, using (11) and (21) withM ′NP complex multiplications.

B. Low Complexity Initial Estimate

In Algorithm 1 and 2, we initially assume that all the Q-
QAM signals aj are equally likely and the mean of aj’s is zero

and so we initialize x̂
(0)
m = 0N , for all m. The MRC detector

complexity per iteration is of the orderO(NML) and the overall
complexity scales linearly with the number of iterations.

However, a better initial estimate of the OTFS symbols instead
of x̂m = 0N may reduce the required number of MRC iterations
and to reach convergence. Assuming ideal pulse shaping wave-
form, a single tap equalizer in the time-frequency domain can
provide an improved low complexity initial estimate.

Following the remark in Section II-E and [3], we defineHdd ∈
CM×N , the delay-Doppler domain channel impulse response
matrix for the ideal pulse shaping waveform case,

Hdd(m,n) =

{
νl(κ), if m = l, n = [κ]N
0, otherwise.

(60)

For the fractional Doppler case (when κ is a real number). the
ideal channel response can be written in terms of the Doppler
spread vectors as Hdd = [ννν0,0, ννν1,1, . . . , νννM−1,M−1]

T. The cor-
responding time-frequency channel response for the ideal pulse
shaping waveform is obtained by an inverse symplectic finite
fourier transform (ISFFT) operation on the delay-Doppler chan-
nel as

Htf = FM ·Hdd · FH
N (61)

= FM · [ννν0,0, ννν1,1, . . . , νννM−1,M−1]
T · FH

N

= FM · [ν̃νν0,0, ν̃νν1,1, . . . , ν̃ννM−1,M−1]
T. (62)

Similarly, the received time-frequency samples can be obtained
by the ISFFT operation on the received delay-Doppler domain
samples as

Ytf = FM ·Y · FH
N = FM · [ỹ0, ỹ1, · · · ỹM−1]

T. (63)

Since in the ideal pulse shaping waveform case, circular con-
volution of the channel and transmitted symbols in the delay-
Doppler domain transforms to element-wise product in the
time-frequency domain, we estimate the transmitted samples
in the time-frequency domain by a single tap minimum mean
square error (MMSE) equalizer

X̂tf(m,n) =
H∗tf(m,n) ·Ytf(m,n)

|Htf(m,n)|2 + σ2
w

(64)

for m = 0, . . . ,M − 1 and n = 0, . . . , N − 1.
The time-delay domain initial estimates of the OTFS symbol-

vectors can then be obtained by the Heisenberg transform oper-
ation on the time-frequency domain estimates as

[x̃
(0)
0 , x̃

(0)
1 , · · · x̃(0)

M−1]
T = F†M · X̂tf. (65)

Note that ν̄ννm,l = 0N for l �∈ L and hence the operation in
(62) can be computed in min{NML,NM log2(M)} complex
multiplications. Since we have already computed ν̃ννm,l, and ỹ
is just a shuffled version of the received time-domain samples,
the overall number of computations (for the steps in (62), (63),
(64) and (65)) required for the initial estimate is upper bounded
by NM(L+ 2 log2(M) + 3), which is comparable to the com-
plexity of one detector iteration NM ′(2L+ 1).
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C. Condition for Detector Convergence

In this section, we cast the delay-time algorithm (Algorithm
2) in the time-domain with the purpose of analysing the detector
convergence using the properties of Jacobi and Gauss Seidel it-
erative methods for solving linear equations [19], [20]. The basic
principle of iterative MRC operation in the delay-time domain
with sequential updates given in (56)-(58) can be compactly
expressed as

x̃(i) = x̃(i−1) + D̃
−1
H̃
†
(ỹ − H̃x̃(i−1)) (66)

when using parallel updates (i.e. without DFE), where D̃ is

the matrix containing diagonal elements of H̃
†
H̃. The rows

and columns of the delay-time channel matrix H̃ are perfectly
shuffled using the permutation matrix P to obtain a similar,
block diagonal time-domain channel matrix G as explained in
Section II-F. This allows the equivalent operation in (66) to be
split and executed in parallel for each independent time domain
block Gn as

s(i)n = s(i−1)
n +D−1

n G†n(rn −Gns
(i−1)
n ) (67)

where Dn is the matrix containing the diagonal elements of
G†nGn. Equation (67) can be written in the form

s(i)n = −TJ
n · s(i−1)

n +QJ
n · zn

TJ
n = D−1

n · (Ln + L†n), QJ
n = D−1

n , zn = G†nrn (68)

where Ln and L†n are the matrices containing the strictly
lower and upper triangular parts of the Hermitian matrix Rn =
G†nGn. Finally, we observe that the parallel update formulation
in (68) matches the classic Jacobi iterative method (hence the
superscript ‘J’ in TJ

n) for solving linear equations, [19].
We now focus on the sequential update method given in

Algorithm 1 and 2 based on the DFE operation. Note that,
in Algorithm 2, the linear matrix equation in (66) is solved
block-wise with low complexity, where the latest estimates of
the symbol-vectors calculated in the current iteration are used
in estimating the next symbol-vector as in a DFE

s(i)n = s(i−1)
n +D−1

n (zn − Lns
(i)
n︸ ︷︷ ︸

(a)

−L†ns
(i−1)
n︸ ︷︷ ︸

(b)

) (69)

where (a) and (b) denote the contribution of the current and
previous-iteration estimates, respectively. We can modify (68)
for the DFE iterative method in (69) as

s(i)n = −TGS
n · s(i−1)

n +QGS
n · zn

TGS
n = (Dn + Ln)

−1 · L†n, QGS
n = (Dn + Ln)

−1 (70)

and observe that Algorithm 2 coincides with the well studied
Gauss Seidel (GS) method available in the literature [19], [20].
Algorithm 3 shows the equivalent time domain GS method
implementing Algorithm 2.

Both Jacobi and GS methods are used to iteratively find the
least squares solution

ŝn = min
ŝn
||zn −Rnŝn||2 (71)

of the M -dimensional linear system of equations

zn = Rn · sn + w̄n (72)

where Rn ∈ CM×M and ŝn, zn ∈ CM×1. We further assume
that the time-domain correlation matrix Rn = G†nGn is non-
singular and hence positive definite Hermitian.

In [19], [20], it is shown that the iteration method (68) for
the linear system in (72) is convergent, if ρ(TGS

n ) < 1, where
ρ(TGS

n ) is the spectral radius6 of the square matrix TGS
n [19],

[20]. For the Jacobi method, ρ(TJ
n) < 1 if Rn is diagonally

dominant, which depends on the channel and cannot be guar-
anteed. However, the GS method is known to converge faster
and convergence is guaranteed under more general conditions
than the Jacobi method [19], [20]. In Appendix we prove the
following lemma

Lemma 1: The GS iterative method for the solution of (72)
is converging (i.e., ρ(TGS

n ) < 1) if Rn is a positive definite
Hermitian matrix. Furthermore, ρ(TGS

n ) = 1 if Rn is a positive
semi-definite Hermitian matrix.

We note that the algorithm may still converge even for some
channels that result in a positive semi-definite Hermitian matrix
Rn (i.e., ρ(TGS

n ) = 1), but this is not guaranteed.
Even though the implementation of the iterative MRC detector

in Algorithm 3 looks simpler than the one in Algorithm 2, the
complexity of initial computations for directly calculating Rn,
TGS

n and QGS
n is O(NML2) complex multiplications since

Gn is a banded matrix with L non-zero elements in each row.
However, in Algorithm 2, the circulant property of the blocks of
the channel matrixH (due to the placement of null symbols in the
OTFS grid as shown in Fig. 2) is utilized to reduce the overall
complexity of the initial computations to O(NML) complex
multiplications as explained in Section III-A.

6Spectral radius of a matrix is the largest absolute value of its eigenvalues.
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V. FURTHER IMPROVEMENTS

A. Successive Over Relaxed (SOR) Iterative Rake Detector

In time domain, the proposed iterative Rake detector is similar
to doingN parallel GS iterations on the matched filtered received
waveform, as shown in Section III-C. GS and its variants such
as successive over-relaxation (SOR) method are well presented
in [19]–[21]. The SOR method is obtained by introducing a
relaxation parameter ω in the GS method (69) as,

s(i)n = s(i−1)
n + ωD−1

n (zn − Lns
(i)
n − L†ns

(i−1)
n ). (73)

The corresponding GS iteration matrix TGS
n and QGS

n in
Algorithm 3 can be modified as

Tω
n = (Dn + ωLn)

−1 · ((ω − 1)Dn + ωL†n) (74)

Qω
n = (Dn + ωLn)

−1. (75)

In Appendix we prove the following lemma.
Lemma 2: The SOR GS iterative method for the solution of

(72) is converging (i.e., ρ(Tω
n) < 1) if Rn is a positive definite

Hermitian matrix and 0 < ω < 2.
We can then simply modify the proposed delay-time detector

Algorithm 2 by rewriting (56) as

c̃(i)m = c̃(i−1)
m + ω(Δq̃(i−1)

m � d̃m). (76)

Note that when ω = 1, (76) coincides with (56). The relaxation
parameter when ω > 1 is called the over-relaxation parameter
and when ω < 1 is called the under relaxation parameter. The
computation of the optimal SOR parameter ω = ωopt which
minimizes the spectral radius ρ(Tω

n) requires computing the
eigenvalues of the iteration matrix Tω

n , [19], [20].
The aim is to find the range of values of ω for which the SOR

method converges (see Lemma 2), the set of which denotes the
region of convergence, and, if possible, the best value ωopt. The
optimum SOR parameter can be analytically calculated given the
spectral radius of the Jacobi matrix ρ(TJ

n) < 1 [21]. However,
it is known that ρ(TJ

n) < 1 only if Rn is diagonally dominant,
but this is not guaranteed for all channels. In such cases, the
numerical calculation of ωopt is not practical for large system
matrices, rather a region of good performance, within the region
of convergence, is easier to find, as suggested by [21]. Further,
when the power delay profile statistical model of the channel is
given, the good region for the SOR parameter can be optimized
offline by simulation.

In this paper, we try to analyse the effect of ω and the range of
values of good performance by simulation. Fig. 6 show the BER
plot for 64-QAM for different values of ω. In Fig. 7, we plot the
required (abbreviated as reqd. in the plot legend) SNR (labelled
as ‘Q-QAM reqd. SNR’) on the left y-axis alongside the required
number of iterations (labelled as ‘Q-QAM reqd. iters’) on the
right y-axis, to achieve a BER of 10−3 for different modulation
sizes, respectively, for different values ofω ∈ [1, 1.5]. The y-axis
of the plot represents the SNR (dB) or the iterations depending
on the corresponding curve. The maximum number of iterations
is set to 50. It can be seen that the optimum ω for the standard

Fig. 6. 64-QAM BER performance for different relaxation parameters ω.

Fig. 7. Error performance and convergence speed of different relaxation
parameters ω for different modulation sizes |Q| at BER 10−3.

extended vehicular A (EVA) 7 channel model [13] consistently
lies in the interval [1.2,1.3]. We can observe that there is a
2.5 dB and 17 dB gain at a BER of 10−3 for 16-QAM and
64-QAM, respectively, due to just the over-relaxation parameter
with almost no extra computational complexity. The effect of the
SOR parameter on the convergence speed of the MRC detector
can be seen in Fig. 7 (right y-axis). It shows the number of
iterations required to achieve a BER of 10−3 for different modu-
lation sizes at the corresponding SNR values as given in the plot
legend. It can be seen that the biggest reduction in complexity
comes at 64-QAM where, the number of iterations required is
significantly reduced (by almost 3 times) as compared to the
case when SOR parameter ω = 1. For 4-QAM and 16-QAM,
the optimum SOR parameter approximately halves the number
of required iterations.

Finally, if no prior knowledge of the channel statistical model
is available, we observed by simulation that some performance
improvement can still be achieved by setting the value of ω to

7The EVA channel power-delay profile (with a maximum speed= 120 km/hr)
is given by [0, -1.5, -1.4, -3.6, -0.6, -9.1, -7.0, -12.0, -16.9] dB with excess delay
taps L′ = L = {0, 1, 2, 3, 4, 5, 8, 13, 19} normalized to the delay resolution
1/(MΔf) of an OTFS grid with bandwidth MΔf , where M = 512 and
Δf = 15 kHz.
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Fig. 8. OTFS iterative rake turbo decoder operation.

slightly above 1. The optimization of ω with low complexity, for
different SNR, channel profiles and number of multipaths will
be investigated in future work.

B. Iterative Rake Turbo Decoder

In order to improve FER performance, the turbo decoder prin-
ciple shown in Fig. 8 is proposed. The encoded bits are random
interleaved in the frame so as to enhance the delay-Doppler
diversity.

The detector output bit log likelihood ratios (LLR) after
random de-interleaving is fed to the low-density parity check
(LDPC) decoder. The hard decision coded bits from the LDPC
decoder after interleaving and QAM modulation is then fed
back to the MRC detector as the input symbol-vector estimates
and the process repeats. Overall, one turbo iteration involves
one iteration of MRC detector, de-interleaver, LDPC decoder,
interleaver, and the QAM modulator. As shown in Fig. 8, for
the first iteration, the initial estimate of the QAM symbols is
provided by the low complexity MMSE equalizer as explained
in Section III-B, after which the initial estimate comes form the
LDPC decoder.

From (53), the soft estimate of the delay-Doppler domain
symbol-vector cm after MRC combining can be written as

cm = xm + em m = 0, . . .M ′ − 1 (77)

where xm is the transmitted symbol-vector at delay indexm and
em denotes the normalized post MRC NPI vector. We assume
that em follows a zero mean Gaussian distribution with variance
σ2
m. This assumption becomes more accurate as the number of

interfering terms increases. Then, the LLR L
(i)
m,n,b of bit b of the

n-th transmitted symbol in the estimated symbol-vector c(i)m in
the i-th iteration can be obtained by

L
(i)
m,n,b = log

(
Pr(b = 0|c(i)m (n))

Pr(b = 1|c(i)m (n))

)

= log

( ∑
q∈Q0

exp(−|c(i)m (n)− q|2/σ2
m)∑

q′∈Q1
exp(−|c(i)m (n)− q′|2/σ2

m)

)
(78)

where Q0 and Q1 are the subsets of QAM symbols, where the
b-th bit of the symbol is 0 and 1, respectively. The complexity of
LLR calculation can be reduced by the max-log approximated
LLR obtained as

L̃
(i)

m,n,b =
1
σ2
m

(
min
q∈Q0

∣∣∣c(i)m (n)− q
∣∣∣2−min

q′∈Q1

∣∣∣c(i)m (n)− q′
∣∣∣2) .

(79)

In order to compute the bit LLRs, an estimate of the post
MRC NPI variance σ2

m is required. Accurate estimation of σ2
m

is not straightforward and requires knowledge of the correlation
between all the estimated symbol-vectors and RNPI vectors
which changes every iteration as well. Since the entries of
channel Doppler spread vectors νννm,l can be assumed to be zero
mean, i.i.d. and normal distributed [13], the channel Doppler
spread for different delay taps can be assumed to be uncorrelated.
i.e., E[ννν†m,l · νννm,′p] = 0 for l �= p. Furthermore, for the purpose
of a simple estimate of the post MRC NPI variance, we assume
that RNPIΔy

(i)
m in the different delay branches are uncorrelated

(i.e.,E[Δy†m ·Δyp] = 0 form �= p in all iterations) and follows
Gaussian distribution. The covariance matrix of the delay-time
RNPI vector Δỹm in the i-th iteration

CCC(i)
m (j, k) = (Δỹ(i)

m (j)−E{Δỹ(i)
m })(Δỹ(i)

m (k)−E{Δỹ(i)
m })∗

(80)

for j, k = 0, . . . , N − 1 and E{Δỹ(i)
m } = 1

N

∑N
n=1 Δỹ(i)

m (n).
Since Fourier transformation is a unitary transformation, the NPI
variance remains the same in both domains, and we approximate
the post MRC NPI variance for the symbol-vector soft estimate
c
(i)
m in the i-th iteration as

σ2(i)
m = Var(ẽ(i)m ) ≈ 1

N

∑
l∈L

ηm,ltr(CCC
(i)
m+l) (81)

where ηm,l = ||ν̃ννm+l,l � d̃m||2 is the normalized post MRC
channel power in the different delay branches selected for
combining. The bit LLR calculation in (79) and NPI variance
calculation in (81) has a complexity of 2NM log2(|Q|) and
NML, respectively. The LDPC decoder complexity is of the
order CLDPC = O(log2(|Q|)NM). The overall complexity of
detection increases by CLDPC +NM(2 log2(|Q|) + L)+ for
every turbo iteration.

VI. SIMULATION RESULTS AND DISCUSSION

For simulations we generate OTFS frames for N = 128 and
M = 512. The sub-carrier spacing Δf is taken as 15 kHz. The
maximum delay spread (in terms of integer taps) is taken to be
32 (lmax = 31) which is approximately 4 μs. The channel delay
model is generated according to the standard EVA model (with
a speed of 120 km/h) with the Doppler shift for the i-th path
generated from a uniform distribution U(0, νmax), where νmax

is the maximum Doppler shift [13]. We consider one Doppler
shifted path per delay tap with L = 9 and kmax = 16. For
our simulations, we assume perfect knowledge of the channel
state information at the receiver (see [10] for practical channel
estimation in OTFS). For BER plots, 105 frames are send for
every point in the BER curve and for FER plots, all simulations
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Fig. 9. Uncoded 4-QAM BER Plot : MRC vs MPA vs MMSE-OFDM.

Fig. 10. Uncoded 16-QAM BER Plot : MRC vs MPA vs MMSE-OFDM.

run for a minimum of 105 frames or until 100 OTFS frame errors
are encountered. BER is plotted to show uncoded performance,
while FER is used when an outer coding scheme is applied.

Fig. 9 shows the BER plot for the MRC detector, with and
without the initial estimate in Section III-B, for 4-QAM mod-
ulated OTFS waveform with a maximum of 10 iterations.8.
Performance is compared with the state of the art message
passing algorithm (MPA) described in [22], [23] (labeled as
OTFS-MPA in Fig. 9 and 10) with a maximum of 10 iterations.9

and the OFDM single tap MMSE equalizer. It can be seen
that with the initial estimate (labeled as OTFS-MRC with Init.
Est.10), there is a≈1 dB gain over the MPA algorithm at a BER
of 10−3. This gain is contributed by the improved SNR due to
the MRC operation (or matched-filtering) at the receiver and the
initial time-frequency MMSE estimate, which is more reliable
for lower modulation sizes like BPSK and 4-QAM, thereby
increasing the convergence speed (due to the initial estimates
begin closer to the solution).

Note that the same initial estimates could also be used to
improve the performance of MPA. However, the estimates need

8Iterations are stopped according to the residual NPI convergence criteria in
Algorithm 2.

9The MPA stopping criteria is based on the convergence of the estimated
symbol probabilities [22].

10Init. Est. refers to detection with the Initial Estimate in Section III-B.

Fig. 11. Turbo 16-QAM FER Plot: MRC vs BIC-MMSE-OFDM.

Fig. 12. Turbo 64-QAM FER Plot: MRC vs BIC-MMSE-OFDM.

to be transformed into the delay-Doppler domain and Q-QAM
alphabet probabilities for all the information symbols need to be
calculated. This would incur a high complexity just to get the
improved initial estimate. Moreover, similar to MRC detection,
MPA can also be applied on the matched-filtered system matrix
H†H instead of H, but this approximately doubles the MPA
complexity, which scales linearly with the number of non-zero
elements in the matrix. [22], [23].

Fig. 10 shows the BER plot for the MRC detector for 16-
QAM modulation with maximum 15 iterations compared to the
MPA-based detector with maximum 30 iterations. It can be seen
that with the over-relaxed iterative detection (labeled as OTFS-
SOR-MRC with Init. Est. (ω = 1.25)), the BER performance
is improved by around 2.5 dB at BER = 10−3. Moreover, the
SOR-iterative algorithm converges on average in less than 8
iterations for SNR > 15 dB. We can see from Fig. 6 and 7
that the SOR parameter has more impact at higher modulation
schemes, where the initial low complexity estimate is less accu-
rate and the convergence is generally slow without SOR. Fig. 11
and 12 shows the frame error performance of the plain and
SOR-turbo-Rake decoder with initial low complexity estimate
for 16 and 64 QAM modulation, respectively, compared with
bit interleaved coded OFDM with MMSE detection scheme
(labeled as OFDM BICM decoder). A half-rate LDPC code of
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Fig. 13. Turbo 64-QAM FER Plot: MRC vs BIC–MMSE-OFDM for code-
word lengths: 672, 3840.

TABLE I
SUMMARY AND COMPARISON OF OVERALL COMPLEXITY OF ITERATIVE

RAKE RECEIVER

length Nc = 3840 bits from [25] is used and every OTFS frame
contains �NM log2(|Q|)/Nc� codewords.

Turbo iterations are stopped when all the decoded codewords
within the frame satisfy the LDPC parity check. It can be
observed that just 1 iteration of turbo MRC detector (labeled
as Turbo-Rake 1 iter) is required to achieve better error perfor-
mance than the bit interleaved coded MMSE OFDM. Moreover,
with the over-relaxation parameter ω = 1.25 (labeled as SOR-
Turbo-Rake), a gain of ≈ 0.2 dB (for 16 QAM with 3 turbo
iterations) and ≈ 1 dB (for 64 QAM with 3 turbo iterations) is
achieved in the FER performance. The overall detector com-
plexity in terms average number of iterations to converge is
significantly reduced by using turbo iterations along with the
initial estimates from the time-frequency single tap equalizer.

Fig. 13 shows the FER performance of the proposed detector
vs BICM-OFDM for different codeword lengths: long (labeled
as SOR-Turbo-Rake-3840) and short (labeled as SOR-Turbo-
Rake-672). For a fair comparison with the OFDM scheme, the
FER plot for a single turbo iteration is also plotted alongside.
It can be observed that, the proposed detector with single turbo
iteration has a gain of≈ 3 dB and≈ 4 dB for codeword length of
3840 and 672, respectively, as compared to the OFDM scheme at
a FER of 10−2. It can be noted that more iterations are required
for short codewords to achieve the same performance as long
codewords.

VII. DETECTOR COMPLEXITY

In Table I, we summarize and compare the overall complexity
of the iterative Rake receiver (in terms of complex multipli-
cations), including initial computations and Fourier domain
transformations as discussed in Section IV.

Fig. 14. Complexity comparison with other linear detectors, for different
modulation sizes, for an OTFS frame of size N = 128,M = 512 for P = L,
i.e., for one Doppler path per delay tap (solid lines) and P = 5L, i.e., for five
Doppler paths per delay tap (dashed lines).

Term (I) accounts for the computations inside each detector
iteration, which includes calculating Δg̃(i)

m , Δỹ(i)
m , c̃(i)m , and

the symbol-vector hard decision estimates x̃(i)
m in Algorithm 2.

Term (II) is for initial computations, which involves calculating
M ′L delay-time Doppler spread vectors ν̃ννm,l, initial M ′

residual vectors Δỹ(0)
m in (58), and M ′ vectors d̃m and term

(III) is to compute the low complexity initial time-frequency
estimate x̂

(0)
m in (64).

The detectors for OTFS with complexity linear in NM
and with non-ideal pulse shaping waveform (rectangular) are
discussed in [22], [24]. The complexity of the MPA detector
per iteration scales with the number of paths on the discrete
delay-Doppler grid and the alphabet size |Q|, and has a com-
plexity of the order O(P |Q|NM) [22]. The linear minimum
mean square error detector proposed in [24] even though is
a non-iterative detector has a computational complexity of
O((l2max + kmaxP

2)NM) whereas the proposed detector has
a complexity of O(SLNM) where L ≤ P and S is the number
of MRC detector iterations as given in Fig. 7.

The complexity of the proposed detector is compared with
other linear complexity OTFS detectors, for different modula-
tion sizes, number of multipaths in Fig. 14. The dashed lines
represents the case when there are 5 paths with distinct Doppler
shifts in each delay tap i.e., P = 5L. It can be concluded from
Fig. 14 that the proposed detector complexity is significantly
lower than the one of other OTFS detectors and closer to that of
an OFDM single tap MMSE equalizer.

For the iterative operation, the storage requirement for the
MRC detector is (L+ 2)NM complex numbers as only the
LNM delay-time channel coefficients, the M RNPI vectors,
and the M ′ symbol vector estimates need to be stored for each
iteration. For MPA, the storage requirement is much higher and
of the order O(P |Q|NM) [22].

VIII. CONCLUSION

We reformulated the OTFS input-output relation and proposed
two versions of a linear complexity iterative rake detector al-
gorithm for ZP-OTFS modulation based on the maximal ratio
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combining principle. We show that the MRC detector along with
a low complexity initial estimate of symbol-vectors can achieve
similar or better BER performance than the MPA detector with
lower complexity and storage requirements. Based on the well
studied Gauss-Seidel method, we introduced a successive over
relaxation parameter to improve error performance and faster
convergence of the proposed detector. The MRC detector per-
formance was further improved with the aid of an outer error
control coding scheme using turbo iterations. An additional
advantage of the MRC detector is that the complexity is linear in
L (number of delay taps) rather than P (total number of paths),
thanks to the vector decomposition of the 2-D convolution with
the channel.

APPENDIX

A. Proof of Lemma (1)

Consider the M dimensional linear system of equations zn =
Rn · sn without the noise term in (72). The positive definite
Hermitian system matrix Rn can be split as Dn + Ln + L†n,
where Dn and Ln ∈ CM×M are the matrices containing the
diagonal and strictly lower-triangular elements, respectively. Pre
and post-multiplying both sides of (72) by D

−1/2
n and D

1/2
n ,

respectively, we get the re-scaled system of equations

z′n = R′n · s′n (82)

where

R′n = D−1/2
n ·Rn·D−1/2

n , z′n = D−1/2
n ·zn, s′n = D1/2

n ·sn
(83)

R′n is the re-scaled system matrix, which can be split as

R′n = IM + L′n + L′†n (84)

where L′n = D
−1/2
n · Ln ·D−1/2

n .
SinceR′n is a positive definite Hermitian matrix, any non-zero

vector u such that u† · u = β > 0 satisfies,

u† · (IM + L′n + L′†n) · u > 0

⇒ β + 2�[u† · L′n · u] > 0. (85)

The inequality in (85) can now be written as

a = �[u† · L′n · u] = �[u† · L′†n · u] > −
β

2
(86)

where �[·] denotes the real part. Also note that

b = �[u† · L′n · u] = −�[u† · L′†n · u] (87)

where �[·] denotes the imaginary part.
Solving (72) is equivalent to solving the linear system of

equations in (82) and re-scaling its solution vector as given in
(83). The equivalent GS iteration matrix TGS

n for (83) can be
written as

TGS
n = (IM + L′n)

−1 · L′†n. (88)

Now, the GS method for the system equation given in (70) is
guaranteed to converge if |λ(TGS

n )| < 1, where λ(TGS
n ) denotes

any eigenvalue of TGS
n , which satisfy TGS

n · v = λ(TGS
n )v, for

the corresponding eigenvectors v, i.e.,

(IM + L′n)
−1 · L′†n · v = λ(TGS

n )v. (89)

After multiplying both sides of (89) by vH · (IM + L′n), we can
write λ(TGS

n ) as

λ(TGS
n ) =

v†n · L′†n · vn

β + v†n · L′n · vn

=
|a− jb|
|β + a+ jb|

=

√
a2 + b2√

(β + a)2 + b2
. (90)

From (86), (87) and (90), it can be seen that |λ(TGS
n )| < 1.

Similarly for the case when Rn is positive semi-definite, i.e.,
(86) becomes a ≥ −β/2, the eigenvalue inequality becomes
|λ(TGS

n )| ≤ 1. Since ρ(TGS
n ) is equal to the largest absolute

value of the eigenvalues of TGS
n , the positive definiteness of Rn

ensures that ρ(TGS
n ) < 1.

B. Proof of Lemma (2)

Following the steps above, (90) can be modified for the
eigenvalues of the SOR-GS iteration matrix Tω

n defined in (74)
as

λ(Tω
n) =

(ω − 1)(v† · v) + ω(v† · L′†n · vn)

v† · v + ω(v† · L′n · v)
. (91)

The condition for eigenvalues λ(TGS
n ) in (90) can then be

modified for the SOR case as

|λ(Tω
n)| =

√
((ω − 1)β + ωa)2 + (ωb)2√

(β + ωa)2 + (ωb)2
. (92)

It can be seen from (92) that |λ(Tω
n)| < 1, if |(ω − 1)β + ωa| <

|β + ωa|, which is guaranteed if 0 < ω < 2.
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