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Sphere Lower Bound for Rotated Lattice
Constellations in Fading Channels

Albert Guillén i Fàbregas, Member, IEEE, and Emanuele Viterbo, Senior Member, IEEE

Abstract— We study the error probability performance of ro-
tated lattice constellations in frequency-flat Nakagami-m block-
fading channels. In particular, we use the sphere lower bound on
the underlying infinite lattice as a performance benchmark. We
show that the sphere lower bound has full diversity. We observe
that optimally rotated lattices with largest known minimum
product distance perform very close to the lower bound, while
the ensemble of random rotations is shown to lack diversity and
perform far from it.

Index Terms— Fading channels, lattice constellations, multidi-
mensional modulation, rotations, sphere packing.

I. INTRODUCTION

IN this letter, we study the family of full rate multi-
dimensional signal constellations carved from lattices in

frequency-flat Nakagami-m fading channels with N degrees
of freedom. In particular, we consider the uncoded case, i.e.,
no time redundancy is added to the transmitted signal. Current
best constellations are designed to achieve full diversity and
maximize the minimum product distance [1], [2], [3]. To
date, there exists no benchmark to compare the performance
of rotated lattice constellations. Recent work [4] gives an
approximation to the error probability of multidimensional
constellations in fading channels, which is not tight and does
not always have full diversity.

In this letter, we use the sphere lower bound1 (SLB), as
a benchmark for the performance of such uncoded lattice
constellations. The SLB dates back to Shannon’s work [6],
and gives a lower bound to the error probability of spherical
codes with a given length in the additive white Gaussian
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1Literature commonly refers to such bound as sphere-packing bound. In

order to avoid possible confusion with lattice terminology, we will refer to
it as sphere lower bound, since its computation is not based on the packing
radius of the lattice [5].

noise (AWGN) channel. The application of the SLB to infinite
lattices and lattice codes was studied in [7], [8] for the
AWGN channel. This SLB yields a lower bound to the error
probability of infinite lattices regardless of the lattice struc-
ture. An approximated SLB was derived in [9] for spherical
codes over the Rayleigh fading channel. Fozunbal et al. [10]
extended the SLB to coded communication over the multiple-
antenna block-fading channel. A remarkable result of [10] is
that, for a fixed number of antennas and blocks, as the code
length grows, the SLB converges to the outage probability
of the channel with Gaussian inputs [11]. Unfortunately, the
outage probability [11], [12] and the SLB of [10] are very far
from the actual error probability of uncoded multidimensional
constellations. Moreover, as the block length increases, the
performance of uncoded modulations degrades, and therefore,
the outage probability and the SLB of [10] are not very useful
as performance benchmarks.

In this letter, we use the SLB of the infinite lattice as
a benchmark for comparing multidimensional constellations
in the block-fading channel. We first show that the SLB of
infinite lattice rotations for the block fading channel has full
diversity regardless of the block length. We illustrate that as
the block length increases, the SLB increases as well. We
also show that multidimensional constellations obtained by
algebraic rotations with largest minimum product distance
obtained from pairwise error probability criteria [1], [2], [3]
perform very close to the lower bound and that the ensemble
of random rotations does not achieve full diversity.

II. SYSTEM MODEL

We consider a flat fading channel whose discrete-time
received signal vector is given by

y� = Hx� + z�, � = 1, · · · , L (1)

where y� ∈ R
N is the N -dimensional real received signal

vector, x� ∈ R
N is the N -dimensional real transmitted signal

vector, H = diag(h) ∈ R
N×N , with h = (h1, . . . , hN ) ∈

R
N , is the flat fading diagonal matrix, and z ∈ R

N is the noise
vector whose samples are i.i.d. ∼ N (0, σ2). We define the
signal-to-noise ratio (SNR) as ρ = 1/σ2. A frame is composed
of L, N -dimensional modulation symbols or of NL channel
uses. The case of complex signals obtained from 2 orthogonal
real signals can be similarly modeled by (1) by replacing L
with L′ = 2L.

We assume that the fading matrix H is constant during
one frame and it changes independently from frame to frame.
This corresponds to the block-fading channel with N blocks
[12]. We further assume perfect channel state information
(CSI) at the receiver, i.e., the receiver perfectly knows the
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fading coefficients. Therefore, for a given fading realization,
the channel transition probabilities are given by

p(y|x,H) = (2πσ2)−
N
2 exp

(
− 1

2σ2
‖y − Hx‖2

)

Moreover, we assume that the real fading coefficients follow
a Nakagami-m distribution

ph(x) =
2mmx2m−1

Γ(m)
e−mx2

where m > 0 2 and Γ(x) Δ=
∫ +∞
0

tx−1e−tdt is the Gamma
function [14]. We define the coefficients γn = h2

n for n =
1, . . . , N , which correspond to the fading power gains with
pdf pγ(x) = mmxm−1

Γ(m) e−mx and cdf Pγ(x) = 1 − Γ(mx,m),

respectively, where Γ(a, x) Δ= 1
Γ(a)

∫ +∞
x

ta−1e−tdt is the
normalized incomplete Gamma function [14]. By analyzing
Nakagami-m fading, we can recover the analysis for a large
class of fading statistics, including Rayleigh fading by setting
m = 1 and Rician fading with parameter K by setting
m = (K + 1)2/(2K + 1) [15].

A. Multidimensional Lattice Constellations

We assume that the transmitted signal vectors x belong to
an N -dimensional signal constellation S ⊆ R

N . We consider
signal constellations S that are generated as a finite subset of
points carved from the infinite lattice Λ = {Mu : u ∈ Z

N}
with full rank generator matrix M ∈ R

N×N [5]. For normal-
ization purposes we fix det(M) = 1. For a given channel
realization, we define the faded lattice seen by the receiver as
the lattice Λ′ = {M′u : u ∈ Z

N}, whose generator matrix
is given by M′ = HM. In order to simplify the labeling
operation, constellations are of the type S = {Mu + x0 :
u ∈ Z

N
M}, where ZM = {0, 1, . . . ,M − 1} represents an

integer PAM constellation, log2(M) is the number of bits per
dimension and x0 is an offset vector which minimizes the
average transmitted energy. The rate of such constellations
is R = log2 M bit/s/Hz. This is usually referred to as full-
rate uncoded transmission. In order to avoid shaping loss it
is convenient to use cubic lattice constellations [1], [2]. This
implies that M should be an orthogonal matrix (MMT = I)
. This is not required in the calculation of the SLB.

B. Maximum Likelihood Decoding Error Probability

At a given �, a maximum likelihood (ML) decoder with
perfect CSI makes an error whenever ‖y� − Hw‖2 ≤ ‖y� −
Hx‖2 for some w ∈ S, w �= x. These inequalities define the
so called decision region around x. Under ML decoding, the
frame error probability is then given by

Pf(ρ) = E[Pf(ρ|h)] = E
[
1 − (1 − Ps(ρ|h))L

]
(2)

where Pf(ρ|h) and Ps(ρ|h) are the frame and N -dimensional
symbol error probabilities for a given channel realization and

2The literature usually considers m ≥ 0.5 [13]. However, the fading
distribution is well defined and reliable communication is possible for any
0 < m < 0.5.

SNR ρ, where the average is taken over the fading distribution.
For a given constellation S, we can write that

Ps(ρ|h) = E[Ps(ρ|x,h)] =
1
|S|
∑
x∈S

∫
y/∈V(x,h)

p(y|x,h)dy

where V(x,h) is the decision region or Voronoi region for
a given multidimensional lattice constellation point x and
fading H. Computing the regions V(x,h) and the exact error
probability is in general a very hard problem. In this letter,
we use the SLB [6] as a lower bound on Pf . We define the
diversity order as the asymptotic (for large SNR) slope of Pf

in a log-log scale, i. e.,

d � − lim
ρ→∞

log Pf(ρ)
log ρ

. (3)

The diversity order is usually a function of the fading distribu-
tion and the signal constellation S. In this letter, we show that
the diversity order is the product of the signal constellation
diversity and a parameter of the fading distribution. We say
that a constellation S has full diversity if the ML decoder is
able to decode correctly in presence of N − 1 deep fades.

III. SPHERE LOWER BOUND OF A FADED LATTICE

In this Section, we recall the basics of the SLB for infinite
lattices S = Λ [7], [8] and we apply it to bound Pf(ρ). From
the geometrical uniformity of lattices we have that [7], [8]
V(x,h) = V(w,h), ∀x,w ∈ Λ,x �= w namely, for a given
fading realization, the Voronoi regions of all lattice points are
equal. Let VΛ(h) denote such Voronoi region of the faded
lattice. Therefore, and without loss of generality, we safely
assume the transmission of the all-zero codeword, i.e., x� =
0 , � = 1, . . . , L. Then, the error probability is given by [5]

Pf(ρ) = 1 − E

⎡
⎣
(

1 −
∫
z/∈VΛ(h)

p(z)dz

)L
⎤
⎦ . (4)

Due to the circular symmetry of the Gaussian noise, replacing
VΛ(h) by an N -dimensional sphere B(h) of the same volume
and radius R(h) [6], yields the corresponding SLB on the
lattice performance [7], [8]

Pf(ρ) ≥ Pslb(ρ) Δ= 1 − E

⎡
⎣
(

1 −
∫
z/∈B(h)

p(z)dz

)L
⎤
⎦ (5)

Since the volume of B(h) is [5] vol(B(h)) = π
N
2 R(h)N

Γ( N
2 +1)

,
equating it to the fundamental volume of the lattice (volume
of the Voronoi region) given by vol(VΛ(h)) = det(HM) =∏N

n=1 hn yields the sphere radius

R(h)2 =
1
π

Γ
(

N

2
+ 1
) 2

N

(
N∏

n=1

γn

)1/N

. (6)

The probability that the noise brings the received point outside
the sphere in (5) is simply expressed as [6], [7], [8]

Pslb(ρ) = 1 − E

[(
1 − Γ

(
N

2
,
R(h)2

2
ρ

))L
]

. (7)
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Fig. 1. Sphere lower bound Pslb(ρ) for various values of N and m.

We are now ready for the following result, whose proof is
given in the Appendix.

Theorem 1: In a Nakagami-m block-fading channel with N
fading blocks, the SLB on the error probability given in (7)
has diversity order d = mN for any L ≥ 1, i.e., full diversity.

The previous theorem asserts that the best lattice in a
channel with N fading blocks cannot have diversity larger than
mN , showing that the overall diversity order is the product of
the channel diversity m and the maximal signal constellation
diversity N . This result is non-trivial, and very important for
constellation design. Pairwise error probability analysis yields
that full diversity lattices can achieve full diversity [1], [2],
[3], but no converse based on the lattice structure has been
proved so far for any L. Clearly, if we construct our signal
constellation S as a subset of points of an N -dimensional
lattice, S cannot have diversity larger than m times the lattice
dimension N .

In order to evaluate (7), we need to perform a multidi-
mensional numerical integral over the joint distribution of the
vector γ = (γ1, . . . , γN ). However, by carefully observing
the expression of R(h)2 given in (6), we can see that we only
need to know the pdf of the product of fading coefficients. It
is not difficult to show that the characteristic function of the
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Fig. 2. Sphere lower bound Pslb(ρ) for L = 1 (solid), L = 10 (dashed),
L = 100 (dashed-dotted) and L = 1000 (dotted) and various values of N
and m.

random variable ζ = log
(∏N

n=1 γn

)
=
∑N

n=1 log γn is given
by

Gζ(f) =
(

mj2πf−1

Γ(m)
Γ(m − j2πf)

)N

. (8)

For N > 1 a closed form inverse transform of this function
is not available, but we can nevertheless compute the pdf
pζ(z) numerically by using an inverse fast Fourier transform
(FFT). As an example, Figures 1(a) and (b) show the SLB
for L = 1 for various values of N and m. As anticipated
by Theorem 1, the curves get steeper as m or N increase.
Moreover, Figure 2 shows the SLB for L = 1, 10, 100, 1000
and various values of N and m. For a given N and m, all
curves have the same diversity. Observe that as L increases
the SLB increases, in contrast to what happens in the coded
case, where as L increases, the SLB converges to the outage
probability of the channel, as demonstrated in [10]. We note
that the SNR ρ = 1/σ2 is relative to the infinite lattice with
vol(Λ) = 1, since the average transmitted energy cannot be
defined.

IV. PERFORMANCE OF ROTATED LATTICES

In this section, we give a number of examples that use the
SLB as a benchmark for comparing some lattices obtained by
algebraic rotations, as explained in section II-A. In particular,
we will use the best known or optimal algebraically rotated
Z

N lattices in terms of largest minimum product distance
[1], [2], [16], [3]. As we shall see, these rotations perform
very close to the lower bound. Furthermore, we will show
that the ensemble of random rotations does not have full
diversity. This highlights the role of specific constructions that
guarantee full diversity and largest minimum product distance
for approaching the SLB.

To illustrate this, Figures 3, 4, 5(a) and 5(b), compare
the frame error probability Pf(ρ) of optimal rotations with
largest minimum product distance (see [1], [2], [16] for more
information on optimal constructions) obtained by simulation
of the infinite lattice using a Schnorr-Euchner decoder [17]
with the Pslb(ρ). The corresponding rotation matrices are
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Fig. 3. Frame error probability Pf(ρ) and sphere lower bound Pslb(ρ) for
N = 2, m = 0.5, 1, 2 and L = 1, 100.

also available in [3]3. In particular, Figure 3 compares the
performance of the cyclotomic rotation for N = 2 and
L = 1, 100 and m = 0.5, 1, 2. Figures 5(a) and 5(b) show
the SLB and the optimal rotations for N = 4, 8, namely
the Krüskemper and cyclotomic rotations respectively [1],
[2], [16]. As we observe, optimal rotations are very close
to the SLB. As N increases, algebraic rotations with largest
minimum product distance show some gap to Pslb(ρ). This is
due to the fact that for large N , the minimum product distance
is not the only relevant design parameter for optimizing the
coding gain. Without any loss of generality in the presentation
of our results, from now on, and unless otherwise specified,
forthcoming examples will be shown for m = 1.

Figures 4(a), 5(a) and 5(b) also compare by simulation
the performance of the aforementioned full-diversity algebraic
rotations with the average performance of the ensemble of
random rotations. To compute it, at every frame we generate
a random matrix A with zero mean and unit variance i.i.d.
Gaussian entries. We then perform a A = QR decomposition
and let M = Q. This is the simplest way of generating the
ensemble of random rotations (orthogonal matrices) with the
Haar distribution [18], [19]. As we observe, algebraic rotations
perform very close to Pslb(ρ). On the other hand, the average
error probability over the ensemble of random rotations,
lacks full diversity and shows bad performance. To better
understand this behavior, Figure 4(b) shows the simulated
performance of 30 random samples of the Haar ensemble
for N = 1 and L = 1, compared to the SLB (thick solid
line), performance of the cyclotomic rotation (circles) and the
ensemble average (thick dashed line). We observe that almost
all instances have full diversity (though with very different
coding gains). However, the ensemble average performance is
dominated by bad rotation matrices. In particular, a closer look
to the two worse curves reveals that the corresponding rotation
matrices are very close to the identity, achieving effectively no
rotation nor diversity. We also observe that as N increases, the
performance of random rotations improves, despite showing a

3Remark that the rotations in [3] are given in row format as in [5] and that
here we use the column convention for lattice generator matrices.
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Fig. 4. Frame error probability Pf(ρ) and sphere lower bound Pslb(ρ) for
N = 2, m = 1 and L = 1, 100.

different asymptotic slope. This is due to the fact that for
large N , there is a lot of diversity in the channel and the error
probability curves get very steep. Thus for large N , random
rotations will perform well for low-to-medium SNR.

V. PERFORMANCE OF MULTIDIMENSIONAL SIGNAL SETS

Practical systems use finite signal alphabets and the perfor-
mance of the infinite rotated lattice should serve mainly as a
guideline. Unfortunately, we do not have a bound similar to
Pslb(ρ) for the finite case to take into account the boundary
effects. We conjecture that the best multidimensional signal set
using M -PAM is the one that has generator matrix M such
that Pf(ρ) is closest to Pslb(ρ) for large enough ρ. As we shall
see in the following example, as M increases, the performance
of the multidimensional signal constellation approaches that of
the infinite rotated lattice, despite the boundary effects. This is
precisely the continuity argument used in [8] for lattice codes.
Indeed, Figures 6(a), 6(b) and 6(c) show the performance
for N = 2, 4, 8 and L = 1, 100 of the signal constellations
obtained from M -PAM with the optimal algebraic rotation. In
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Fig. 5. Frame error probability Pf(ρ) and sphere lower bound Pslb(ρ) for
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the comparison with the infinite lattice (circles) and Pslb(ρ),
we observe all curves are within 1.5 dB.

Note that the SNR axis does not take into account the
different average energies of the finite constellations and that
we assume that the minimum distance of the M -PAM is 1 for
comparison to the infinite lattice lower bound. In order to plot
the performance in terms of Eb

N0
= Eb

2 ρ it is enough to shift

the curves by 10 log10

(
M2−1

24 log2 M

)
dB.

VI. CONCLUSIONS

In this paper we have studied the performance of multidi-
mensional rotated lattice constellations. We have applied the
sphere lower bound for the infinite lattice to the block-fading
channel and proved that the bound has full diversity. We have
shown that optimally rotated algebraic lattices perform very
close to the bound, while the average over the ensemble of
random rotations does not. Furthermore, we have shown that
finite constellations obtained from the rotation of {M−PAM}N

constellations perform close to the bound as M gets large.
We have conjectured that optimal multidimensional signal sets
with M -PAM constellation are obtained from rotated lattices
whose performance is closest to the sphere lower bound.
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Fig. 6. Frame error probability Pf(ρ) of the finite constellation generated
with 4, 8, 16, 32-PAM, Pf(ρ) of the infinite lattice and sphere lower bound
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APPENDIX A: PROOF OF THEOREM 1

The exponential equality
.= and inequalities ≥̇ and ≤̇ were

introduced in [20]. We write f(z) .= zd to indicate that
limz→∞

log f(z)
log z = d. The exponential inequalities ≥̇ and

≤̇ are defined similarly. The function 11{E} is the indicator
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function of the event E , namely, 11{E} = 1 when E is true,
and zero otherwise. Following [20], we define the normalized
fading gains αn

Δ= − log γn

log ρ . It is not difficult to show that the
joint pdf of the vector α = (α1, . . . , αN ) is given by [22],

p(α) =
(

mm log ρ

Γ(m)

)N

e−m
�N

n=1 ρ−αn
ρ−m

�N
n=1 αn .

Using the same arguments as in [20], [21], [22] we have that
asymptotically for large ρ

p(α) .= ρ−m
�N

n=1 αn

for α ∈ R
N
+ , where R+ are the positive reals including zero.

We can express the SLB as,

Pslb(ρ) = 1 −
∫

RN

[
1 − Γ

(
N

2
, β(α)

)]L

p(α)dα (9)

where

β(α) Δ=
1
2π

Γ
(

N

2
+ 1
) 2

N

ρ1− 1
N

�N
n=1 αn (10)

is the second argument of the incomplete Gamma function in
(7) as a function of α. Since 0 ≤ [

1 − Γ
(

N
2 , β(α)

)]L ≤ 1
we can apply the dominated convergence theorem [23] and
write

lim
ρ→∞

∫
RN

[
1 − Γ

(
N

2
, β(α)

)]L

p(α)dα

=
∫

RN

lim
ρ→∞

[
1 − Γ

(
N

2
, β(α)

)]L

p(α)dα. (11)

Therefore, since

lim
ρ→∞β(α) =

{
0 if

∑N
n=1 αn > N

∞ if
∑N

n=1 αn < N
(12)

we have that

lim
ρ→∞Γ

(
N

2
, β(α)

)
=

{
1 if

∑N
n=1 αn > N

0 if
∑N

n=1 αn < N,
(13)

which means that for any L ≥ 1, the contribution to Pslb(ρ)
from α such that

∑N
n=1 αn < N is negligible for large ρ.

Also, since p(α)=̇ρ−m
�N

n=1 αn , we can write that, for every
L ≥ 1,

Pslb(ρ) =
∫
α∈RN

p(α)dα
.=
∫
α∈A∩R

N
+

ρ−m
�N

n=1 αndα

(14)
where A =

{
α ∈ R

N :
∑N

n=1 αn > N
}

. Therefore the di-
versity order of the SLB is given by

d = − lim
ρ→∞

1
log ρ

log
∫
α∈A∩R

N
+

exp

(
−m log ρ

N∑
n=1

αn

)
dα

(15)
We now apply Varadhan’s lemma [24] and we obtain that

d = inf
α∈A∩R

N
+

{
m

N∑
n=1

αn

}
= m inf

α∈A∩R
N
+

{
N∑

n=1

αn

}
= mN

(16)

which completes the proof.
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[19] A. M. Tulino and S. Verdú, Random Matrix Theory and Wireless
Communications, Foundations and Trends in Communications and
Information Theory. Now Publishers Inc, 2004.

[20] L. Zheng and D. Tse, “Diversity and multiplexing: a fundamental
tradeoff in multiple antenna channels,” IEEE Trans. Inf. Theory, vol. 5,
no. 49, pp. 1073–1096, May 2003.
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