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Abstract—This paper develops novel transmission schemes to
support secure dual-hop Alice–Ray–Bob relaying communication
in the presence of a passive eavesdropper (Eve). Due to unknown
eavesdropper channel conditions, data transmissions from Alice
(to Ray) and from Ray (to Bob) are required to satisfy the
secrecy constraint in terms of maximum acceptable secrecy
outage probability (SOP). The throughput maximization problem
is studied for two scenarios: 1) fixed (Alice and Ray) power
allocation; and 2) adaptive power allocation. The resulting con-
strained optimization problems are solved using the Lagrangian
approach. In each frame, either Alice or Ray or neither can
be scheduled for transmission depending on the instantaneous
main channel conditions. Numerical results demonstrate the
effectiveness of the proposed schemes over the existing schemes
under various secrecy constraint and signal-to-noise power ratio
(SNR) regimes.

Index Terms—Dual-hop relaying, secrecy outage probability,
adaptive link scheduling, throughput maximization.

I. INTRODUCTION

Physical layer security is one of the promising techniques

for wireless secure communications, which aims at exploit-

ing physical layer properties of the communication systems,

such as interference, noise, and wireless fading. The security

measure is secrecy capacity that was introduced in [1], where

a 3-node wiretap model Alice–Bob–Eve has been considered.

Secrecy capacity characterizes the maximum transmission rate

from the transmitter (Alice) to the receiver (Bob), below which

the eavesdropper (Eve) is unable to obtain any information.

Subsequent studies on secrecy capacity of a wiretap fading

channel model have been provided in [2]. It is assumed that

channel state information (CSI) of both main and eavesdrop-

per channels is available at Alice to compute secrecy capacity

and enable secure encoding. However, in many scenarios,

the CSI of a passive Eve is very unlikely to be unveiled

at Alice, and thus it is more realistic to assume that Alice

knows the statistics of the eavesdropper channel only (in

addition to the CSI of the main channel). Due to fading

characteristics, a secrecy outage event is deemed to occur

when the instantaneous capacity to Eve is larger than secrecy

rate [3]– [6].

Consider the wiretap fading model Alice–Bob–Eve. Sup-

porting secure communication can be challenging with a

small secrecy outage probability (SOP) requirement, espe-

cially when the eavesdropper channel is moderately degraded

(relative to the main channel). This motivates the potential

deployment of a relay (Ray) and dual-hop relaying protocol

to enhance secure communication between Alice and Bob,

where Ray locates between Alice and Bob. With suitable

Ray location, the main Alice–Ray and Ray–Bob channels

can be stronger than the eavesdropper Alice–Eve and Ray–

Eve channels due to shorter communication distances, thereby

possibly reducing SOP and/or increasing secrecy rates. In

addition, we can also improve security by exploiting the

fading diversity of the main channels, where Alice or Ray can

be adaptively scheduled to make a transmission depending

upon instantaneous channel conditions. In such cases, Ray

is required to buffer the received packets from Alice [7].

It is worth noting that jamming signals or artificial noise

techniques etc. can also be employed to enhance security in

dual-hop communications [8]– [11]. However, such techniques

are out of the scope of our work.

Specifically, our work studies throughput–optimal adaptive

link scheduling (ALS) problem for secure dual-hop Alice–

Ray–Bob buffer-aided relaying communications. Due to un-

known eavesdropper channel conditions, the secrecy constraint

is imposed in terms of maximum allowable SOP to control

the risk of secrecy outage. Different from [10], [12] etc.

assuming that Eve monitors Ray–Bob transmission only, our

work considers a more realistic scenario where Eve monitors

both Alice–Ray and Ray–Bob transmissions [11]. Our main

contributions are summarized below.

1) We formulate the throughput-optimal ALS problem

and derive the optimal solution using Lagrangian approach,

which takes into account both fading distributions and secrecy

constraint. In each frame, either Alice or Ray can be scheduled

for data transmission depending on instantaneous channel

conditions. When the channel conditions are below certain

thresholds, no transmission occurs in order to prevent secrecy

outage. Further, we revisit the special case when Eve monitors

Ray–Bob transmission only (see [12] with a sub-optimal ALS

solution), and obtain an optimal solution.

2) The above study is extended by considering jointly ALS

and power allocation for further throughput enhancement.

3) We numerically demonstrate that the throughput of our

scheme outperforms other known schemes: 1) Fixed link

scheduling (FLS); 2) Non-buffer relaying; 3) Direct Alice–

Bob communication. Compared to direct transmission scheme,

ALS is more advantageous when Ray is located at mid-

way between Alice and Bob. The proposed ALS scheme

outperforms both FLS and non-buffer relaying schemes. The

ALS scheme with adaptive power allocation can provide

significant capacity gains over fixed power allocation at low

signal-to-noise power ratios (SNRs).
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II. MATHEMATICAL MODEL

A. Transmission model

We consider a dual-hop decode-and-forward half-duplex

relaying communication, where Alice (A) communicates with

Bob (B) via an intermediate Ray (R) using the same frequency

with bandwidth B (Hz). Ray can buffer the received data from

Alice before forwarding them to Bob later. Moreover, there

is a passive Eve (E) trying to eavesdrop the communication

between Alice and Bob.

1) Channel model: We assume block-fading channels with

fading block duration being equal to the transmission frame

T (seconds), i.e., the channel power gains remain unchanged

during a frame but vary independently from frame to frame.

For notational simplicity, we normalize TB = 1 w.l.o.g.

Let hA[t], hAE [t], hB [t], and hRE [t], denote the normal-

ized channel power gains in frame t of the Alice–Ray (A–

R), Alice–Eve (A–E), Ray–Bob (R–B), and Ray–Eve (R–E)

channels, respectively. Moreover, hi[t], i ∈ {A,AE,B,RE}
are assumed to be independent under some fading distributions

(i.e., Rayleigh, Nakagami etc.) and means h̄i. Let us denote

the probability distribution functions (pdf) and cumulative

distribution functions (cdf) of the random channel power gains

as fhi(hi), and Fhi(hi), i ∈ {A,AE,B,RE}.

Let PA and PR denote the transmit powers of Alice and

Ray, respectively. Without loss of generality (w.l.o.g.), we

assume PA = PR = P . Thus, Phi[t], i ∈ {A,AE,B,RE}
is the instantaneous link SNR in frame t. We assume that

instantaneous link SNR is available at the corresponding link

receiver. Furthermore, it is assumed that, in frame t, Alice

knows hA[t] and Ray knows hB [t] to adaptively vary the se-

crecy rates. Furthermore, Alice and Ray do not know hAE [t],
and hRE [t], respectively (e.g., passive Eve), although they are

assumed to know the fading statistics (e.g., distributions) of

hAE [t], and hRE [t] [3]– [6].

2) Adaptive link scheduling (ALS): Due to half-duplex

constraint, at most one of Alice or Ray is allowed to transmit

in each frame t. Let φA[t], φB [t] ∈ {0, 1} denote binary (link

scheduling) variables for frame t, where we set φA[t] = 1
if Alice transmits (e.g., active A–R link) and otherwise,

φA[t] = 0. Similarly, φB [t] = 1 if Ray transmits (e.g., active

R–B link) and otherwise φB [t] = 0. We require:

φA[t] + φB [t] ≤ 1, ∀t.

Note that it is a possible scenario that none of Alice or Ray

is transmitting in a frame.

If φA[t] = 1, then Alice transmits data to Ray with secrecy

rate rAS [t] > 0 (b/s/Hz). We assume that Alice always has

data to transmit. Since Alice does not know hAE [t], the

following secrecy constraint is imposed [3], [4], [12]:

Prob
(
rAE [t] > rA[t]− rAS [t]

)
≤ ζsop, (1)

where Prob(A) denotes the probability of event A, ζsop ∈
(0, 1) is the maximum allowable SOP, and the rates are given

by:

ri[t] = log2(1 + Phi[t]), i ∈ {A,AE}.

Note that when (1) is satisfied, the risk of secrecy outage

is under control, and Ray can decode the messages from

Alice correctly since rAS [t] < rA[t]. On the other hand, if

φB [t] = 1, then Ray transmits its currently buffered data

to Bob with secrecy rate rRS [t] > 0 (b/s/Hz). Similarly, the

following secrecy constraint is imposed:

Prob
(
rRE [t] > rB [t]− rRS [t]

)
≤ ζsop, (2)

where the rates are given by:

ri[t] = log2(1 + Phi[t]), i ∈ {B,RE}.
A smaller ζsop implies more stringent secrecy constraint.

3) SOP constraint manipulation: After some manipula-

tions, the secrecy constraint (1) can be equivalently expressed

as the following two conditions:

0 < rAS [t] ≤ rA[t]− rmin
A , rA[t] > rmin

A (3)

where rmin
A can be derived from the cdf FhAE

(hAE) as:

rmin
A = log2(1 + Phmin

A ), hmin
A = F−1

hAE
(1− ζsop)

where F−1
hAE

is the inverse function of FhAE
, i.e.,

F−1
hAE

(FhAE
(hAE)) = hAE . Similarly, the secrecy constraint

(2) can be written as:

0 < rRS [t] ≤ rB [t]− rmin
B , rB [t] > rmin

B (4)

and

rmin
B = log2(1 + Phmin

B ), hmin
B = F−1

hRE
(1− ζsop).

where F−1
hRE

is the inverse function of FhRE
.

As an example, for Rayleigh fading eavesdropper channels,

we have:

hmin
A = −h̄AE log(ζsop), hmin

B = −h̄RE log(ζsop).

4) Throughput: Denote Q[t] ≥ 0 as the queue length of

the Ray buffer in frame t = 1, 2, . . .. Then, the corresponding

queue length (or queue state) evolution is given as:

Q[t+ 1]=Q[t]−min
{
Q[t], φB [t]rRS [t]

}
+φA[t]rAS [t]. (5)

The second term on the right side of (5) is indeed the actual

data arriving at Bob in frame t (i.e, the throughput). The

(secrecy) throughput is defined as:

τ = lim
T →∞

1

T

T∑
t=1

min
{
Q[t], φB [t]rRS [t]

}
= E

[
min

{
Q[t], φB [t]rRS [t]

}]
, (6)

where E[.] denotes the statistical expectation operator.

Similarly, the average arrival rate to Ray buffer is:

λ = E
[
φA[t]rAS [t]

]
. (7)

Due to flow conservation rule, it holds true that: λ ≥ τ . The

average service rate is also defined as:

μ = E
[
φB [t]rRS [t]

]
. (8)

Remark 1: It is true that τ = min{λ, μ}.

Remark 2: In order to maximize the throughput τ , we

should maximize λ and μ. Hence, in frame t, when φA[t] = 1
(or φB [t] = 1), it is optimal for Alice (or Ray) to transmit

with the largest possible secrecy rate rAS [t] = rA[t] − rmin
A

(or rRS [t] = rB [t] − rmin
B , respectively). Moreover, in frame
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t, if either rA[t] > rmin
A or rB [t] > rmin

B , then φA[t] = 1
or φB [t] = 1, respectively. Also, if both rA[t] > rmin

A and

rB [t] > rmin
B , whether Alice or Ray transmits depending on

the optimal ALS scheme as we study in the following.

III. OPTIMAL ADAPTIVE LINK SCHEDULING

In this section, we will formulate the throughput-optimal

ALS problem and present the optimal solution using La-

grangian approach for constrained optimization.

A. Problem formulation

The throughput-optimal ALS problem can be cast as:

max
φA[t],φB [t],∀t

min{λ, μ} (9a)

such that: rA[t] > φA[t]r
min
A , ∀t, (9b)

rB [t] > φB [t]r
min
B , ∀t, (9c)

φA[t] + φB [t] ≤ 1, φA[t], φB [t] ∈ {0, 1}, ∀t.(9d)

B. Optimal solution

We first look at the largest and smallest arrival and service

rates and respective transmission schemes.

Consider the following transmission scheme (φ†
A[t], φ

†
B [t]):

(φ†
A[t], φ

†
B [t]) =

⎧⎪⎨
⎪⎩
(1, 0), rA[t] > rmin

A ,

(0, 1), rB [t] > rmin
B , and rA[t] ≤ rmin

A ,

(0, 0), otherwise.

Alice transmits whenever its main channel condition satisfies

the SOP constraint. On the other hand, Ray transmits when its

main channel condition satisfies the SOP constraint and Alice

does not transmit. Such scheme leads to the largest arrival rate

and smallest service rate:

λmax = E[φ†
A[t](rA[t]−rmin

A )], μmin = E[φ†
B [t](rB [t]−rmin

B )].

Hence, if λmax ≤ μmin, then (φ‡
A[t], φ

‡
B [t]) is the solution of

(9a)–(9d) with optimal throughput λmax.

Consider another scheme (φ‡
A[t], φ

‡
B [t]) as follows:

(φ‡
A[t], φ

‡
B [t]) =

⎧⎪⎨
⎪⎩
(1, 0), rA[t] > rmin

A , and rB [t] ≤ rmin
B ,

(0, 1), rB [t] > rmin
B ,

(0, 0), otherwise.

The above scheme results in the smallest arrival and largest

service rates:

λmin = E[φ‡
A[t](rA[t]−rmin

A )], μmax = E[φ‡
B [t](rB [t]−rmin

B )].

Hence, if λmin ≥ μmax, then (φ‡
A[t], φ

‡
B [t]) is the solution of

(9a)–(9d) with optimal throughput μmax.

If none of the above schemes are optimal, (i.e., λmax >
μmin and λmin < μmax), then the optimal solution

(φ∗
A[t], φ

∗
B [t]) of (9a)–(9d) should ensure equal arrival and

service rates such that max{λmin, μmin} < τ∗ = λ∗ =
μ∗ < min{λmax, μmax} [7]. Such rates can be obtained by

allowing both Alice and Ray having chances to transmit when

rA[t] > rmin
A and rB [t] > rmin

B .

The scheme (φ∗
A[t], φ

∗
B [t]) can be obtained by solving the

reformulated problem of (9a)–(9d) assuming λ = μ:

max
φA[t],φB [t],∀t

E
[
(rA[t]− rmin

A )φA[t]
]

(10a)

such that:

E
[
(rA[t]− rmin

A )φA[t]
]
= E

[
(rB [t]− rmin

B )φB [t]
]
, (10b)

Constraints (9b)–(9d). (10c)

To solve (10a)–(10c), we employ the Lagrangian approach for

constrained optimization. Specifically, by absorbing the rate

equality constraint into the Lagrangian function, we come up

with the following Lagrangian maximization problem:

max
φA[t],φB [t],∀t

E
[
(1− ξ)(rA[t]− rmin

A )φA[t]

+ξ(rB [t]− rmin
B )φB [t]

]
such that: Constraints (9b)–(9d) (11)

where ξ is the Lagrange multiplier associated with the rate

constraint. Note that ξ ∈ (0, 1) to avoid trivial solutions, which

are clearly not optimal.
Now if we can solve (11) for the optimal solution φ∗

A[t],
and φ∗

B [t], ∀t, and the multiplier ξ is determined so that the

equality constraint is satisfied:

E
[
φ∗
A[t](rA[t]− rmin

A )
]
= E

[
φ∗
B [t](rB [t]− rmin

B )
]

(12)

then, from the Lagrangian sufficiency theorem, φ∗
A[t], and

φ∗
B [t], ∀t is also the optimal solution of (10a)–(10c).
Now, to solve (11), we can see that in order to maximize

the expectation value under constraints in each frame, we have

to maximize the term inside the expectation operator in each

frame. Hence, the optimal solution (φ∗
A[t], φ

∗
B [t]) in frame t

of (11) is determined as:

max
φA[t],φB [t]

(1− ξ)(rA[t]− rmin
A )φA[t] + ξ(rB [t]− rmin

B )φB [t]

such that: rA[t] > φA[t]r
min
A ,

rB [t] > φB [t]r
min
B ,

φA[t] + φB [t] ≤ 1, φA[t], φB [t] ∈ {0, 1}. (13)

The solution of (13) can be easily obtained using inspection

as follows:

(φ∗
A[t], φ

∗
B [t]) =⎧⎪⎪⎨

⎪⎪⎩
(1, 0), rA[t] > max

{
rmin
A , ξ

1−ξ (rB [t]− rmin
B ) + rmin

A

}
,

(0, 1), rB [t] > max
{
rmin
B , 1−ξ

ξ (rA[t]− rmin
A ) + rmin

B

}
,

(0, 0), otherwise.

Then, ξ is determined such that (12) is satisfied. We then

obtain the solution for (10a)–(10c).
Remark 3: On the existence and uniqueness of ξ. It can

be seen that the left-hand and right-hand sides of (12) are

decreasing, and increasing with increasing ξ ∈ (0, 1), respec-

tively. Moreover, we have:

lim
ξ→0

E
[
φ∗
A[t](rA[t]− rmin

A )
]
= λmax,

lim
ξ→1

E
[
φ∗
A[t](rA[t]− rmin

A )
]
= λmin,

lim
ξ→0

E
[
φ∗
B [t](rB [t]− rmin

B )
]
= μmin,

lim
ξ→1

E
[
φ∗
B [t](rB [t]− rmin

B )
]
= μmax.
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Hence, under the assumption λmax > μmin and λmin < μmax,

there exists a unique ξ satisfying (12), which can be efficiently

computed using a bi-section search algorithm. We omit the

details due to space limitation.

C. Special case: Eve eavesdrops Ray’s transmission only

Most existing works have assumed that Eve eavesdrops the

transmission from Ray to Bob only, i.e., Eve is outside of the

communication range of Alice [12] etc. In our model, this case

can be modeled as h̄AE = 0, and hence, hmin
A = rmin

A = 0.

For simplicity, consider the case without maximum average

power constraint as in [12]. Omitting the details, the optimal

ALS scheme can be obtained as follows:

(φ∗
A[t], φ

∗
B [t]) =

{
(0, 1), rB [t] >

1−ξ
ξ rA[t] + rmin

B ,

(1, 0), otherwise.

The multiplier ξ ∈ (0, 1) is determined such that:

E
[
φ∗
A[t]rA[t]

]
= E

[
φ∗
B [t](rB [t]− rmin

B )
]
.

In [12], it is assumed that when Ray transmits, he transmits

with fixed rate rRS . Hence, to ensure secrecy constraint

satisfaction, we have rRS ∈ (0, rB [t] − rmin
B ]. Using the

proposed approach, we can derive the optimal transmission

scheme in this case as:

(φ∗
A[t], φ

∗
B [t]) =

⎧⎪⎨
⎪⎩
(0, 1), rB [t] > rRS + rmin

B ,

and rA[t] <
ξ

1−ξ rRS ,

(1, 0), otherwise.

(14)

Also, the multiplier ξ is determined such that:

E
[
φ∗
A[t]rA[t]

]
= E

[
φ∗
B [t]rRS

]
.

Note that (14) corrects the result derived in [12] which is

claimed to be optimal.

IV. JOINT ADAPTIVE LINK SCHEDULING AND POWER

ALLOCATION

A. Problem formulation

Previously, we have assumed fixed Alice and Ray transmit

powers P . This section considers adaptive Alice and Ray

power allocation to exploit the temporal fading diversity for

further potential throughput enhancement. More specifically,

in frame t, denote Alice and Ray transmit powers as PA[t]
and PR[t], respectively. If φA[t] = 1 then PA[t] > 0 and

PR[t] = 0 while if φB [t] = 1 then PA[t] = 0 and PR[t] > 0.

Then, the average power is given by:

E
[
φA[t]PA[t] + φB [t]PR[t]

]
. (15)

Note that in order to have φA[t] = 1 and PA[t] > 0, a

necessary condition is hA[t] > hmin
A . Then, the secrecy rate

for Alice is given by:

rAS [t] = log2(1 + PA[t]hA[t])−log2(1 + PA[t]h
min
A ). (16)

Analogously, for φB [t] = 1 and PR[t] > 0, we have:

rRS [t] = log2(1 + PR[t]hB [t])−log2(1 + PR[t]h
min
B ) (17)

which is feasible for hB [t] > hmin
B only.

The allocation problem can be cast as:

max
PA[t],PR[t],φA[t],φB [t],∀t

E
[
φA[t]rAS [t]

]
(18a)

such that:

E
[
φA[t]rAS [t]

]
= E

[
φB [t]rRS [t]

]
, (18b)

E
[
φA[t]PA[t] + φB [t]PR[t]

]
≤ Pmax, (18c)

hA[t] > φA[t]h
min
A , ∀t, (18d)

hB [t] > φB [t]h
min
B , ∀t, (18e)

φA[t] + φB [t] ≤ 1, ∀t, (18f)

PA[t], PR[t] ≥ 0, φA[t], φB [t] ∈ {0, 1}, ∀t (18g)

where Pmax is the maximum average power constraint.

B. Optimal solution

Similar to the fixed power allocation case, we use La-

grangian approach to solve (18a)–(18g). We have the follow-

ing problem:

max
PA[t],PR[t],φA[t],φB [t],∀t

E

[
(1− ω)φA[t]rAS [t]

+ωφB [t]rRS [t]− σ
(
φA[t]PA[t] + φB [t]PR[t]

)]
such that: Constraints (18d)–(18g) (19)

where ω, and σ > 0 are the Lagrange multipliers associated

with the equality constraint (18b) and inequality constraint

(18c), respectively. Again, we can see that ω ∈ (0, 1) to avoid

trivial solutions.

To solve (19), we need maximize the term inside the

expectation operator in each frame t as in the case of fixed

power allocation, i.e.,

max
PA[t],PR[t],φA[t],φB [t],∀t

(1− ω)φA[t]rAS [t]

+ωφB [t]rRS [t]− σ
(
φA[t]PA[t] + φB [t]PR[t]

)
such that: hA[t] > φA[t]h

min
A ,

hB [t] > φB [t]h
min
B ,

φA[t] + φB [t] ≤ 1,

PA[t], PR[t] ≥ 0, φA[t], φB [t] ∈ {0, 1}.(20)

Before solving (20), first assume hA[t] > hmin
A and consider

φA[t] = 1 and corresponding power allocation problem in

frame t for Alice as follows:

argmax
PA[t]≥0

(1− ω)
(
log2(1 + PA[t]hA[t])

− log2(1 + PA[t]h
min
A )

)
− σPA[t].(21)

We can verify that (21) is a convex optimization problem due

to the concavity of the objective function. We can derive the

optimal power allocation for Alice as:

P ∗
A[t]=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1
2

[√(
1

hmin
A

− 1
hA[t]

)2

+ 4(1−ω)
σ log(2)

(
1

hmin
A

− 1
hA[t]

)

−
(

1
hmin
A

+ 1
hA[t]

)]
, hA[t]− hmin

A > σ log(2)
1−ω

0, otherwise.
(22)
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The secrecy rate allocation for Alice is thus:

r∗AS [t] = log2(1 + P ∗
A[t]hA[t])− log2(1 + P ∗

A[t]h
min
A ). (23)

Next, assume hB [t] > hmin
B and consider φB [t] = 1, we

derive the optimal power and secrecy rate allocation for Ray

as follows:

P ∗
R[t]=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1
2

[√(
1

hmin
B

− 1
hB [t]

)2

+ 4ω
σ log(2)

(
1

hmin
B

− 1
hB [t]

)

−
(

1
hmin
B

+ 1
hB [t]

)]
, hB [t]− hmin

B > σ log(2)
ω

0, otherwise
(24)

and

r∗RS [t] = log2(1 + P ∗
R[t]hB [t])− log2(1 + P ∗

R[t]h
min
B ). (25)

Using the above derivations, we can obtain the optimal

joint link scheduling and power allocation solution of (20)

by considering the following scenarios:

Scenario 1: hA[t] ≤ hmin
A + σ log(2)

1−ω and hB [t] ≤ hmin
B +

σ log(2)
ω : (φ∗

A[t], φ
∗
B [t]) = (0, 0).

Scenario 2: hA[t] > hmin
A + σ log(2)

1−ω and hB [t] ≤ hmin
B +

σ log(2)
ω : (φ∗

A[t], φ
∗
B [t]) = (1, 0).

Scenario 3: hA[t] ≤ hmin
A + σ log(2)

1−ω and hB [t] > hmin
B +

σ log(2)
ω : (φ∗

A[t], φ
∗
B [t]) = (0, 1).

Scenario 4: hA[t] > hmin
A + σ log(2)

1−ω and hB [t] > hmin
B +

σ log(2)
ω .

The link scheduling solution is determined as:

(φ∗
A[t], φ

∗
B [t]) =

⎧⎪⎨
⎪⎩
(1, 0), (1− ω)r∗AS [t]− σP ∗

A[t]

≥ ωr∗RS [t]− σP ∗
R[t]

(0, 1), otherwise.

The multipliers ω > 0 and σ > 0 satisfy:

E
[
φ∗
A[t]r

∗
AS [t]

]
= E

[
φ∗
B [t]r

∗
RS [t]

]
E
[
φ∗
A[t]P

∗
A[t] + φ∗

B [t]P
∗
R[t]

]
= Pmax.

V. NUMERICAL RESULTS

A. System configurations

We consider Rayleigh fading channels and assume the

distance from Alice to Bob is normalized to 1. Under dual-

hop relaying, we assume Alice, Ray, and Bob are located on

a straight line, where the Alice–Ray distance and Ray–Bob

distance are dR,x ∈ (0, 1) and 1− dR,x ∈ (0, 1), respectively.

In a 2-D plane, we can assume Alice, Ray, and Bob are located

at points with coordinates (0, 0), (dR,x, 0), and (1, 0).
Denote the average channel power gain of the Alice–Bob

link as h̄AB . We assume h̄A = h̄AB/d
γ
R,x, and h̄B =

h̄AB/(1 − dR,x)
γ , where γ is the path-loss exponent. In the

following, we set γ = 2.

We assume that Eve is located at point with coordinate

(dE,x, dE,y). Hence, the distances between Alice and Eve and

between Ray and Eve can be computed as dAE = (d2E,x +

d2E,y)
1/2, and dRE = ((dE,x−dR,x)

2+d2E,y)
1/2, respectively.

Hence, we have h̄AE = h̄AB/d
γ
AE , and h̄RE = h̄AB/d

γ
RE .

W.l.o.g., we normalize h̄AB = 0 dB.
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Fig. 1. Secrecy throughput versus Ray location dR,x.

The performance of the proposed ALS schemes is compared

with that of the benchmark schemes: buffer-aided relaying

with fixed link scheduling (FLS), non-buffer relaying, and

direct Alice–Bob transmission. For simulation instances, we

ensure the same average power consumption Pmax and end-

to-end SOP ζe2esop = 1 − (1 − ζsop)
2 for the transmission

schemes.

B. Fixed power allocation

Let us fix Eve’s location dE,x = dE,y = 1.5
√
2/2 (i.e.,

dAE = 1.5). In this case, the eavesdropper Alice–Eve link is

3.52 dB less than the Alice–Bob link.

We first investigate the effects of Ray’s location on the

performance of the transmission schemes. Let Pmax = 10 dB

and ζe2esop = 10−1. In Fig. 1, we plot the throughputs of the

transmission schemes versus dR,x ∈ (0, 1). We can see that

ALS scheme significantly outperforms FLS and non-buffer

relaying schemes due to its capability to exploit the fading

diversity. Moreover, it can be observed that Ray’s location has

profound effects on the performance of the relaying schemes.

If Ray is deployed near Alice or Bob, ALS scheme performs

worse than direct transmission, while when Ray is located

near mid-way between Alice and Bob, ALS scheme is more

efficient.

The above experiment shows that deploying Ray equidistant

between Alice and Bob attains good throughput for relaying

schemes. Hence, in the following, we assume dR,x = .5. We

next investigate the performance of ALS scheme under dif-

ferent ζe2esop and Pmax. Fig. 2 displays the contour throughput

plots of ALS scheme and its potential throughput gains/losses

over direct transmission. As the SNR increases and/or the

secrecy constraint becomes less stringent, higher throughput

can be achieved as expected. Also, ALS scheme outperforms

direct transmission in most cases, except for sufficiently large

SNR and loose secrecy constraint. This is consistent with the

fact that relaying is beneficial at low SNRs.

C. Adaptive power allocation

We assume that dAE = dRE = 1.5, i.e., Eve is equidistant

from Alice and Ray. Fix ζe2esop = 10−1. Fig. 3 plots the

throughputs of ALS schemes with fixed and adaptive power
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Fig. 3. Throughput versus Pmax .

allocation versus Pmax. We can observe that the gains due to

adaptive power allocation are more noticeable at low SNRs

than at high SNRs. Since the secrecy rate function is concave

increasing with power, adaptive power allocation is more

effective at low SNRs to vary the secrecy rates. At high SNRs,

varying the power will not affect much the secrecy rates.

VI. CONCLUSIONS

We have explored the potential deployment of a relay (Ray)

and studied corresponding transmission schemes in supporting

secure Alice–Bob communication over fading channels. To-

ward practical secure communications, we assumed that only

the statistics of the eavesdropper channels are available to the

transmitters (in addition to CSI of the main channels). We have

studied the adaptive link scheduling problem for throughput

maximization for two scenarios: 1) fixed (Alice and Ray)

power allocation; and 2) adaptive power allocation. The con-

strained optimization problems are solved using Lagrangian

approach and convex optimization. Simulation results demon-

strate the effectiveness of the developed transmission schemes

over several benchmark schemes.
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