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Abstract—We elaborate on the recently proposed orthogonal
time frequency space (OTFS) modulation technique, which pro-
vides significant advantages over orthogonal frequency division
multiplexing (OFDM) in Doppler channels. We first derive the
input–output relation describing OTFS modulation and demod-
ulation (mod/demod) for delay–Doppler channels with arbitrary
number of paths, with given delay and Doppler values. We then
propose a low-complexity message passing (MP) detection algo-
rithm, which is suitable for large-scale OTFS taking advantage
of the inherent channel sparsity. Since the fractional Doppler
paths (i.e., not exactly aligned with the Doppler taps) produce
the inter Doppler interference (IDI), we adapt the MP detection
algorithm to compensate for the effect of IDI in order to further
improve performance. Simulations results illustrate the superior
performance gains of OTFS over OFDM under various channel
conditions.

Index Terms—Delay–Doppler channel, OTFS, message passing,
time–frequency modulation.

I. INTRODUCTION

Fifth-generation (5G) mobile systems are expected to ac-
commodate an enormous number of emerging wireless appli-
cations with high data rate requirements (e.g., real-time video
streaming, and online gaming, connected and autonomous
vehicles etc.). While the orthogonal frequency division mul-
tiplexing (OFDM) modulation scheme currently deployed in
fourth-generation (4G) mobile systems achieves high spectral
efficiency for time-invariant frequency selective channels, it is
not robust to time-varying channels, especially for channels
with high Doppler spread (e.g., high-speed railway mobile
communications). Hence, new modulation schemes/waveforms
that are robust to channel time-variations are being extensively
explored.

Recently, orthogonal time frequency space (OTFS) mod-
ulation was proposed in [1] showing significant advantages
over OFDM, in delay–Doppler channels with a number of
paths, with given delay and Doppler values. The delay-Doppler
domain is an alternative representation of a time-varying
channel geometry due to moving objects (e.g. transmitters,
receivers, reflectors) in the scene. Leveraging on this rep-
resentation, the OTFS modulator spreads each information
(e.g., QAM) symbol over a set of two dimensional (2D)
orthogonal basis functions, which span across the frequency–
time resources required to transmit a burst. The basis function
set is specifically designed to combat the dynamics of the time-
varying multi-path channel. The general framework of OTFS
was given in [1] and a coded OTFS system with forward error

correction (FEC) and turbo equalization was compared with
coded OFDM, showing significant gain.

In this paper, we analyze the input-output relation describing
uncoded OTFS modulation/demodulation for delay–Doppler
channels with a number of paths, with given delay and
Doppler values. We then propose a low-complexity message
passing (MP) detection algorithm, which is suitable for large-
scale uncoded OTFS taking advantage of the inherent channel
sparsity. The MP detection algorithm, based on a sparse
factor graph, uses Gaussian approximation of the interference
terms to further reduce the complexity, similar to [8] which
was applied to massive MIMO detection. Since the fractional
Doppler paths (i.e., not exactly aligned with the Doppler taps)
produce the inter Doppler interference (IDI), we adapt the MP
detection algorithm to compensate for the effect of IDI in order
to further improve performance. We show that the proposed
MP detection algorithm can also be applied to OFDM systems
to compensate for the Doppler effects. Through simulations,
we show the superior performance gains of OTFS over OFDM
under various channel conditions.

II. OTFS MODULATION/DEMODULATION

In this section, we describe OTFS modulation/demodulation
[1].

A. General OTFS block diagram

The OTFS system diagram is given in Fig. 1. OTFS mod-
ulation is produced by a cascade of two 2D transforms at
both the transmitter and the receiver. The modulator first maps
the information symbols x[k, l] in the delay–Doppler domain
to symbols X[n,m] in the time–frequency domain using
inverse symplectic finite Fourier transform (ISFFT). Next, the
Heisenberg transform is applied to time–frequency symbols
X[n,m] to create the time domain signal s(t) transmitted
over the wireless channel. At the receiver, the received time-
domain signal r(t) is mapped to the time–frequency domain
through the Wigner transform (the inverse of the Heisenberg
transform), and then to the delay–Doppler domain for symbol
demodulation.

We first introduce the following notation:
• The time-frequency plane is discretized by sampling time

and frequency axes at intervals T (seconds) and ∆f (Hz),
respectively:

Λ =
{

(nT,m∆f), n = 0, . . . , N−1,m = 0, . . . ,M−1
}
.
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Fig. 1. OTFS mod/demod

• A packet burst has duration NT and occupies a band-
width M∆f .

• Modulated symbol set X[n,m], n = 0, . . . , N − 1,m =
0, . . . ,M − 1 is transmitted over a given packet burst.

• Transmit and receive pulses are denoted by gtx(t) and
grx(t).

Moreover, the delay–Doppler plane is discretized as follows:

Γ =
{( k

NT
,

l

M∆f

)
, k = 0, . . . , N−1, l = 0, . . . ,M−1

}
,

where 1
NT and 1

M∆f represent the quantization intervals of
the Doppler frequency shift and time delay, respectively.

B. OTFS modulation
Consider a set of N ×M information symbols x[k, l], k =

0, . . . , N − 1, l = 0, . . . ,M − 1 from a modulation alphabet
A = {a1, · · · , a|A|} (e.g. QAM), which are arranged on a 2D
delay–Doppler grid Γ that we wish to transmit.

The OTFS maps x[k, l] to symbols X[n,m] in the time–
frequency domain using inverse symplectic finite Fourier trans-
form (SFFT) as follows:

X[n,m] =
1

NM

N−1∑
k=0

M−1∑
l=0

x[k, l]ej2π
(
nk
N −

ml
M

)
(1)

for n = 0, . . . , N − 1,m = 0, . . . ,M − 1.
Next, a time–frequency modulator maps X[n,m] on the grid

Λ to a transmitted waveform s(t) by

s(t) =
N−1∑
n=0

M−1∑
m=0

X[n,m]gtx(t− nT )ej2πm∆f(t−nT ). (2)

Remark 1: The Heisenberg transform in (2) generalizes the
IFFT of OFDM and maps information symbols from frequency
domain to time domain. If gtx(t) is a rectangle waveform with
duration of T then (2) reduces to conventional inverse discrete
Fourier transform. When N = 1, the inner box in Fig. 1 is an
OFDM system. Therefore, one OTFS symbol (packet burst)
can be viewed as a SFFT precoding applied on N consecutive
independent OFDM symbols with M subcarriers.

C. Wireless transmission and reception
The signal s(t) is transmitted over a time-varying channel

with complex baseband channel impulse response h(τ, ν),
which characterizes the channel response to an impulse with
delay τ and Doppler ν [2]. The received signal r(t) is given
by:

r(t) =

∫ ∫
h(τ, ν)s(t− τ)ej2πν(t−τ)dνdτ + v(t) (3)

where v(t) is the additive noise at the receiver.

D. OTFS demodulation

1) Sufficient statistics and channel distortion: The matched
filter computes the cross-ambiguity function Agrx,r(t, f):

Y (t, f) = Agrx,r(t, f) ,
∫
g∗rx(t′ − t)r(t′)e−j2πf(t′−t)dt′.

(4)
The matched filter output can be obtained by sampling the
function Y (t, f) at t = nT and at f = m∆f :

Y [n,m] = Y (t, f)|t=nT,f=m∆f . (5)

The operation of (4) and (5) is called Wigner transform.
Remark 2: Wigner transform is a generalization of the

OFDM receiver, which maps the received time domain signal
to the frequency domain modulated symbols. When grx(t)
is rectangle waveform, it corresponds to the discrete Fourier
Transform in OFDM. However, in OTFS, gtx(t) and grx(t)
can be any arbitrary pulses that have good time–frequency
localization properties.

The relationship between the matched filter output Y [n,m]
and the transmitter input X[n,m] was established in [1] as:

Y [n,m] = H[n,m]X[n,m] + V [n,m] (6)

where V (t, f) = Agrx,v(t, f), and V [n,m] =
V (t, f)|t=nT,f=m∆f , and

H[n,m] =

∫ ∫
h(τ, ν)ej2πνnT e−j2π(ν+m∆f)τdνdτ

given that h(τ, ν) has finite support bounded by (τmax, νmax),
and the pulses gtx(t) and grx(t) are ideal, i.e., they satisfy the
condition Agrx,gtx(t, f) = 0 for t ∈ (nT − τmax, nT + τmax),
f ∈ (m∆f − νmax,m∆f + νmax), where τmax, and νmax

are the maximum delay and Doppler values among channel
paths. The condition on ideal pulses is called the bi-orthogonal
property and it does not hold for practical pulses (for example,
rectangular pulses). Nonetheless, we assume ideal pulses as in
[1], and the practical pulses are discussed in [10].

Next we apply the SFFT on Y [n,m], yielding [1]:

y[k, l] =
1

NM

N−1∑
n=0

M−1∑
m=0

Y [n,m]e−j2π
(
nk
N −

ml
M

)
=

1

NM

N−1∑
n=0

M−1∑
m=0

x[n,m]hw

(k − n
NT

,
l −m
M∆f

)
+z[k, l], (7)
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where z[k, l] ∼ CN (0, σ2) is the additive white noise, and
hw(·, ·) is a sampled version of the impulse response function:

hw

(k − n
NT

,
l −m
M∆f

)
= hw(ν′, τ ′)|ν′= k−n

NT ,τ
′= l−m

M∆f

for hw(ν′, τ ′) being the circular convolution of the channel
response with a windowing function:

hw(ν′, τ ′) =

∫ ∫
h(τ, ν)w(ν′ − ν, τ ′ − τ)e−j2πντdτdν,

w(ν, τ) =
N−1∑
c=0

M−1∑
d=0

e−j2π(νcT−τd∆f).

Here, we assume that the rectangular window is applied on
the transmitter and receiver symbols X[n,m] and Y [n,m].

III. OTFS UNDER SPARSE DELAY–DOPPLER CHANNEL
REPRESENTATION

A. Sparse representation of the delay–Doppler channel

A sparse representation of the delay–Doppler channel
h(τ, ν) in (3) can be expressed as:

h(τ, ν) =

P∑
i=1

hiδ(τ − τi)δ(ν − νi) (8)

where P is the number of reflectors; hi, τi, and νi represent
the channel gain, delay, and Doppler shift associated with ith

reflector, respectively. We assume that the h(τ, ν) is time-
invariant during the OTFS frame (NT duration). It is a
reasonable assumption as h(τ, ν) represents the geometry and
the mobility in the channel.

We now analyze the received symbols y[k, l] in (7) using
the sparse presentation of the delay–Doppler channel h(τ, ν)
in (8).

Let us consider the expression for hw(ν′, τ ′) by substituting
the delay–Doppler channel in (8),

hw(ν′, τ ′) =
P∑
i=1

hie
−j2πνiτi w(ν′ − νi, τ ′ − τi)

=
P∑
i=1

hie
−j2πνiτi

N−1∑
c=0

e−j2π(ν′−νi)cT
M−1∑
d=0

ej2π(τ ′−τi)d∆f

=
P∑
i=1

h′i G(ν′, νi)F(τ ′, τi), (9)

where h′i = hie
−j2πνiτi , F(τ ′, τi) =

∑M−1
d=0 ej2π(τ ′−τi)d∆f ,

and G(ν′, νi) =
∑N−1
c=0 e−j2π(ν′−νi)cT .

Let us first evaluate F(τ ′, τi) at τ ′ = l−m
M∆f ,

F
(
l −m
M∆f

, τi

)
=
M−1∑
d=0

ej
2π
M (l−m−αi)d =

ej2π(l−m−αi) − 1

ej
2π
M (l−m−αi) − 1

.

(10)

Here, we assume that τi = αi
M∆f , where αi is a positive

integer, as the received signal is sampled at interval 1
M∆f [4].

From (10), we see that

F
(
l −m
M∆f

, τi

)
=

{
M, if [l −m− αi]M = 0

0, otherwise
,

where [·]M represents mod M operation. Hence, the function
F
(
l−m
M∆f , τi

)
evaluates to M only if m = [l − αi]M , and

m ∈ {0, · · · ,M − 1}.
Similarly, we have

G
(
k − n
NT

, νi

)
=
ej2π(k−n−βi−γi) − 1

ej
2π
N (k−n−βi−γi) − 1

. (11)

Here, we assume νi = (βi+γi)
NT , with an integer βi and

0 < γi < 1 (i.e., Doppler frequencies are not necessarily
at the sampling points in the delay-Doppler plane). Specifi-
cally, αi and βi represents the indexes of the delay tap and
Doppler frequency tap, corresponding to delay τi and Doppler
frequency νi, respectively. The negative indexes of the Doppler
frequency taps, where βi < 0, can also be view as those of
positive frequency taps considering mod N operation.

We recall that the delay–Doppler channel can be seen as a
N ×M discretized grid Γ with N and M representing the
indexes of the maximum Doppler and delay taps, respectively.
We will refer to γi as the fractional Doppler since it represents
the fractional shift from a Doppler tap βi in Γ.

The magnitude of the function 1
N G

(
k−n
NT , νi

)
is∣∣∣∣ 1

N
G
(
k − n
NT

, νi

)∣∣∣∣ =

∣∣∣∣∣ sin (π ((k − n− βi)− γi))
N sin

(
π
N ((k − n− βi)− γi)

) ∣∣∣∣∣
≥ |sinc (π ((k − n− βi)− γi))| . (12)

The above lower bound is tight for small values of
π
N ((k − n− βi)− γi) as sin(θ) ≈ θ for θ ≈ 0. When
γi = 0, the above function has the peak of the main lobe
at n = k− βi and the peaks of the side lobes decay at rate of
1/π (k − n− βi).

Therefore, for a given k and βi, the function of γi in (12)
has the following properties:

1) Two-sided decreasing function with the peak at n =
[k − βi]N , for 0 < γi ≤ 0.5.

2) Two-sided decreasing function with the peak at n =
[k − βi + 1]N , for 0.5 < γi < 1.

Therefore, we only consider a finite number (2Ei + 1) of
significant values of G

(
k−n
NT , νi

)
in (11) for n = [k−βi+q]N

and −Ei ≤ q ≤ Ei, where Ei � N (e.g., Ei = 5 for
N = 128).

Then we can rewrite the receive signal y[k, l] in (7) as

y[k, l] =

P∑
i=1

Ei∑
q=−Ei

h′i

(
ej2π(−q−γi) − 1

Nej
2π
N (−q−γi) − 1

)
·

x [[k − βi + q]N , [l − αi]M ] + z[k, l]. (13)

The above input-output expression simplifies for the follow-
ing special cases.
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Fig. 2. Messages in factor graph

i) Ideal channel – Assuming h(τ, ν) = δ(τ)δ(ν), the
received signal becomes

y[k, l] = x[k, l] + z[k, l],

and behaves as an AWGN channel.
ii) No fractional Doppler (γi = 0 for i = 1, . . . , P )

– Assuming that Doppler frequencies are the exact integer
multiples of Doppler taps, the received signal can be obtained
by replacing Ei = 0 in (13), i.e.,

y[k, l] =
P∑
i=1

h′ix[[k − βi]N , [l − αi]M ] + z[k, l].

For each path, the transmitted signal is circularly shifted by the
delay and Doppler taps and scaled by the associated channel
gain.

From (13), we can see that with the fractional Doppler, the
transmitted signal not only shifts by the delay and Doppler
taps but also affects the neighboring Doppler taps (−Ei to
Ei). We refer to this interference on the neighboring Doppler
taps as inter Doppler interference (IDI).

IV. MESSAGE PASSING DETECTION ALGORITHM FOR
OTFS

We now propose a message passing (MP) detection algo-
rithm for OTFS using the input-output relation in (13).

A. Low-complexity MP detection algorithm for OTFS

The received signal in vectorized form can be written as

y = Hx + z, (14)

where y ∈ CNM×1,H = {Hd,c} ∈ CNM×NM , and x ∈
CNM×1. The (k + Nl)-th element of y is yk+Nl = y[k, l],
for k = 0, · · · , N − 1, l = 0, · · · ,M − 1. The elements of x
and z are similarly related to x[k, l] and z[k, l], respectively.
Due to mod N and mod M operations in (13), we observe
that only S =

∑P
i=1(2Ei + 1) elements out of NM are non-

zero in each row and column of H. Let Id and Jc denote
the sets of non-zero positions in the dth row and cth column,
respectively, then |Id| = |Jc| = S.

Based on (14), we model the system as a sparsely connected
factor graph with NM variable nodes corresponding to x and
NM observation nodes corresponding to y. In this factor
graph, the observation node yd is connected to the set of
variable nodes {xe, e ∈ Id}. Similarly, the variable node xc
is connected to the set of variable nodes {ye, e ∈ Jc}.

The joint maximum a posteriori probability (MAP) detec-
tion rule for estimating the transmitted information is given
by

x̂ = arg max
x∈ANM

Pr
(
x
∣∣∣y,H) ,

which has a complexity exponential in NM . Since the joint
MAP detection is intractable even for very small values of
N and M , we consider the symbol-by-symbol MAP detection
rule for 0 ≤ c ≤ NM − 1,

x̂c = arg max
aj∈A

Pr
(
xc = aj

∣∣∣y,H) (15)

= arg max
aj∈A

1

|A|
Pr
(
y
∣∣∣xc = aj ,H

)
(16)

≈ arg max
aj∈A

∏
e∈Jc

Pr
(
ye

∣∣∣xc = aj ,H
)
. (17)

In (17), we assume all the transmitted symbols xc ∈ A are
equally likely and the components of y are approximately
independent for a given xc, due to the sparsity of H. In order
to solve the approximate symbol-by-symbol MAP detection
in (17), we propose a MP detector which has a complexity
linear in NM . Similarly to [8], for each ye, a variable xc
is isolated from the other interference terms, which are then
approximated as Gaussian noise with an easily computable
mean and variance.

In MP, mean and variance of the interference terms are
used as messages from observation nodes to variable nodes.
The message passed from a variable node xc, for each c =
{0, · · · , NM − 1}, to the observation node yd, for d ∈ Jc, is
the probability mass function (pmf) pcd = {pcd(aj)|aj ∈ A}
of the alphabet symbols in A. Fig. 2 shows the connections
and the messages passed between the observation and variable
nodes.

The MP algorithm operates as follows:
Step 1: Initialize iteration index i = 0 and p

(0)
cd = 1/|A| for

c = {0, · · · , NM − 1} and d ∈ Jc.
Step 2: Messages are passed from the observation nodes to
the variable nodes. The message passed from yd to xc is a
Gaussian pdf which can be computed from

yd = xcHd,c +
∑

e∈Id,e6=c

xeHd,e + zd︸ ︷︷ ︸
ζdc

, (18)

where the interference-plus-noise term ζdc is approximated as
Gaussian random variable with mean

µ
(i)
dc = E [ζdc] =

∑
e∈Id,e6=c

|A|∑
j=1

p
(i)
ed (aj)ajHd,e, (19)

and variance

(σ
(i)
dc )

2 = Var (ζdc) (20)

=
∑

e∈Id,e6=c

 |A|∑
j=1

p
(i)
ed (aj)|aj |

2|Hd,e|2−

∣∣∣∣∣∣
|A|∑
j=1

p
(i)
ed (aj)ajHd,e

∣∣∣∣∣∣
2+σ2.
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Further, we assume that transmitted symbols are i.i.d. and
independent from the noise.
Step 3: Messages are passed from variable nodes to the
observation nodes. The new message from xc to yd contains
the pmf vector p(i+1)

cd with elements

p
(i)
cd (aj) = ∆ · p̃(i)

cd (aj) + (1−∆) · p(i−1)
cd (aj), (21)

where ∆ ∈ (0, 1] is the damping factor ( [7]) to improve the
convergence rate, and

p̃
(i)
cd (aj) ∝

∏
e∈Jc,e6=d

Pr
(
ye

∣∣∣xc = aj ,H
)
,

where

Pr
(
ye

∣∣∣xc = aj ,H
)
∝ exp

−
∣∣∣ye − µ(i)

ec −He,caj

∣∣∣2
σ

2,(i)
ec


Note that this excludes the information of yd.

Step 4: Repeat Step 2 and Step 3 until

max
c,d,aj

∣∣∣p(i)
cd (aj)− p(i−1)

cd (aj)
∣∣∣ < ε

or a maximum number of iterations is reached.
Step 5: The final decisions about the transmitted symbols are
obtained as

x̂c = arg max
aj∈A

pc(aj), c ∈ {0, · · · , NM − 1}

where
pc(aj) =

∏
e∈Jc

Pr
(
ye

∣∣∣xc = aj ,H
)
.

Complexity: The complexity of one iteration involves the
computation of (19), (20), and (21), where each computation
has a complexity of the order O(NMS|A|). Therefore, the
overall complexity is linear O(niterNMS|A|), where niter
is the number of iterations. In simulations, we observed that
the algorithm converges typically within 20 iterations. We can
easily see that the complexity of MP algorithm is much smaller
than ML and linear MMSE detectors which have exponential
complexity O(|A|NM ) and cubic O((NM)3), respectively.
We conclude that the sparsity of the delay-Doppler channel
representation is a key factor in reducing the complexity of the
decoder. The memory requirement is dominated by the storage
of 2NMS|A| real values for p(i)

cd and p
(i−1)
cd . In addition, we

have the massages (µdc, σ
2
dc), requiring NMS complex values

and NMS real values, respectively.

B. Application of MP detection algorithm for OFDM over
delay–Doppler channels

We now apply the above MP algorithm to OFDM to
compensate the Doppler effects.

The OFDM system can be illustrated by the inner dashed
box in Fig. 1, i.e., the Time-Frequency domain. Specifically,
the Heisenberg Transform module is replaced by IFFT, cyclic
prefix (CP) addition, serial-to-parallel and digital-to-analog
conversion, and the Wigner Transform module is substituted

with analog-to-digital, parallel-to-serial, CP removal and FFT
operation. Also, as mentioned in Remark 1, for OFDM sys-
tems, N is set to 1.

In OFDM, the received signal r(t) and noise v(t) in (3) are
sampled at T

M . Then, the frequency-domain signal after FFT
operation is given by

y = WHtW
Hx + v (22)

where (·)H denotes Hermitian transpose, W is M -point FFT
matrix, and x ∈ AM×1 is the transmitted information OFDM
symbol. The elements of time-domain channel matrix Ht are
given as [9]

Ht[p, q]=hiδ

[[
p− q − τiM

T

]
M

]
ej

2π(q−1)νi
M , p, q= 1, . . . ,M.

Using the frequency-domain channel matrix H ∈ CM×M =
WHtW

H , we can re-write (22) as:

y = Hx + v. (23)

Since (23) has similar form as (14), the MP previously
developed for OTFS can also be applied for OFDM symbol
detection. We note that H is diagonally dominant and the
values of off-diagonal elements in each row decay as we move
away from the diagonal entry. Hence, the H matrix of OFDM
is also sparse, which enables the use of the proposed low
complexity MP detection algorithm.

Remark 3: From (13) and (22), we can observe the effects
of channel gain on the transmitted symbols are different in
OTFS and OFDM. In OTFS, all the transmitted symbols
experience the same channel gain (independent of k and l),
whereas in OFDM, the channel gains are distinct at different
subcarriers because of the FFT operation on Ht.

V. ILLUSTRATIVE RESULTS

In this section, we simulate the uncoded bit-error-rate (BER)
performance of OTFS and OFDM over delay-Doppler chan-
nels. We use the following parameters in the simulations:
carrier frequency = 4 GHz, subcarrier spacing = 15 KHz,
no. of subcarriers (M ) = 512, N = 128, and cyclic prefix
for OFDM = 2.6 µs. For both OTFS and OFDM systems,
Extended Vehicular A model [3] is applied for the channel
delay model, and the Doppler shift of the ith path is generated
using

νi = νmax cos(θi),

where θi ∼ U(0, π) is uniformly distributed. We assume the
channel information is perfectly known at the receiver.

Fig. 3 shows the BER performance of OTFS system using
the proposed MP detector for different number of interference
terms (E) with 4-QAM signaling at SNR = 18 dB over
the delay-Doppler channel, where UE speed is 120 km/h.
Here, we consider Ei = E,∀i. We can see that there is
a significant performance improvement till E = 10 and
saturation thereafter, due to the IDI caused by the fractional
Doppler. Fewer neighboring interference terms are sufficient
to consider in MP (e.g. 5− 10).
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Fig. 3. The BER performance of OTFS for different number of interference
terms (E) with 4-QAM.
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Fig. 4. The variation of BER and average no. of iterations with ∆.

In Fig. 4, we illustrate the variation of BER and average
number of iterations of OTFS using our MP detector over
the delay-Doppler channel, where UE speed is 120km/h. We
adopt the damping factor ∆ for E = 10. We consider 4-QAM
signaling and SNR = 18 dB. We observe that, when ∆ ≤ 0.7,
the BER of MP remains almost the same, but deteriorates
thereafter. Further, when ∆ = 0.7, MP converges with the
least number of iterations. Hence, we choose ∆ = 0.7 as the
optimum damping factor.

In Fig. 5, we compare the BER performance of OTFS
and OFDM systems using 4-QAM signaling over the delay-
Doppler channels of different Doppler frequencies (UE speeds
of 30, 120, 500km/h). We observe that OTFS outperforms
OFDM by approximately 15 dB at BER of 10−4, thanks to the
constant channel gain over all transmitted symbols in OTFS,
whereas in OFDM, the error performance is limited by the
subcarrier with the lowest gain. Moreover, OTFS enjoys the
diversity gain as every information symbol is received through
multiple independent paths and the joint detection is employed.
Further, OTFS exhibits the same performance for different
Doppler frequencies thanks to the IDI reduction provided by
the MP detector and the assumption on gtx and grx. Similar
behavior applies to OFDM, since the inter carrier interference
(ICI) can be removed by the MP detector.

VI. CONCLUSION

In this paper, we have analyzed the input–output relation
describing OTFS mod/demod in terms of sparse representation
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Fig. 5. The BER performance comparison between OTFS and OFDM systems
at different Doppler frequencies.

of the channel in the delay–Doppler domain. In particular,
we have introduced the notion of inter Doppler interference
caused by the fractional Doppler. We then proposed a linear
complexity message passing (MP) detection algorithm which
exploits the channel sparsity. Through simulations, we have
shown that the effect of IDI can be mitigated by adapting
the MP detection algorithm. We have also shown that OTFS
has significant BER gains over OFDM under various channel
conditions.
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