
Department of Mathematics and Statistics
The Univeristy of Melbourne

Mostow’s Rigidity Theorem

James Saunderson

Supervisor: A/Prof. Craig Hodgson

November 7, 2008



Abstract

Mostow’s Rigidity Theorem is a stunning bridge between the worlds of geometry and topology. It
tells us that the geometry of closed hyperbolic n-manifolds, for n ≥ 3, is completely determined
by their fundamental groups. The proofs of this result are many and varied — all of them
substantial and involving machinery from a number of areas of mathematics. The bulk of this
report is devoted to giving two proofs of Mostow’s Theorem: the first following Besson, Courtois,
and Gallot, and the second following Gromov and Thurston. Along the way we will also discuss
a tiny fraction of the research inspired by Mostow rigidity and the work that generalizes and
extends Mostow’s original result.
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4.6 Proofs of the Švarc-Milnor and Morse lemmas . . . . . . . . . . . . . . . . . . . . 34

4.6.1 Proof of the Morse lemma . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

5 The proof of Besson, Courtois, and Gallot 39

5.1 Busemann functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

5.2 The visual map and visual measures . . . . . . . . . . . . . . . . . . . . . . . . . 42

5.2.1 The visual map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

5.2.2 Visual measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

5.3 The barycentre of a measure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

5.4 The barycentric extension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5.5 A proof of Mostow’s theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5.6 The bigger picture: volume, entropy, and rigidity . . . . . . . . . . . . . . . . . . 54

5.6.1 Volume entropy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5.6.2 Entropy and Volume characterize ‘nice’ metrics . . . . . . . . . . . . . . . 54

5.6.3 Extension to the finite volume case . . . . . . . . . . . . . . . . . . . . . . 55

5.7 Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

6 The Gromov-Thurston proof 60

6.1 Simplices of maximum volume . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

6.2 A first attempt at the Gromov norm . . . . . . . . . . . . . . . . . . . . . . . . . 62

6.3 Measure homology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

6.3.1 Measure chains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

6.3.2 The boundary operator . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

6.3.3 Induced maps on measure homology . . . . . . . . . . . . . . . . . . . . . 63

2



6.3.4 Fundamental classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

6.4 The Gromov norm revisited . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

6.5 Straightening and smearing chains . . . . . . . . . . . . . . . . . . . . . . . . . . 64

6.5.1 Straightening chains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

6.5.2 Smearing chains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

6.6 Gromov norm and volume are proportional . . . . . . . . . . . . . . . . . . . . . 67

6.7 A proof of Mostow’s theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

6.8 Thurston’s generalization of Mostow Rigidity . . . . . . . . . . . . . . . . . . . . 71

3



Acknowledgements Thanks to my supervisor, Craig Hodgson, for being so patient, knowl-
edgeable, and generous with his time, despite me asking the same questions week after week.

4



Chapter 1

Introduction

Just over 40 years ago, G. D. Mostow proved a remarkable theorem relating the topology and
the geometry of a class of manifolds known as hyperbolic manifolds [Mos68].

For any manifold we can associate an algebraic invariant called the fundamental group. This
encodes all of the ‘essentially different’ ways we can walk around a loop in our manifold and end
up back where we started. As such this is a very coarse invariant — there seems little reason to
believe that the ‘loop structure’ of a manifold could give us a lot of detailed information about
the manifold. But in the case of ‘hyperbolic manifolds’ of dimension at least three, it turns out
that knowing the fundamental group gives us a great deal of information about the manifold.
In fact it determines a unique way to put a ‘nice’ geometric structure on the manifold — a
geometric structure where (as long as you are short-sighted) no matter where you stand, and in
which direction you look, the manifold looks the same.

This is the basic idea of Mostow’s Strong Rigidity Theorem (which we will state precisely in
Chapter 3). Mostow’s theorem has inspired a large body of research in the 40 years since it was
first proved. This is just as much because the techniques used to prove Mostow Rigidity and its
generalizations and extensions contain a great deal of varied, interesting, and deep mathematics,
as it is because of the independent interest of the results themselves.

Our primary aim is to give a fairly complete and self-contained proof of Mostow’s Theorem. There
are at least four quite different approaches to proving Mostow’s Theorem: Mostow’s original
approach [Mos68]; the approach of Agard [Aga83] and Tukia [Tuk85], later refined by Ivanov
[Iva96]; the proof given by Gromov and Thurston [Thu79]; and the proof of Besson, Courtois,
and Gallot [BCG95]. Of these, the first three are old enough that quite detailed expositions of
each are available in various books. For example one can consult Mostow’s book [Mos73] for
an account of his approach, an account of the approach of Agard, Tukia, and Ivanov is given in
[MT98], and the Gromov-Thurston proof is detailed in [Rat94] and [BP92].

On the other hand, the proof of Besson, Courtois, and Gallot is quite recent, dating from 1995.
The only expositions of this material in the literature are the original paper [BCG95] (in French),
a survey article by the authors [BCG96], and a brief outline in Pansu’s survey [Pan97] (also in
French). There does not seem to be detailed proof of Mostow rigidity following Besson, Courtois,
and Gallot in one place in the literature, so we provide one here.

In Chapter 2 we provide background on hyperbolic geometry and hyperbolic manifolds, an a
smattering of topics spanning algebraic topology and measure theory. To avoid over-burdening
the reader, the background material is brief, but an effort has been made to introduce the less
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standard topics that will arise in the remainder of the report.

In Chapter 3 we state Mostow’s Rigidity Theorem in two forms and prove their equivalence. We
then go on to investigate the non-rigidity that can result when we violate the hypotheses of the
theorem by briefly discussing hyperbolic surfaces and lens spaces.

Chapter 4 marks the start of our proof of Mostow Rigidity. In this chapter we prove a result
that is the common first step for all the known proofs of Mostow’s Theorem. This first step
involves showing that any isomorphism between the fundamental groups of two closed hyperbolic
manifolds gives rise to a homeomorphism of the boundary of hyperbolic space that satisfies a
certain equivariance condition. The standard references typically prove this by first constructing
a homotopy equivalence out of the isomorphism between fundamental groups. Our argument is
a little different — we avoid this step, instead working directly with the isomorphism between
fundamental groups.

In Chapter 5, building on the results of Chapter 4, we give a detailed account of Besson, Courtois,
and Gallot’s proof of Mostow Rigidity. At the heart of this proof is a construction called the
‘barycentric extension’, which extends a homeomorphism of the boundary of hyperbolic space to
a smooth map with remarkable properties defined on all of hyperbolic space. While much of this
material is available in [BCG95], [BCG96], and [Pan97], we reformulate some of the arguments
and fill in a number of details that are omitted from the original sources.

In Chapter 6 we sketch the Gromov-Thurston proof of Mostow’s Theorem. We do so because
the techniques (such as the Gromov norm and measure homology) developed in the course of
the proof are quite remarkable. We avoid giving full details in this chapter. The level of detail
in our exposition is somewhere between that of the original presentation in [Thu79] and the
highly detailed accounts in [BP92] and [Rat94]. The only slightly original contribution in this
chapter is our method of constructing the straightening map in Section 6.5.1 using some of the
constructions from Chapter 5.

Finally, near the end of each of Chapters 4, 5, and 6 we mention generalizations and extensions
of, and similar problems to, Mostow Rigidity. These typically brief sections aim to give the
reader a sense of the landscapes opened up by Mostow’s original work. We mention the problem
of determining the quasi-isometric rigidty of lattices in certain Lie groups (Section 4.5), the more
general results of Besson, Courtois, and Gallot that give rise to their proof of Mostow Rigidity
as a special case (Section 5.6), and a generalization of Mostow Rigidity due to Thurston (Section
6.8).
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Chapter 2

Background

This chapter provides a quick tour of some of the knowledge that will be assumed later in this
report. Mostly it is a collection of definitions and facts about hyperbolic geometry, hyperbolic
manifolds, and measure theory with a brief detour into the notion of geodesic convexity. Our
primary aim, in this chapter, is to fix the notation and terminology that we will use later on.

This chapter quite deliberately falls well short of covering all of the mathematics we will make
use of in what follows. In particular, we assume the reader is familiar with some basic facts
about smooth manifolds and Riemannian manifolds. Good references for the material on either
of these topics are the two books by Lee: [Lee03] and [Lee97]. We also assume familiarity with
the basic notions of singular homology. A good reference for this material is Hatcher’s book
[Hat02].

2.1 Hyperbolic geometry

In this section we introduce n-dimensional hyperbolic space. We do so by describing two models
of hyperbolic space — the upper half-space model and the Poincaré model — both of which are
simply connected subsets of Rn together with a Riemannian metric that has constant sectional
curvature −1. There are other useful models for hyperbolic space, such as the hyperboloid model
and the Klein model (see [CFKP97]), but as we will not make any use of them in what follows,
we will not describe them here.

2.1.1 Models of hyperbolic space

The half-space model. Let Hn = {(x1, x2, . . . , xn) ∈ Rn : xn > 0}. If we equip Hn with
the Riemannian metric ds2 = 1

x2
n

∑n
i=1 dx

2
i , the resulting Riemannian manifold is n-dimensional

hyperbolic space, which we denote by Hn.

The half-space model has a natural boundary ∂Hn = {(x1, x2, . . . , xn) ∈ Rn : xn = 0} ∪ {∞}
where ∞ is the point at infinity that compactifies Rn. The geodesics in Hn are (segments
of) circular arcs and lines that are orthogonal to ∂Hn. The geodesic hyperplanes in Hn are
(n− 1)-spheres and (n− 1)-planes orthogonal to ∂Hn.

Since the metric at any point is just a rescaled version of the Euclidean metric, it is clear that

7



Figure 2.1: Geodesics and hyperplanes in the upper half-space model.

Figure 2.2: Horospheres in the upper half-space model.

the half-space model is conformal. That is, the hyperbolic and Euclidean angles between tangent
vectors at any point must coincide.

The group of isometries of Hn is the group generated by inversions in hyperbolic hyperplanes
(which we call ‘reflections’).

If ξ ∈ ∂Hn \ {∞} then a horosphere passing through ξ is a Euclidean (n − 1)-sphere tangent
to ∂Hn at ξ. A horosphere in Hn passing through ∞ is a horizontal Euclidean (n − 1)-plane,
which can be thought of as a ‘sphere’ ‘tangent’ to ∂Hn at the point at infinity. Notice that the
Riemannian metric, when restricted to a horosphere passing through ∞, is just the Euclidean
metric scaled by a constant. Since all horospheres are isometric to a horosphere passing through
∞, the restriction of the Riemannian metric to any horosphere is a scaled version of the Euclidean
metric.

The Poincaré ball model. Let Bn = {(x1, x2, . . . , xn) ∈ Rn :
∑n
i=1 x

2
i < 1} be the open unit

ball in Rn. Equip Bn with the Riemannian metric

ds2 = 4
∑n
i=1 dx

2
i

(1−
∑n
i=1 x

2
i )2

.
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It turns out that the resulting Riemannian manifold is isometric toHn. The isometry between Bn

and Hn is given by inversion in the (n−1)-sphere of radius
√

2 centered at (0, 0, . . . , 0,−1) ∈ Rn.

The boundary ∂Bn of the Poincaré ball model is just the unit sphere in Rn. Note that this is
the image of ∂Hn under the inversion described in the previous paragraph.

Since the Poincaré ball and the upper half-space model are related by an inversion, the Poincaré
ball model is conformal. Furthermore, the geodesics, isometries, and horospheres have similar
descriptions in both models. Specifically, geodesics in Bn are segments of circular arcs and lines
orthogonal to ∂Bn. Hyperplanes are (n − 1)-spheres and (n − 1)-planes orthogonal to ∂Bn.
The isometries are generated by reflections in hyperplanes. Horospheres in Bn are Euclidean
(n− 1)-spheres tangent to ∂Bn.

Notation. Throughout, we will use the notation Hn to denote n-dimensional hyperbolic space
(independent of any particular model). When we are speficially referring to a particular model
of Hn we will describe the underlying set as either Hn for the upper half-space in Rn and Bn for
the unit ball in Rn.

We will denote the abstract group of isometries of Hn by Isom(Hn) and the subgroup of ori-
entation preserving isometries by Isom+(Hn). The Riemannian metric on Hn will be denoted
〈·, ·〉. This symbol will occasionally be used for other purposes. When this occurs, the intended
meaning will be explicitly clarified.

2.1.2 The boundary ‘at infinity’ of hyperbolic space

In both of the models of Hn we introduced in Section 2.1.1, there was a natural ‘boundary’ that,
when added to Hn, gave a compact topological space. It turns out that this boundary can be
defined intrinsically.

Definition 2.1. If X is a metric space and A,B ⊆ X then the Hausdorff distance between A
and B is

dH(A,B) = inf
R≥0
{A ⊆ NR(B) and B ⊆ NR(A)}

where if S ⊆ X then NR(S) is the R-neighbourhood of S.

It turns out that if X is a metric space then dH defines a metric on the space of closed sets in
X, and a semi-metric on the set of all subsets of X.

Define an equivalence class on geodesic rays in Hn as follows. If β1, β2 : [0,∞)→ Hn are geodesic
rays then β1 ∼ β2 if and only if the Hausdorff distance between their images is finite. This is
clearly an equivalence relation. Define ∂Hn to be the set of equivalence classes of geodesic rays
in Hn. Denote the equivalence class containing the geodesic ray β by [β].

From this definition it is easy to see how isometries should act on ∂Hn and hence on Hn
=

Hn ∪ ∂Hn. If ϕ ∈ Isom(Hn) and β is a geodesic ray then γ ◦ β is also a geodesic ray so we define

ϕ([β]) = [γ ◦ β].

There are many other ways to describe ∂Hn. In the following two paragraphs we describe two
such ways that will be useful later.

In the Poincaré model, all the geodesic rays have a well-defined ‘endpoint’. If β : [0,∞) → Hn

is a geodesic ray then its endpoint is limt→∞ β(t) where the limit is taken with respect to the
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β
β(∞)O

(a)
An equivalence class [β] ∈ ∂Hn of geodesic rays.

β y

H

(b)
A basis of neighbourhoods for [β] ∈ ∂Hn.

Figure 2.3: Intrinsic definition of the boundary of Hn.

usual topology on the unit ball. We denote such an endpoint by β(∞). In any equivalence class
of geodesic rays, all the geodesic rays have the same endpoint, so we will often think of points
in ∂Hn in this way.

Finally, given a basepoint O ∈ Hn there is a unique geodesic ray emanating from O in each
equivalence class of geodesic rays. This can be specified by its initial velocity vector, a unit
vector in TOHn. Hence we can also identify ∂Hn with UTOHn, the unit sphere in TOHn. This
will allow us to concretely think of ∂Hn as a sphere regardless of the model of Hn in which we
are working.

The topology on Hn
. In the Poincaré model, the topology on B ∪ ∂B is just the usual

Euclidean topology. We want to give an intrisic description of the topology on ∂Hn so that
Hn

= Hn ∪ ∂Hn is a compact topological space.

We do so by specifying a basis for the topology. Given any point [β] ∈ ∂Hn (where β : [0,∞)→
Hn is a geodesic ray), and some point y on β, let H be the hyperplane orthogonal to β and
passing through y. Let Qβy denote the component of Hn \ H containing the point [β] ∈ ∂Hn.
Then the Qβy are a basis of neighbourhoods for [β]. Although choosing different representatives
from each equivalence class gives a different basis for the topology on ∂Hn it turns out that the
topology itself is independent of the choices made.

2.1.3 Miscellaneous facts about hyperbolic space

In this section we describe a number of facts about hyperbolic space that we will use later on.

Hyperbolic triangles and trigonometry. Hyperbolic triangles are triangles in Hn with
geodesic sides. Remarkably, a hyperbolic triangle with interior angles α, β, and γ has area
π − α− β − γ and so the sum of its interior angles is at most π (see [CFKP97, Section 13] for a
proof).

There are a number of trigonometric formulae relating the side-lengths and angles of hyperbolic
triangles. These can be found, together with a nice unified derivation, in Thurston’s book [Thu97,
Section 2.4]. We will repeatedly use special cases of one of these formulas, so we will state it
here.
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Lemma 2.2 (Hyperbolic cosine rule). If α, β, and γ are the interior angles of a hyperbolic
triangle and c is the length of the side opposite γ then

cosh(c) =
cos(γ) + cos(α) cos(β)

sin(α) sin(β)
.

In fact, we will be most interested in two special cases. Suppose the triangle has a single ‘ideal’
vertex (i.e. the vertex is in ∂Hn). Then if its finite side has length c, the angle opposite c is
γ = 0. Hence

cosh(c) =
1 + cos(α) cos(β)

sin(α) sin(β)
. (2.1)

Furthermore, if β is a right angle we have

cosh(c) =
1

sin(α)
. (2.2)

Balls in Hn. If x ∈ Hn and R ≥ 0 then let B(x;R) denote the closed ball of (hyperbolic)
radius R centred at x. For any x ∈ Bn and R ≥ 0 the hyperbolic ball B(x;R) coincides with a
Euclidean ball, although the centre and radius of the Euclidean ball is, in general, different to
the centre and radius of the hyperbolic ball [CFKP97]. Since closed Euclidean balls in Rn are
compact, it follows that closed balls are compact in Hn. So by the Hopf-Rinow theorem, Hn is
complete as a metric space.

The volume of a hyperbolic ball of hyperbolic radius R is given by

Vol(B(x;R)) = Kn

∫ R

0

sinhn−1(s) ds (2.3)

where Kn is a constant chosen so that the lowest order behaviour of Vol(B(x;R)) gives the
volume of a Euclidean n-ball of radius R. This is obtained by integrating the surface area of
a hyperbolic (n − 1)-sphere. The surface area, in turn, can be deduced from the ‘spherical
coordinates’ on Hn (see [Rat94, Section 4.7]).

In Chapter 5 we will be interested in the behaviour of the volume of balls for large R. Note that
by writing sinh(s) in terms of es it is easy to see that Vol(B(x;R)) ∼ e(n−1)R as R→∞.

Finally, it follows from (2.3) that in dimension 2 the volume of a disc of hyperbolic radius R is
exactly

2π(cosh(R)− 1). (2.4)

Hn is uniquely geodesic. Between any pair of distinct points x, y ∈ Hn there is a unique
geodesic segment. If x ∈ ∂Hn and y ∈ Hn then there is a unique geodesic ray β : [0,∞) → Hn

with β(0) = x and β(∞) = y. Similarly if x, y ∈ ∂Hn there is a unique geodesic line β : R→ Hn

with β(−∞) = x and β(∞) = y.

2.2 The Hessian and geodesic convexity

2.2.1 The Hessian

Let (M, g) be a Riemannian manifold and let f : M → R be a smooth function. Recall that the
gradient vector field ∇f is a smooth vector field on M with the defining property that for all
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x ∈M and all u ∈ TxM ,
dxf(u) = g(∇f(x), u).

Investigating how ∇f changes as we move in the direction of some u ∈ TxM gives a notion of
second derivative. Indeed let us define the Hessian of f at x by

Hessx(f)(u, v) = g(Du∇f, v) (2.5)

for all u, v ∈ TxM . (Note that throughout this document we adopt the slightly non-standard
notation of D for the Levi-Civita connection associated with the metric g.)

Using the compatibility of the connection with the metric we can rewrite (2.5) as

Hessx(f)(u, v) = DUg(∇f, V )(x)− g(∇f,DUV )(x) = UV (f)(x)− (DUV )(f)(x)

where U and V are any smooth vector fields with U(x) = u and V (x) = v. This gives the usual
definition of the Hessian of a smooth real-valued function. Furthermore, this definition makes
sense for any connection, whereas (2.5) only made sense for the Levi-Civita connection.

The Hessian is obviously bilinear. If the connection is symmetric (i.e. [U, V ] = DUV − DV U)
then the Hessian is also symmetric. To see this, let U and V be smooth vector fields on M , and
observe that

Hess(f)(U, V ) = UV (f)− (DUV )(f) = UV (f)− ([U, V ] +DV U)(f)
= UV (f)− UV (f) + V U(f)− (DV U)(f)
= V U(f)− (DV U)(f)
= Hess(f)(V,U).

Since the Levi-Civita connection is symmetric, the Hessian will always be symmetric in cases of
interest to us.

2.2.2 Computing the Hessian

We now present two concrete ways to compute the Hessian. First, note that since the Hessian
is symmetric and bilinear we can compute it by computing the associated quadratic form. Now
suppose γ : (−ε, ε)→M is a geodesic with γ(0) = x and γ′(0) = u. Since γ is a geodesic, if U is
a vector field that extends dγ

dt then DUU = 0. Hence

Hessx(f)(U,U) = UU(f)(x)− (DUU)(f)(x) = UU(f)(x) =
d2

dt2
(f ◦ γ)(t)

∣∣∣∣
t=0

.

Another method of calculation will be prove useful. Let P (γ)0
t : Tγ(t)M → TxM be parallel

transport along γ. Then we can explicitly write the covariant derivative as

(Du∇f)(x) =
d

dt
P (γ)0

t [∇f(γ(t))]
∣∣∣∣
t=0

.

With this in mind, the Hessian can be expressed as

Hessx(f)(u, u) =
d

dt
g
(
P (γ)0

t [∇f(γ(t))], P (γ)0
t [γ
′(t)]

)∣∣∣∣
t=0

=
d

dt
g
(
∇γ(t)f, γ

′(t)
)∣∣∣∣
t=0

. (2.6)

That is, the Hessian measures the infinitessimal change in the angle, as we move along a geodesic,
between the gradient vector field and the velocity vector of the geodesic.
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2.2.3 Geodesic convexity in Hn

Since Hn is not a vector space, the usual definition of a convex function does not make sense.
But we can use the fact that there is a unique geodesic segment joining any two points in Hn to
make sense of notions such as convex sets, convex hulls, and convex functions.

Definition 2.3. A subset X ⊂ Hn
is convex if for any x, y ∈ X the image of the geodesic

segment joining x and y lies in X.

Definition 2.4. The convex hull of a collection of points x1, x2, . . . , xn ∈ Hn
is the smallest

(ordered by inclusion) convex set containing x1, x2, . . . , xn.

Definition 2.5. A function f : Hn → R is convex if whenever x, y ∈ Hn and γ : [a, b] → Hn is
the geodesic segment joining x and y then

(f ◦ γ)((1− t)a+ tb) ≤ (1− t)(f ◦ γ)(a) + t(f ◦ γ)(b) (2.7)

for all t ∈ (0, 1). If the inequality in (2.7) is strict for all t ∈ (0, 1) then we say that f is strictly
convex.

Just as in the Euclidean case, the Hessian of a function will provide a useful criterion for determin-
ing whether a function is convex. Indeed the next proposition is a straightforward consequence
of the fact that given a function f : Hn → R, Hessx(f)(u, u) is the second derivative of f along
the geodesic passing through x with velocity u.

Proposition 2.6. If Hessx(f)(u, u) ≥ 0 for all u ∈ TxHn and all x ∈ Hn then f is convex. If
Hessx(f)(u, u) > 0 for all u ∈ TxHn \ {0} and all x ∈ Hn then f is strictly convex.

Finally, being strictly convex gives us information about the uniqueness of minima.

Lemma 2.7. If f : Hn → R is strictly convex then there is at most one point x ∈ Hn where f
takes a minimum value.

Proof. If not then suppose f takes its minimum value at two distinct points x, y ∈ Hn. Then
by convexity, f must be constant along the geodesic joining x and y. This contradicts the strict
convexity of f .

2.3 Hyperbolic manifolds

Definition 2.8. Suppose M is a smooth n-manifold. A hyperbolic structure on M is a family
of ‘coordinate charts’ {(ϕi, Ui)}i∈I where

1. each Ui is an open subset of M and {Ui}i∈I covers M ;

2. each ϕi is a diffeomorphism ϕi : Ui → ϕi(Ui) onto an open subset ϕi(Ui) of Hn;

3. if Ui ∩Uj 6= ∅ then the corresponding transition map ϕij : ϕi(Ui ∩Uj)→ ϕj(Ui ∩Uj) given
by

ϕij(x) = (ϕj ◦ ϕ−1
i )(x) for all x ∈ ϕi(Ui ∩ Uj)

agrees with an element of Isom(Hn) on each connected component of ϕ(Ui ∩ Uj).

Definition 2.9. If M is a smooth n-manifold equipped with a hyperbolic structure then we say
that M is a hyperbolic n-manifold.
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A hyperbolic manifold can be thought of as a collection of open subsets of Hn glued together by
elements of Isom(Hn). If all the transition maps are orientation preserving then the resulting
hyperbolic manifold will be orientable. The converse is also true: any orientable hyperbolic
manifold has a hyperbolic structure where all the transition maps are orientation preserving
[BP92, Remark B.1.1].

There are other ways to define ‘hyperbolic manifold’. One alternative is to call a Riemannian
manifold ‘hyperbolic’ if its Riemannian metric has constant sectional curvature −1. It is easy
to see that any manifold that is hyperbolic according to Definition 2.9 is hyperbolic in this new
sense. This is because given a manifold that is hyperbolic according to Definition 2.9, we can
define a metric at each point x in the manifold by pulling back the metric on Hn by a coordinate
chart ϕi : Ui → ϕi(Ui) with x ∈ Ui. This metric is well-defined precisely because we have insisted
that the transition maps agree (locally) with hyperbolic isometries.

Definition 2.10. Two hyperbolic manifolds M and N are isometric if there is a diffeomorphism
F : M → N that is an isometry in ‘local coordinates’. That is, for all x ∈M there is a coordinate
chart (ϕi, Ui) for M containing x, and a coordinate chart (ψj , Vj) for N containing F (x), such
that

ψj ◦ F ◦ ϕ−1
i : ϕi(Ui ∩ F−1(Vj))→ ψj(Vj ∩ F (Ui))

agrees with an element of Isom(Hn) on each connected component of ϕi(Ui ∩ F−1(Vj)).

Again, there is an analogous definition when we define hyperbolic manifolds in terms of Rieman-
nian metrics. Then hyperbolic manfiolds M and N are isometric if they are isometric in the
usual sense of Riemannian geometry.

2.3.1 Complete hyperbolic manifolds as quotients of Hn

If we restrict our attention to complete hyperbolic manifolds (i.e. those that are complete as
metric spaces), we find that these can always be described as quotients of Hn by the action of
a discrete group of isometries. To state this precisely, we first fix some terminology describing
group actions.

Definition 2.11. Suppose Γ is a group of homeomorphisms of a locally compact Hausdorff
topological space X. Then Γ acts

1. freely on X if there exist x ∈ X and γ ∈ Γ such that if γ · x = x then γ = idΓ;

2. properly discontinuously on X if the set {γ ∈ Γ : γ ·K ∩K 6= ∅} is finite for all compact
K ⊂ X.

It is a standard result that the quotient of a locally compact Hausdorff topological space X by
the action of a group of homeomorphisms that acts freely and properly discontinuously on X
is again a locally compact Hausdorff topological space. Furthermore, the quotient mapping is a
covering map.

It turns out that all complete hyperbolic manifolds can be obtained by this construction.

Theorem 2.12. If M is a complete connected hyperbolic manifold then there is an action of
π1(M) on Hn such that π1(M) acts freely and properly discontinuously by isometries. Further-
more, M is isometrically diffeomorphic to the quotient manifold Hn/π1(M).

The key step in the proof of this is to show that the universal cover of any complete hyperbolic
manifold is isometrically diffeomorphic to Hn. With that established we know that π1 acts on
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the universal cover of M by covering transformations (which are isometries in this case) in such
a way that M = M̃/π1(M). (For more details see [BP92, Section B.1].)

Notice that the quotient manifold Hn/π1(M) is invariant under inner automorphisms of π1(M).
Hence there is no need to specify a basepoint for the fundamental group in the statement of
Theorem 2.12.

We will mostly be interested in closed (i.e. compact and without boundary), connected, oriented
hyperbolic manifolds. Since compact metric spaces are complete, the previous theorem also
applies to closed hyperbolic manifolds.

2.3.2 Isometries revisited

Since closed hyperbolic manifolds can be described as Hn/Γ where Γ is a discrete subgroup of
Isom(Hn) acting freely, cocompactly, and properly discontinuously on Hn, we have another way
to think about isometries between hyperbolic manifolds. If F : Hn/Γ1 → Hn/Γ2 is an isometry
then F is certainly a homeomorphism so Γ1 and Γ2 must be isomorphic by some ψ : Γ1 → Γ2.
Then F lifts to an isometry F̃ : Hn → Hn that is equivariant with respect to the actions of Γ1

and Γ2 on Hn. That is
F̃ ◦ γ = ψ(γ) ◦ F̃

for all γ ∈ Γ1. Obviously going back the other way is possible. Any isometry F̃ : Hn → Hn that
is equivariant with respect to the actions of Γ1 and Γ2 descends to an isometry F : M → N .

This translation of maps between manifolds to equivariant self-maps of Hn (and back again) will
prove very useful.

2.3.3 Hyperbolic manifolds and homotopy equivalences

Let M be a hyperbolic manifold. Since the universal cover of M is Hn, and Hn is contractible,
it follows that all the higher homotopy groups (i.e. πn(M) where n > 1) of M are trivial. So if
two hyperbolic manifolds have isomorphic fundamental groups then all their homotopy groups
are isomorphic. With the help of Whitehead’s theorem (see [Hat02, Theorem 4.5]), we will be
able to say more.

Theorem 2.13 (Whitehead’s theorem). If a map f : X → Y between connected CW-complexes
induces isomorphisms f∗ : πn(X)→ πn(Y ) for all n, then f is a homotopy equivalence.

Since we can represent any closed connected hyperbolic manifold as a CW-complex (by, say, con-
sidering such a hyperbolic manifold as a compact polyhedron with faces identified), Whitehead’s
theorem applies in this case.

Corollary 2.14. If M and N are closed connected hyperbolic manifolds and f : M → N induces
an isomorphism on fundamental groups then f is a homotopy equivalence.

With a little extra work we can start with an isomorphism of fundamental groups and construct
a homotopy equivalence.

Proposition 2.15. If M and N are closed hyperbolic manifolds with isomorphic fundamental
groups then M and N are homotopy equivalent.
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The idea of the proof is to represent M and N as CW-complexes, lift these to CW complexes
in Hn, and then build up a map between the lifted CW complexes that induces the desired
isomorphism on fundamental groups. The map is built up by first matching up the 0-skeletons
of the lifted CW-complexes, ensuring they satisfy the equivariance condition, then matching up
the 1-skeletons, and so on. This matching up process can be done in a consistent way precisely
because all the homotopy groups of Hn are trivial. For a detailed proof see [BP92, Theorem
C.5.2].

2.4 The degree of a map

A number of the extensions of Mostow rigidity we consider will be stated in terms of the ‘degree’
of a smooth map between Riemannian manifolds. This is a generalization of the classical notion
of the degree of maps between spheres. Here and elsewhere we assume the reader is familiar with
the basics of singular homology.

Suppose M is a closed, oriented, smooth n-manifold. That is, all the transition maps in a
smooth structure for M are orientation preserving. In this case, the top-dimensional singular
homology (with coefficients in Z) satisfies Hn(M ; Z) ∼= Z. Similarly, using coefficients in R we
have Hn(M ; R) ∼= R.

Let [M ] denote a generator for Hn(M ; Z). Then [M ] is called a fundamental class for M . Given
two oriented smooth n-manifolds M and N and a smooth map f : M → N , the degree of f is
the integer deg(f) such that

f∗([M ]) = deg(f)[N ]

where f∗ : Hn(M ; Z)→ Hn(N ; Z) is the map on homology induced by f .

Suppose, instead, we are dealing with homology with coefficients in R (as will be the case in
Chapter 6). Then if [M ] generates Hn(M ; R) we will call the image of [M ] under the inclusion
Hn(M ; Z) ↪→ Hn(M ; R) a fundamental class of M and continue to denote it by [M ]. With this
convention established, if f : M → N is a smooth map the relationship f∗([M ]) = deg(f)[N ]
still holds. In this case f∗ : Hn(M ; R)→ Hn(N ; R) is the map on homology with coefficients in
R induced by f .

2.5 Measure theory

We assume the reader is familiar with the basics of measure theory and integration. In this
section we briefly cover some slightly less familiar topics that will be central to certain parts of
the discussion later on. Throughout, we will always think of the pair (X,Σ) as a topological
space equipped with its Borel σ-algebra. Our reference for this section is [Bau01].

2.5.1 Radon-Nikodym derivatives

Given any two positive measures µ and ν on (X,Σ) we say that µ is absolutely continuous with
respect to ν if any null set of ν is also a null set of µ.

The Radon-Nikodym derivative gives a concrete way to describe, in terms of integrals, the rela-
tionship between two measures, one of which is absolutely continuous with respect to the other.
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Theorem 2.16. If µ and ν are positive, σ-finite measures on (X,Σ) with µ absolutely continuous
with respect to ν, then there is a measurable function f : X → R such that for all A ∈ Σ

µ(A) =
∫
A

f dν.

Moreover f is unique in the sense that if there is some other g : X → R satisfying this property
then f and g agree almost everywhere.

The function f , whose existence is guaranteed by the theorem, is called the Radon-Nikodym
derivative of µ with respect to ν and is often denoted by the rather suggestive notation dµ

dν .

2.5.2 Signed measures

Definition 2.17. A function µ : Σ→ R ∪ {−∞,∞} is a signed measure on (X,Σ) if

1. µ(∅) = 0;

2. µ(·) does not take both the values ∞ and −∞;

3. for all sequences (Ai)i∈N ⊂ Σ where the Ai are disjoint, µ(
⋃
i∈N Ai) =

∑
i∈N µ(Ai).

Definition 2.18. The support of a positive measure µ on (X,Σ) is the largest closed set C ⊆ X
such that whenever U ⊆ X is an open set with U ∩ C 6= ∅ then µ(U) > 0.

It turns out that signed measures can be decomposed into positive measures.

Theorem 2.19 (Hahn-Jordan decomposition). If µ is a signed measure on a measurable space
(X,Σ) then there are unique positive measures µ+ and µ− on (X,Σ) such that µ+ and µ− have
disjoint support and µ(A) = µ+(A)− µ−(A) for all A ∈ Σ.

This allows us to define a notion of the ‘size’ of a signed measure.

Definition 2.20. If µ is a signed measure on (X,Σ), its total variation ‖µ‖ is

‖µ‖ = µ+(X) + µ−(X).

2.5.3 Pushing forward measures

Let (X,ΣX) and (Y,ΣY ) be topological spaces equipped with their respective Borel σ-algebras.
Let µ be a signed measure on X. If f : X → Y is a Borel function we can define a measure on
Y by

f∗[µ](A) := µ(f−1[A])

for all A ∈ ΣY . That this construction produces a signed measure follows from the fact that
pre-images behave nicely with respect to set operations.

Integration transforms very nicely with respect to pushed-forward measures. Indeed, using the
notation from the previous paragraph, if g is integrable with respect to f∗[µ] then g◦f is integrable
with respect to µ and ∫

Y

g df∗[µ] =
∫
X

g ◦ f dµ.
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This is a straightforward consequence of the definition of integration.

Given a locally compact Hausdorff space X, denote the space of signed Borel measures on X with
compact support and finite total variation byM(X). Denote the space of continuous real-valued
functions with compact support, equipped with the compact-open topology, by CK(X). The
Riesz Representation theorem tells us that we can identify M(X) with CK(X)∗ by

µ 7→
(
f 7→

∫
X

f dµ

)
.

Furthermore, the total variation of a measure coincides with the functional norm of the corre-
sponding linear functional. As such we can think of M(X) as a normed vector space. In this
context, pushforwards have particularly nice properties that will play an important role later on.

Lemma 2.21. If X and Y are locally compact Hausdorff spaces and f : X → Y is a Borel
function then f∗ :M(X)→M(Y ) is linear and satisfies ‖f∗[µ]‖ ≤ ‖µ‖ for all µ ∈M(X).

Proof. Take some µ ∈ M(X) and, using the identification above, think of µ as a bounded
linear functional Λ ∈ CK(X)∗. Then due to the way pushforwards and integrals interact, f∗[µ]
corresponds to the linear functional Λf ∈ CK(Y )∗ where Λf (g) = Λ(g ◦ f). The map Λ 7→ Λf is
obviously linear. To see that it is a contraction observe that

‖Λf‖ = sup
g 6=0

|Λf (g)|
‖g‖

= sup
g 6=0

|Λ(g ◦ f)|
‖g‖

≤ sup
g 6=0

|Λ(g ◦ f)|
‖g ◦ f‖

≤ sup
h6=0

|Λ(h)|
‖h‖

= ‖Λ‖.
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Chapter 3

Statement of Mostow Rigidity

3.1 Rigidity theorems

A ‘rigidity theorem’ is, roughly speaking, a theorem where seemingly weak assumptions combine
to give very strong conclusions. Many rigidity theorems come in one of the following two flavours.

One flavour is the ‘local’ rigidity theorem. We start with a class of structures (such as Rieman-
nian metrics on a manifold that admits a hyperbolic metric), and some subclass of structures
(hyperbolic metrics on that manifold), and ask whether, if we start with a structure in the sub-
class, we can deform the structure and stay within the subclass of structures. In local rigidity
theorems, only trivial deformations are possible. A prototypical example of this style of rigidity
theorem is the theorem of Calabi and Weil ([Cal61], [Wei62]) a precursor to Mostow’s Rigidity
Theorem.

Another flavour of rigidity theorem is the ‘strong’ rigidity theorem. In this case we start with
two objects (such as hyperbolic manifolds) and a ‘weak’ notion of isomorphism between them
(such as having isomorhpic fundamental groups). If the type of objects, and the notion of ‘weak’
isomorphism conspire to imply a ‘strong’ notion of isomorphism (such as being isomertic), then
we have a ‘strong’ rigidity theorem. Notice that this style of rigidity theorem is global in nature.
Mostow’s Ridigity Theorem is the prototypical example of a theorem of this type.

3.2 Mostow’s Rigidity Theorem

In this section we state Mostow’s Theorem in two equivalent, though seemingly different, ways.
We then explore examples and non-examples of the rigidity phenomena promised by the theorem,
indicating that relaxing the hypotheses causes the theorem to fail.

3.2.1 Statements of the theorem

Theorem 3.1. Suppose M1 and M2 are closed hyperbolic manifolds of dimension n ≥ 3. If
f : M1 →M2 is a homotopy equivalence then f is homotopic to an isometry.

Theorem 3.2. Suppose M1 = Hn/Γ1 and M2 = Hn/Γ2 are closed hyperbolic manifolds of
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dimension n ≥ 3. If Γ1 and Γ2 are isomorphic then they are are actually conjugate in Isom(Hn).

Proposition 3.3. Theorems 3.1 and 3.2 are equivalent.

Proof. Suppose Theorem 3.1 holds. Then if M1 = Hn/Γ1 and M2 = Hn/Γ2 are closed hyperbolic
n-manifolds with n ≥ 3 and Γ1 and Γ2 isomorphic then M1 and M2 have isomorphic fundamental
groups. Then by Proposition 2.15 they are homotopy equivalent. Theorem 3.1 tells us that
the homotopy equivalence can be chosen to be an isometry F : M1 → M2 that induces the
isomorphism between Γ1 and Γ2. But then F lifts to an isometry F̃ : Hn → Hn such that F̃ is
equivariant with respect to the action of Γ1 and Γ2 on Hn. Finally, this is equivalent to saying
that F̃ conjugates Γ1 to Γ2.

Conversely, suppose Theorem 3.2 holds. Suppose M1 and M2 are closed hyperbolic n-manifolds
with n ≥ 3 and f : M1 →M2 is a homotopy equivalence. Then since f induces an isomorphism
on fundamental groups, Theorem 3.2 tells us that the fundamental groups of M1 and M2 are
conjugate in Isom(Hn) (by F̃ ∈ Isom(Hn), say). Then

π1(M1) = F̃ π1(M2)F̃−1

so F̃ descends to an isometry F : M1 →M2 that induces the same isomorphism on fundamental
groups as f . Hence f is homotopic to F .

Although Mostow’s theorem holds without any assumptions on the orientability of the manifolds
involved, our proofs in Chapters 5 and 6 will actually assume that M1 and M2 are orientable.

3.2.2 Failure when n = 2: Closed surfaces

Mostow’s theorem says nothing about what happens for closed orientable hyperbolic manifolds of
dimension 2. These manifolds are exactly the closed orientable surfaces of genus g ≥ 2, which we
denote Σg. Are these Mostow rigid? Or do there exist many non-isometric hyperbolic structures
on Σg?

In stark contrast to the situation in higher dimensions, it turns out that there is a 6g − 6
dimensional space of possible hyperbolic metrics on Σg. We will now sketch one way to see this
by decomposing Σg into hyperbolic ‘pairs of pants’. A hyperbolic pair of pants is a genus-0 surface
with a hyperbolic metric and three geodesic boundary components. It turns out that given any

L1/2

L2/2L3/2

L1

L3 L2

Figure 3.1: Making a pair of hyperbolic pants.

three lengths L1, L2, L3 > 0 we can put a unique hyperbolic structure on a pair of pants so that
the boundary components have lengths L1, L2, and L3. This is because there is, up to isometry,
a unique right-angled hyperbolic hexagon with the side lengths of three non-adjacent sides being
L1/2, L2/2, and L3/2 (see [Rat94, Section 3.5]). Gluing two of these together gives a hyperbolic
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pair of pants. (See Figure 3.1.) So there is a three dimensional space of possible non-isometric
hyperbolic structures on a pair of pants. Given any Σg with g ≥ 2 we can decompose the surface

Figure 3.2: Cutting Σg into hyperbolic pants.

into 2g − 2 pairs of pants by cutting along 3g − 3 simple closed geodesics. An example of this is
shown in Figure 3.2.

Once we have cut our surface into pants, there is a 3(2g − 2)-dimensional space of hyperbolic
structures on the disjoint union of the 2g − 2 pairs of pants. Since we want to put a hyperbolic
structure on the surface itself, we need to make sure that we can actually glue our pairs of pants
back together. To ensure this, we must make sure that the boundary components that need
to be re-glued have the same length. This imposes 3g − 3 extra constraints. But along every
gluing curve, we can choose to glue the legs of the pants together with a twist of some angle,
giving us an extra 3g − 3 degrees of freedom. This quick dimension count suggests there is a
(6g − 6)− (3g − 3) + (3g − 3) = 6g − 6 dimensional space of non-isometric hyperbolic structures
on Σg. Indeed this is the case.

So hyperbolic surfaces certainly do not satsify Mostow’s Rigidity Theorem, as if they did there
would have to be a unique hyperbolic structure on each Σg where g ≥ 2.

3.2.3 Failure for spherical manifolds: Lens spaces

Just as in the case of compact hyperbolic n-manifolds, ‘spherical’ n-manifolds can be described as
the quotient of Sn by the action of a subgroup of Isom(Sn) acting freely, properly discontinuously.

In this section we give an example of spherical 3-manifolds that have isomorphic fundamental
groups and yet are not homeomorphic (and so are certainly not isometric). This indicates that
Mostow’s rigidity theorem fails for spherical 3-manifolds.

We can think of S3 as a subset of C2 by writing S3 = {(z1, z2) ∈ C2 : |z1|2 + |z2|2 = 1}. Let
ω ∈ C be a primitive pth root of unity and let q be relatively prime to p. Then

Γp,q =

{[
ω 0
0 ωq

]k
: k = 0, 1, . . . , p− 1

}
∼= Zp

acts on S3 by left-multiplication. Define, for relatively prime positive integers p, q, the three
dimensional lens space to be

L(p, q) := S3/Γp,q.

Figure 3.3 shows a way to think of lens spaces in terms of identifying faces on a polyhedron.

From our construction it is clear that for any q, the fundamental group of L(p, q) is Zp. So for
any two lens spaces L(p, q) and L(p′, q′) to be homotopy equivalent it is necessary that p = p′.
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Figure 3.3: The lens space L(7, 2) can be described by identifying faces in the polyhedron shown.
The polyhedron consists of seven ‘wedges’, the identification is to glue any bottom face to the
top face two ‘wedges’ along.

In fact the classification of lens spaces up to homotopy equivalence and up to homemorphism
are known. A proof of the former is given in [Whi41], a proof of the latter in [Bro60].

Theorem 3.4. If L(p, q) and L(p, q′) are three dimensional lens spaces then they are

1. homotopy equivalent if and only if q ≡ ±n2q′ (mod p) for some n ∈ N and

2. homeomorphic if and only if q ≡ ±q′ (mod p) or qq′ ≡ ±1 (mod p).

Hence the lens spaces L(7, 1) and L(7, 2) are homotopy equivalent as 2 ≡ 32 × 1 (mod 7) but
are not homeomorphic. So, in particular, Mostow’s theorem does not hold for these spherical
3-manifolds.

In a sense, spherical manifolds are bad examples of non-rigidity. This is because they do satisfy
a weaker rigidity theorem due to de Rham [dR50]. This states that spherical manifolds that are
diffeomorphic are actually isometric.

3.3 More general versions of Mostow’s Theorem

Mostow’s Theorem (as stated in Section 3.2.1) has been generalized a number of times over
the years. Here we will briefly mention the generalizations that are still referred to as ‘Mostow
Rigidity’.

First, Mostow himself extended the theorem to deal with the case that M1 and M2 are ‘rank one
locally symmetric spaces’ (with some exceptions) rather than just hyperbolic manifolds [Mos73].
Locally symmetric spaces are Riemannian manifolds where the ‘geodesic reflection’ map, that
takes expp(tv) to expp(−tv) for sufficiently small t and any v in the tangent space at p, agrees
locally with an isometry. The ‘rank’ of such a space is the largest dimension of a totally geodesic
flat submanifold.

It is easy to see that hyperbolic manifolds are locally symmetric. To see that they have rank one,
observe that the totally geodesic k-dimensional submanifolds of hyperbolic manifolds are locally
isometric to Hk and so cannot be flat unless k = 1.

Prasad extended Mostow’s results further by replacing the assumption that the manifolds be
compact, with the assumption that they have finite volume [Pra73]. As such, the resulting
theorem is sometimes known as Mostow-Prasad Rigidity.
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Chapter 4

The first step

While there are many proofs of Mostow’s Rigidity Theorem, they all share a similar ‘first step’
which essentially goes back to Mostow’s original proof [Mos68]. Recall that in the statement of
the theorem, we start with an isomorphism between fundamental groups of closed hyperbolic
n-manifolds. The first step of all the known proofs of Mostow’s theorem involves showing that
this map can be used to construct a homeomorphism of the sphere ‘at infinity’ of hyperbolic
space.

As such, this chapter is devoted to proving the following theorem.

Theorem 4.1. Suppose Γ1 and Γ2 are subgroups of Isom(Hn) such that M1 = Hn/Γ1 and
M2 = Hn/Γ2 are closed hyperbolic manifolds. If ψ : Γ1 → Γ2 is an isomorphism then there is a
homeomorphism ∂f : ∂Hn → ∂Hn such that

∂f ◦ γ = ψ(γ) ◦ ∂f for all γ ∈ Γ1.

Our proof differs from the standard references ([BP92, Section C.1], [Rat94, Section 11.6], [Thu79,
Section 5.9]) in that we use the isomorphism between Γ1 and Γ2 directly to construct ∂f , without
first constructing a homotopy equivalence between M1 and M2.

In Chapter 5 we will prove that ∂f actually must be the restriction to ∂Hn of an element of
Isom(Hn), establishing Mostow’s Rigidity Theorem.

4.1 Finitely generated groups as geometric objects

Let G be a finitely generated group and let X ⊂ G be a finite generating set for G. Let X∗

denote the set of words in the elements of X and their inverses.

Then we can define a metric on G (depending on X) as follows. If g ∈ G then define

‖g‖X = min{length(w) : w ∈ X∗ and w =
G
g}.

Then for any g, h ∈ G define
dX(g, h) = ‖g−1h‖X .

This defines a metric on G. The proof is a routine check and so we omit it. Furthermore it is easy
to see from the definition that the metric is left-invariant in the sense that for all g1, g2, h ∈ G,
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dX(hg1, hg2) = dX(g1, g2). So, as long as we specify a generating set X, we can think of any
finitely generated group G as a metric space (G, dX).

Of course, changing generating sets changes the metric, which is problematic if we want to use
the metric space structure to study G itself. Thankfully there is a coarser (but not too coarse)
notion of equivalence between metric spaces such that if X and Y are two generating sets for a
finitely generated group G, then (G, dX) and (G, dY ) are equivalent.

Definition 4.2. Given metric spaces (X, dX) and (Y, dY ), a map f : X → Y is a (λ, ε)-quasi-
isometric embedding if there are constants λ ≥ 1 and ε ≥ 0 such that for all x1, x2 ∈ X

1
λ
dX(x1, x2)− ε ≤ dY (f(x1), f(x2)) ≤ λdX(x1, x2) + ε.

Furthermore, if

Y ⊆ Nε(f(X)) := {y ∈ Y : d(y, f(x)) ≤ ε for some x ∈ X}

then f is ε-quasi-surjective. If f is both a (λ, ε)-quasi-isometric embedding and ε-quasi-surjective
it is a (λ, ε)-quasi-isometry. Finally if there is a quasi-isometry f : X → Y then the metric spaces
X and Y are quasi-isometric.

It is a simple yet crucial fact that the composition of two quasi-isometries is again a quasi-
isometry.

Proposition 4.3. If X and Y are two finite generating sets for a group G, then the metric
spaces (G, dX) and (G, dY ) are quasi-isometric.

Proof. For each x ∈ X let wY (x) ∈ Y ∗ denote a fixed minimum length word over Y such that
wY (x) =

G
x. Similarly for each y ∈ Y let wX(y) ∈ X∗ denote a fixed minimum length word over

X such that wX(y) =
G
y.

Let λ = max{length(wX(y)) : y ∈ Y } and µ = max{length(wY (x)) : x ∈ X} and η = max{λ, µ}.
These exist since X and Y are finite.

If g, h ∈ G and g−1h =
G
x1x2 · · ·xn is a minimum length word representing g−1h over X then

g−1h =
G
wY (x1)wY (x2) · · ·wY (xn). So

dY (g, h) = ‖g−1h‖Y ≤
n∑
i=1

length(wY (xi)) ≤ ηn = ηdX(g, h).

Reversing the roles of X and Y gives dX(g, h) ≤ ηdY (g, h) so the identity map idG : (G, dX)→
(G, dY ) is a quasi-isometric embedding. The identity map is surjective. Hence (G, dX) and
(G, dY ) are quasi-isometric.

As a result, if we are only interested in a finitely generated group’s metric space structure up
to quasi-isometry, we do not need to, and usually will not bother to, specify a particular finite
generating set for the group.

Also observe that, with minor alterations to notation, the argument in the proof of Proposition 4.3
shows that if G and H are isomorphic finitely generated groups then for any generating sets X for
G and Y for H the isomorphism ψ : G→ H gives rise to a quasi-isometry ψ : (G, dX)→ (H, dY ).
This fact will play a key role in Section 4.4.

Finally, just as any isometry of metric spaces is invertible and the inverse is also an isometry, an
analogous result holds for quasi-isometries.
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Definition 4.4. If f : X → Y is a quasi-isometry then g : Y → X is a κ-quasi-inverse of f if
there is some κ > 0 such that for all x ∈ X, y ∈ Y .

dX((g ◦ f)(x), x) ≤ κ and dY ((f ◦ g)(y), y) ≤ κ.

Lemma 4.5. If f is a (λ, ε)-quasi-isometry and g is a κ-quasi-inverse of f then g is also a
quasi-isometry.

Proof.

dX(g(x), g(y)) ≤ λdY ((f ◦ g)(x), (f ◦ g)(y)) + λε

≤ λdY ((f ◦ g)(x), x) + λdY (x, y) + λdY (y, (f ◦ g)(y)) + λε

≤ λdY (x, y) + λ(2κ+ ε).

Similarly

dY (x, y) ≤ dY (x, (f ◦ g)(x)) + dY ((f ◦ g)(x), (f ◦ g)(y)) + dY ((f ◦ g)(y), y)
≤ λdX(g(x), g(y)) + (2κ+ ε).

Proposition 4.6. If f : X → Y is a (λ, ε)-quasi-isometry then f has a quasi-inverse g : Y → X
with the property that f ◦ g ◦ f = f .

Proof. If y ∈ f(X) then fix some xy ∈ f−1({y}) and define g(y) = xy. If y /∈ f(X) then there is
some y0 ∈ f(X) with dY (y, y0) ≤ ε since f is ε-quasi-surjective. Hence define g(y) = xy0 .

It is clear from the definition that (f ◦ g)(y) = y0 and so dY ((f ◦ g)(y), y) ≤ ε. Moreover,
(f ◦ g ◦ f)(x) = (f(x))0 = f(x) so, since f is a quasi-isometry,

dX((g ◦ f)(x), x) ≤ λdY ((f ◦ g ◦ f)(x), f(x)) + λε = λε.

4.2 δ-hyperbolic spaces

One viewpoint of ‘negatively curved spaces’ is that they are Riemannian manifolds with negative
sectional curvature. Another more general notion of a negatively curved space is that of a δ-
hyperbolic space or Gromov hyperbolic space. These are named after M. Gromov whose work
has made great use of this general approach to negative curvature. Roughly speaking, a geodesic
metric space X is called ‘hyperbolic’ if all geodesic triangles in X are ‘slim’. Let us now make
these notions more precise.

Definition 4.7. A geodesic in a metric space X is a path c : [a, b] → X that is an isometric
embedding. That is, for all t1, t2 ∈ [a, b],

dX(c(t1), c(t2)) = |t1 − t2|. (4.1)

The main space of interest to us is Hn. Note that the notion of geodesic in Definition 4.7 corre-
sponds to the Riemannian notion of geodesic for Hn. It does not correspond to the Riemannian
notion of geodesic in general as Riemannian geodesics need not be globally length minimizing.
We have already noted that there is a (unique) geodesic joining any two points in Hn. This
motivates the following definition.
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x

y≤ 2

Figure 4.1: Hyperbolic triangles are 2-slim.

Definition 4.8. A metric space X is geodesic if for any x, y ∈ X there is a geodesic joining x
and y.

For the sake of convenience, if x, y ∈ X and there is a geodesic joining x and y, we use the
notation [x, y] ⊂ X to denote the image of some geodesic joining x and y.

Now we are in a position to define a δ-hyperbolic space. The definition we use is attributed to
Rips by Gromov [Gro87], and is one of many equivalent definitions that are in use.

Definition 4.9. If X is a geodesic metric space, a geodesic triangle in X is δ-slim if each side
is contained in the δ-neighbourhood of the union of the other two sides.

Definition 4.10. A geodesic metric space is δ-hyperbolic if there is some δ > 0 such that every
geodesic triangle in X is δ-slim.

If δ-hyperbolic spaces are meant to exhibit behaviour similar to that of negatively curved Rie-
mannian manifolds, then the simplest negatively curved Riemannian manifold ought to be δ-
hyperbolic. Indeed this is the case.

Proposition 4.11. In Hn all triangles are 2-slim.

Proof. Since all geodesic triangles in Hn lie in some isometric copy of H2, it suffices to prove
this in the case n = 2. Recall from Section 2.1.3 that hyperbolic triangles have area at most π
and that the area of a hyperbolic disk of radius r is 2π(cosh (r) − 1). Any circle inscribed in a
hyperbolic triangle must have area less than π so must have radius less than cosh−1( 3

2 ) < 1.

Given a point x on a hyperbolic triangle, construct a circle of radius 1 tangent to the triangle at
x. Then the circle intersects another side of the triangle at some y. Since both x and y lie on
the circle of radius 1 it follows that d(x, y) ≤ 2.

The point of all this is that the slim triangles condition captures some of the large-scale properties
of negatively curved Riemannian manifolds but is valid in a much more general setting.

Although we will not need this fact, it is interesting to note that if two geodesic metric spaces
(X, dX) and (Y, dY ) are quasi-isometric, then X is δ-hyperbolic for some δ if and only if Y is
δ′-hyperbolic for some δ′ (see [BH99, Theorem III.H.1.9] for a proof). This is further evidence
that quasi-isometry is the ‘right’ notion of equivalence in this context.
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4.3 Quasi-geodesics, the Morse lemma, and another way
to view ∂Hn

4.3.1 Quasi-geodesics and the Morse lemma

Definition 4.12. If X is a metric space then c : [a, b] → X is a (λ, ε)-quasi-geodesic if c is a
(λ, ε)-quasi-isometric embedding.

Note that the images of geodesics and quasi-geodesics under quasi-isometries are quasi-geodesics.

Quasi-geodesics play an important role in δ-hyperbolic spaces because they are ‘not too far away’
from being geodesics. This statement about the ‘stability of quasi-geodesics’ is made precise by
the ‘Morse Lemma’. A version of this result (in H2 and restricted to what we will call ‘tamed’
quasi-geodesics in Section 4.6) was first proved by Morse in [Mor21].

Lemma 4.13 (Morse Lemma). If X is a δ-hyperbolic space then there is some constant R =
R(δ, λ, ε) such that for any (λ, ε)-quasi-geodesic c : [a, b]→ X,

dH(c([a, b]), [c(a), c(b)]) ≤ R.

Since the proof is lengthy enough to interfere with our current line of thought we defer it until
Section 4.6.

While the Morse Lemma only tells us about the behaviour of finite quasi-geodesic segments, we
can use it to say something about quasi-geodesic rays as well. Since we are really only interested
in the case where our δ-hyperbolic space is Hn we will now focus on that situation.1

Lemma 4.14. If c : [0,∞) → Hn is a (λ, ε)-quasi-geodesic then there is a unique geodesic ray
A(c) : [0,∞)→ Hn that satisfies A(c)(0) = c(0) and is such that the Hausdorff distance between
the image of c and the image of A(c) is finite.

Proof. Let p = c(0). Let Vp : Hn → UTpHn denote the ‘visual’ projection of Hn onto the unit
tangent space at p defined by mapping x ∈ Hn to the initial velocity vector of the geodesic
joining p and x.

For every t ∈ [0,∞) let BtR denote the closed ball of radius R = R(λ, ε) centred at c(t) and let

U =
⋂

t∈[0,∞)

Vp(BtR).

Note that U is precisely the set of initial velocity vectors of geodesic rays based at p that stay
within distance R of c([0,∞)). So it suffices to show that U consists of a single point.

If U contains more than one point then there would be two distinct geodesic rays γ and γ′ that
remain within a bounded distance of c([0,∞)). But this is impossible as any two such geodesic
rays do not remain within a bounded distance of each other.

Now, the collection of closed subsets {Vp(BtR)}t of UTpHn satisfy the finite intersection property.
This is because for any finite subset {t1, t2, . . . tk} ⊂ [0,∞) (with t1 < t2 < · · · < tk), Lemma
4.13 tells us that the geodesic segment γk = [c(0), c(tk)] passes through all the balls BtiR . Hence
γ′k(0) is an element of each Vp(BtiR).

1Nevertheless, it is possible to prove most of what follows in the context of δ-hyperbolic spaces.
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c(0)
c+

c−

A(c)

Figure 4.2: There is a geodesic line within a bounded distance of any quasi-geodesic line.

Observe that UTpHn is compact, each BtR is compact, and Vp is continuous. So it follows that
{Vp(BtR)}t is a collection of compact (hence closed) subsets of a compact set that satisfy the
finite intersection property. So {Vp(BtR)}t has non-empty intersection.

Hence U = {u} is a singleton. Thus taking A(c) to be the geodesic ray with A(c)(0) = p and
A(c)′(0) = u completes the proof.

Corollary 4.15. If c : R → Hn is a quasi-geodesic line then there is a unique geodesic line
A(c) : R→ Hn such that the Hausdorff distance between the images of c and A(c) is bounded.

Proof. Let c+ : [0,∞) → Hn and c− : [0,∞) → Hn be given by c+(t) = c(t) for t ∈ [0,∞) and
c−(t) = c(−t) for t ∈ [0,∞). Then let A(c) be the geodesic line which stays within a bounded
distance of the geodesic rays A(c+) and A(c−). (See Figure 4.2.)

Note that given any quasi-geodesic ray c : [0,∞) → Hn (geodesic line c : R → Hn) we will
continue, throughout this chapter, to use the notation A(c) : [0,∞) → Hn (A(c) : R → Hn) for
the unique geodesic ray (geodesic line) that stays within a bounded distance of c.

4.3.2 ∂Hn from another perspective

Recall that in Section 2.1.2 we defined ∂Hn, the boundary of Hn ‘at infinity’, to be the set
of equivalence classes of geodesic rays in Hn where geodesic rays η1, η2 are equivalent if the
Hausdorff distance between their images is finite.

Similarly we say that quasi-geodesic rays c1, c2 : [0,∞) → Hn are equivalent if the Hausdorff
distance between their images is finite. In light of Lemma 4.14 this can be restated as saying
that c1 and c2 are equivalent if and only if the geodesic rays A(c1) and A(c2) are equivalent.

With this in mind, we can think of ∂Hn as the set of equivalence classes of quasi-geodesic rays
c : [0,∞)→ Hn. As such we denote points of ∂Hn by [c]. Having this extra flexibility allows us
to extend quasi-isometries to maps from ∂Hn to itself in a straightforward way.
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Notice that if we fix a basepoint p ∈ Hn there is a unique geodesic ray γ : [0,∞) → Hn with
γ(0) = p in each equivalence class of quasi-geodesic rays. Hence we can still define the topology
on ∂Hn as we did in Section 2.1.2.

4.3.3 Quasi-isometries of Hn induce homeomorphisms of ∂Hn.

Lemma 4.16. If X and Y are metric spaces and f : X → Y is a (λ, ε)-quasi-isometry then if
A,B ⊂ X, dH(f(A), f(B)) ≤ λdH(A,B) + ε.

Proof. Let dH(A,B) = R. Then for every a ∈ A there is some ba ∈ B such that dX(a, ba) ≤ R,
and for every b ∈ B there is some ab ∈ A such that dX(b, ab) ≤ R. Since f is a quasi-isometry,
for every f(a) ∈ f(A) and every f(b) ∈ f(B),

dY (f(a), f(ba)) ≤ λdX(a, ba) + ε ≤ λR+ ε and dY (f(b), f(ab)) ≤ λdX(b, ab) + ε ≤ λR+ ε,

establishing that dH(f(A), f(B)) ≤ λR+ ε.

Proposition 4.17. If f : Hn → Hn is a (λ, ε)-quasi-isometry then ∂f : ∂Hn → ∂Hn, where

∂f([c]) = [f ◦ c],

is a bijection with inverse given by ∂g where g : Hn → Hn is a quasi-inverse of f .

Proof. To see that ∂f is well defined, suppose c1, c2 : [0,∞) → Hn are quasi-geodesic rays with
[c1] = [c2]. Then since f is a quasi-isometry and the Hausdorff distance between the images of
c1 and c2 is finite, the hypotheses of Lemma 4.16 are satisfied. Hence the Hausdorff distance
between the images of f ◦ c1 and f ◦ c2 is also finite and so ∂f([c1]) = ∂f([c2]).

Suppose g : Hn → Hn is a κ-quasi-inverse of Hn → Hn. Then if [c] ∈ ∂Hn, it is obvious that the
Hausdorff distances between the image of c and the images of g ◦ f ◦ c and f ◦ g ◦ c are each at
most κ. So it follows that

[c] = [f ◦ g ◦ c] = (∂f ◦ ∂g)([c]) and [c] = [g ◦ f ◦ c] = (∂g ◦ ∂f)([c]).

So ∂f and ∂g are mutually inverse.

From now on, given any quasi-isometry f : Hn → Hn we will use the notation ∂f : ∂Hn → ∂Hn to
denote the induced map defined in Proposition 4.17. We will also use the notation f̄ : Hn → Hn

to denote the ‘union’ of f and ∂f .

Our final aim for this section is to show that ∂f is a homeomorphism. A similar (although not
identical) result appears in Chapter 5 of Thurston’s notes [Thu79]. We will essentially follow the
presentation of this argument given in [BP92].

The next lemma, although rather technical, will help us establish the continuity of ∂f by helping
us understand what the images of hyperplanes under quasi-isometries look like.

Lemma 4.18. Suppose β is a geodesic line in Hn, H is a hyperbolic hyperplane orthogonal to β,
and f : Hn → Hn is a (λ, ε)-quasi-isometry. Let πA(f◦β) : Hn → Hn denote orthogonal projection
onto the geodesic line A(f ◦ β). Then there exists some constant c depending only on λ, ε such
that

diam(πA(f◦β)f(H)) ≤ c.
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Figure 4.3: The top figure shows the construction used in the proof of Lemma 4.18. The bottom
figure shows its image under f̄ .
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Proof. The proof is based the geometric construction shown in Figure 4.3.

Let x be the point of intersection of β and H and take some y ∈ H \ {x}. Let ` be the geodesic
ray contained in H that starts at x and passes through y. Let ξ be the endpoint of ` and η1 and
η2 the endpoints of β. Let `1 and `2 be the geodesic lines joining ξ and η1 and η2 respectively
and let xi be the point on `i closest to x (for i = 1, 2).

For i = 1, 2, d(x, xi) = k = cosh−1(
√

2) is a fixed constant. To see this, by symmetry the geodesic
segment [x, xi] divides the triangle ξ, x, ηi into two congruent pieces. Hence the angle ξxxi is
π/4. Applying the cosine rule for triangles with one finite side and one right-angle (2.2) gives
cosh d(x, xi) = 1/ sin(π/4) =

√
2.

Now consider the image of the diagram under f̄ . Let z be the point on A(f ◦ β) that is closest
to f(x). Furthermore, let z0 be the foot of the perpendicular from ∂f(ξ) to A(f ◦ β). First note
that z is a uniformly bounded distance from each A(f ◦ `i) since

d(A(f ◦ `i), z) ≤ d(A(f ◦ `i), f(xi)) + d(f(xi), f(x)) + d(f(x), z) ≤ R+ λk + ε+R.

(Here we have used the definition of A(·) and the fact that f is a quasi-isometry.)

Now let a1 and a2 denote the points on A(f ◦ `1) and A(f ◦ `2) respectively that are closest to z.
One of the geodesic segments [z, ai] intersects the geodesic ray emanating from z0 with endpoint
∂f(ξ). Without loss of generality assume it is [z, a2] and let the point of intersection be a.

Then azz0 is a right angled hyperbolic triangle so

d(z, z0) ≤ d(z, a) ≤ d(z,A(f ◦ `2)) ≤ 2R+ λk + ε.

Now suppose w ∈ A(f ◦ `). Then the projection of w onto A(f ◦ β) lies on the geodesic segment
[z, z0]. So d(πA(f◦β)(w), z) ≤ 2R + λk + ε. If w is the closest point on A(f ◦ `) to f(y) then,
because orthogonal projection reduces distances,

d(πA(f◦β)(f(y)), z) ≤ d(πA(f◦β)(f(y)), πA(f◦β)(w)) + d(πA(f◦β)(w), z)
≤ d(f(y), w) + d(πA(f◦β)(w), z)
≤ R+ 2R+ λk + ε.

So taking c = 2(3R+ λk + ε) completes the proof.

Let us briefly recall the way we defined the topology on ∂Hn. Given any geodesic ray β and
some point y on β, let H be the hyperplane orthogonal to β and passing through y. Let Qy
denote the component of Hn \ H containing the point [β] ∈ ∂Hn. Then the Qy are a basis of
neighbourhoods at [β].

Proposition 4.19. If f : Hn → Hn is a quasi-isometry then ∂f : ∂Hn → ∂Hn is a homeomor-
phism.

Proof. We have already seen that ∂f is a bijection whose inverse is ∂g where g : Hn → Hn is
any quasi-inverse of f . Hence, by symmetry, we need only show that ∂f is continuous. We will
do so by showing that f̄ : Hn → Hn

is continuous at any [β] ∈ ∂Hn.

As such, let β be a fixed geodesic ray in Hn with endpoint [β] ∈ ∂Hn. Fix a neighbourhood
Q of f̄([β]) which is constructed using the geodesic ray A(f ◦ β). Then for sufficiently large
t0 ∈ [0,∞), for every t > t0 the ball of radius c (where c is chosen as in the proof of Lemma
4.18) around f(β(t)) is contained in Q.
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Figure 4.4: Construction showing that ∂f is continuous.

Let H be the hyperplane orthogonal to β passing through β(t0) and let Q′ be the corresponding
neighbourhood of [β]. For some t > t0, let Ht be the hyperplane orthogonal to β passing through
β(t). Then applying Lemma 4.18 we have that f(Ht) ⊂ Q.

Taking the closure Ht of Ht, by the definition of f̄ we also have that f̄(Ht) ⊂ Q. Since

Q′ =
⋃

t∈[t0,∞)

Ht

it follows that f̄(Q′) ⊂ Q and so f̄ is continuous at [β].

4.4 Proof of Theorem 4.1

Recall that our aim in this chapter is to prove the following.

Theorem 4.1. Suppose Γ1 and Γ2 are subgroups of Isom(Hn) such that M1 = Hn/Γ1 and
M2 = Hn/Γ2 are closed hyperbolic manifolds. If ψ : Γ1 → Γ2 is an isomorphism then there is a
homeomorphism ∂f : ∂Hn → ∂Hn such that

∂f ◦ γ = ψ(γ) ◦ ∂f for all γ ∈ Γ1.

The basic idea behind our proof of Theorem 4.1. is to construct a quasi-isometry from Hn to
itself and use the definition of Hn in terms of quasi-geodesic rays to define a map on the boundary
of hyperbolic space. To do this, we need a way to construct a quasi-isometry between Hn and
a group of isometries that acts freely, properly discontinuously and cocompactly on Hn (and
vice-versa).

The Švarc-Milnor Lemma provides us with a map in one direction. Taking any quasi-inverse of
this map allows us to go back the other way.

Lemma 4.19 (Švarc-Milnor Lemma). Let X be a geodesic metric space. Suppose Γ acts properly
discontinuously and co-compactly by isometries on X. Then Γ is finitely generated. If A is any
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finite generating set for Γ and x0 ∈ X is any basepoint, the map (Γ, dA) 3 γ 7→ γ · x0 ∈ (X, d) is
a quasi-isometry.

Again we defer the proof to Section 4.6. It is worth pointing out that this result actually holds
for slightly more general spaces called ‘length spaces’ (for a definition see [BH99, p.32]).

Now we are ready to prove Theorem 4.1.

Proof of Theorem 4.1. Since M1 = Hn/Γ1 and M2 = Hn/Γ2 are compact manifolds it follows
that Γ1 and Γ2 act properly discontinuously and co-compactly by isometries on Hn.

Fix a basepoint x0 ∈ Hn. By the Švarc-Milnor Lemma, for i = 1, 2 the maps φi : Γi → Hn given
by φi(γ) = γ · x0 are quasi-isometries. Let ρi : Hn → Γi denote fixed quasi-inverses of the φi
defined as in the proof of Proposition 4.6. In particular, they satisfy φi ◦ ρi ◦φi = φi for i = 1, 2.
Since the φi are injective this implies that ρi ◦ φi is the identity on Γi for i = 1, 2.

By Proposition 4.3 the isomorphism ψ : Γ1 → Γ2 is a quasi-isometry. Since the composition of
quasi-isometries is again a quasi-isometry it follows that f : Hn → Hn defined by

f = φ2 ◦ ψ ◦ ρ1

is a quasi-isometry. So by Proposition 4.19 the map ∂f : ∂Hn → ∂Hn defined by ∂f([c]) = [f ◦ c]
is a homeomorphism. It remains to show that ∂f satisfies the equivariance condition

(∂f ◦ γ)([c]) = ∂f([γ ◦ c]) = [f ◦ γ ◦ c] = [ψ(γ) ◦ f ◦ c] = ψ(γ)([f ◦ c]) = (ψ(γ) ◦ ∂f([c]) (4.2)

for all γ ∈ Γ1 and all quasi-geodesic rays c. Of these, the only equality that requires proof is
[f ◦ γ ◦ c] = [ψ(γ) ◦ f ◦ c]. So all that remains is to establish this relationship.

We first show that within every equivalence class of quasi-geodesic rays in Hn, there is a quasi-
geodesic of the form c(t) = η(t) · x0 where η : [0,∞)→ Γ1.

Take some quasi-geodesic ray c′ : [0,∞) → Hn. Since φ1 ◦ ρ1 : Hn → Hn is a quasi-isometry,
c = φ1 ◦ ρ1 ◦ c′ is a quasi-geodesic ray. Since φ1 and ρ1 are quasi-inverses of each other, [c] = [c′].
Taking η(t) = (ρ1 ◦ c′)(t) it follows from the definition of φ1 that c(t) = η(t) · x0, as required.

If c(t) = η(t) · x0 then (γ ◦ c)(t) = γ(η(t) · x0) = (γη)(t) · x0 (by the properties of group actions).
Recall that ρ1 ◦ φ1 is the identity map on Γ1. Hence

(ρ1 ◦ c)(t) = (ρ1 ◦ φ1 ◦ η)(t) = η(t) (4.3)

and, similarly,
(ρ1 ◦ γ ◦ c)(t) = (ρ1 ◦ φ1 ◦ γη)(t) = γη(t). (4.4)

Then using the fact that ψ is a homomorphism,

(f ◦ γ ◦ c)(t) = (φ2 ◦ ψ ◦ ρ1 ◦ γ ◦ c)(t) (by definition of f)
= ψ(γη(t)) · x0 (by (4.4) and the definition of φ2)
= ψ(γ)ψ(η(t)) · x0 (since ψ is a homomorphism)
= ψ(γ)(ψ(η(t)) · x0) (by properties of group actions)
= (ψ(γ) ◦ (φ2 ◦ ψ ◦ ϕ1 ◦ c))(t) (by (4.3) and the definition of φ2)
= (ψ(γ) ◦ f ◦ c)(t) (by the definition of f).

So the required equivariance property (4.2) holds, completing the proof.
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4.5 Quasi-isometric rigidity of lattices

Gromov’s address at the 1983 International Congress of Mathemtatics proposed a bold and
influential new program to study the properties of finitely generated groups by studying their
geometric properties. A significant aspect of Gromov’s program is to classify finitely generated
groups up to quasi-isometry. One sub-program that has arisen from this is a problem of a similar
nature to that solved by Mostow Rigidity-type theorems.

Suppose G is a Lie group. If Γ is a discrete subgroup of G such that the quotient G/Γ is compact,
we call Γ a co-compact lattice in G. Quasi-isometric rigidity theorems typically state that for a
particular Lie group G, if H is a subgroup of G that is quasi-isometric to a co-compact lattice
of G, then H is (or is ‘nearly’) a co-compact lattice of G. In the case where G = Isom(Hn) such
a statement was proved by Cannon and Cooper in [CC92].

Theorem 4.20. If H is a finitely generated group that is quasi-isometric to a co-compact lattice
in Isom(Hn) (for n ≥ 3) then H has a finite index subgroup that is itself a co-compact lattice in
Isom(Hn).

Results of this type have now been established for a number of Lie groups and for both co-
compact lattices and lattices where the quotient is only required to have finite Haar measure
(sometimes called non-uniform lattices). For much more on this problem see Farb’s survey artice
[Far97].

4.6 Proofs of the Švarc-Milnor and Morse lemmas

In this section we give proofs of the Švarc-Milnor Lemma and the Morse Lemma. Both proofs
follow, fairly closely, the respective presentations in [BH99]. That is, Proposition 1.6, Theorem
1.7, and Lemma 1.11 of Chapter III.H for the Morse lemma and Lemmas 8.10, and 8.18 and
Proposition 8.19 of Chapter I.8 for the Švarc-Milnor lemma. Having said that, some of our
arguments are a little different, and occasionally we have supplied some extra details. Our
motivation for giving these proofs is to give the reader a flavour of the style of arguments used
in these coarse-geometric proofs.

Lemma 4.19 (Švarc-Milnor Lemma). Let X be a geodesic metric space. Suppose Γ acts properly
discontinuously and co-compactly by isometries on X. Then Γ is finitely generated. If A is any
finite generating set for Γ and x0 ∈ X is any basepoint, the map (Γ, dA) 3 γ 7→ γ · x0 ∈ (X, d) is
a quasi-isometry.

Proof. Since Γ acts co-compactly on X there is some compact (and hence bounded) K ⊂ X such
that x0 ∈ K and X = Γ ·K :=

⋃
γ∈Γ γ ·K. Let κ be the diameter of K. If x ∈ X there is some

γ ∈ Γ such that x ∈ γ ·K. Hence dX(x, γ · x0) ≤ κ. Thus the map γ 7→ γ · x0 is quasi-surjective.

Let A = {γ ∈ Γ : d(x0, γ · x0) ≤ 4κ}. To see that A is finite, we argue by contradiction.

Suppose A is infinite. Then since the closed ball B(x0, 4κ) is compact in X and A · {x0} is a
sequence in B(x0, 4κ), it follows by compactness that A · {x0} has an accumulation point. This
means that the set {γ ∈ A : B(x0, κ)∩ γ ·B(x0, κ) 6= ∅} is infinite, contradicting the assumption
that Γ acts properly discontinuously on X. So A is finite.

To see that A generates Γ, first let H be the subgroup of Γ generated by A. Let U be an open
neighbourhood of K of diameter at most 2κ. Then let V = H · U and V ′ = (Γ \ H) · U and
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note that V ∪ V ′ = X. If V ∩ V ′ 6= ∅ then there is some x ∈ X and γ ∈ H, γ′ /∈ H such that
dX(γ · x0, x) ≤ 2κ and dX(γ′ · x0, x) ≤ 2κ. But then because γ acts by isometries on X,

dX(x0, γ
−1γ′ · x0) = dX(γ · x0, γ

′ · x0) ≤ dX(γ · x0, x) + dX(x, γ′ · x0) ≤ 4κ.

So γ−1γ′ ∈ H implying that γ′ ∈ H, which is a contradiction. Hence V ′ ∩ V = ∅. Since both V
and V ′ are open, V is non-empty and X is connected, it follows that V = X. Hence A is a finite
generating set for Γ.

Let dA denote the word metric on Γ with respect to this generating set.

Let λ = max{d(x0, γ · x0) : γ ∈ A ∪ A−1}. Then if γ, γ′ ∈ Γ are such that dA(γ, γ′) = n we can
write

γ−1γ′ = a1a2 · · · an where ai ∈ A ∪A−1.

Let γ0 = 1 and γi = a1a2 · · · ai for i = 1, . . . , n. Then since Γ acts by isometries and γ−1
i−1γi = ai,

dX(γ · x0, γ
′ · x0) = dX(x0, γ

−1γ · x0)
= dX(x0, a1a2 · · · an · x0)

≤
n∑
i=1

dX(γi−1 · x0, γi · x0)

=
n∑
i=1

dX(x0, ai · x0)

≤ λdA(γ, γ′).

Now consider γ · x0, γ
′ · x0 ∈ X and let c : [0, 1]→ X be the geodesic segment joining them. Let

d = dX(γ · x0, γ
′ · x0) and let N = dd/κe. Partition c([0, 1]) into geodesic segments of length

at most κ by choosing 0 = t0 < t1 < · · · < tN−1 < tN = 1 such that d(c(ti−1), c(ti)) = κ for
i = 1, . . . N − 1. Note that our choice of N ensures that d(c(tN−1), c(tN ))) ≤ κ.

Recall that γ 7→ γ · x0 is quasi-surjective. Hence for i = 0, . . . , N there is some γi ∈ Γ such that
dX(γi · x0, c(ti)) ≤ κ. (Furthermore we can choose γ0 = γ and γN = γ′). Since

dX(γi · x0, γi+1 · x0) ≤ dX(γi · x0, c(ti)) + dX(c(ti), c(ti+1)) + dX(c(ti+1), γi+1 · x0) ≤ 3κ

it follows that γ−1
i γi+1 ∈ A. Since we can write

γ−1γ′ = (γ−1
0 γ1)(γ−1

1 γ2) · · · (γ−1
N−1γN )

it follows from the definition of N that

dA(γ, γ′) ≤ N ≤ 1
κ
dX(γ · x0, γ

′ · x0).

So γ 7→ γ · x0 is also a quasi-isometric embedding.

4.6.1 Proof of the Morse lemma

In our proof of the Morse Lemma, we will make the following standard definition of the length
of a path in a metric space.
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Figure 4.5: The induction step for lemma 4.22.

Definition 4.21. If X is a metric space then a path c : [a, b]→ X is called rectifiable if

`(c) = sup
∑
i

d(c(ai, ai+1))

is finite (where the supremum is taken over all finite subdivisions a = a0 < a1 < · · · < aN = b of
[a, b]). If a path c is rectifiable then we define its length to be `(c).

In a geodesic metric space, the distance between any two points is precisely the length of the
geodesic segment joining them. Before proving the Morse lemma we need two preliminary results.

Lemma 4.22. Suppose X is a δ-hyperbolic space and c : [a, b] → X is a path in X. Then for
any x ∈ [c(a), c(b)],

d(x, c([a, b])) ≤ δ| log2(`(c))|+ 1.

Proof. Throughout, assume that c is parametrized by arc length.

If `(c) ≤ 20 = 1 then d(c(a), c(b)) ≤ 1 so

d(x, c([a, b])) ≤ d(x, c(a)) ≤ 1 ≤ δ| log2(`(c))|+ 1.

Arguing by induction, suppose that the statement is true for any path c′ with `(c′) ≤ 2N

and assume that `(c) ≤ 2N+1. Then consider the geodesic triangle with vertices at c(a), c(b)
and c((a + b)/2). (See Figure 4.5.) Then there is some x′ either on the geodesic segment
[c(a), c((a+b)/2)] or the geodesic segment [c((a+b)/2), c(b)] such that d(x, x′) ≤ δ. Without loss
of generality assume we are in the first situation and let c′ be the restriction of c to [a, (a+ b)/2].
Then `(c′) = `(c)/2 ≤ 2N and x′ ∈ [a, (a+ b)/2]. So by the induction hypothesis

d (x′, c′([a, (a+ b)/2])) ≤ δ| log2(`(c′))|+ 1.

Then

d(x, c([a, b])) ≤ d(x, x′) + d(x′, c([a, b])) ≤ d(x, x′) + d(x′, c′([a, (a+ b)/2]))
≤ (δ + δ| log2(`(c′))|) + 1
= δ| log2(2`(c′))|+ 1 = δ| log2(`(c))|+ 1

and we are done.

The second result essentially says that for the purposes of proving the Morse lemma, we can
replace quasi-geodesics with continuous quasi-geodesics and avoid having to worry about a whole
host of pathological behaviour.

Since the details of the proof of this result are not particularly enlightening, we will just give the
main construction but do not prove that it works.

36



c(a) c(b)y z

y′ z′

≤ D ≤ DD

x

Figure 4.6: Images of geodesics under pseudo-isometries are close to geodesics.

Lemma 4.23 (Taming quasi-geodesics). If X is a geodesic metric space and c : [a, b] → X is
a (λ, ε)-quasi-geodesic, then there are constants k1, k2, r and ε′ (depending only on λ and ε) and
there is a continuous (λ, ε′)-quasi-geodesic c′ : [a, b]→ X such that

1. c′(a) = c(a) and c′(b) = c(b);

2. `(c′|[t,t′]) ≤ k1d(c′(t), c′(t′)) + k2 for all t, t′ ∈ [a, b];

3. the Hausdorff distance between the images of c and c′ is at most r.

Sketch of proof. Let N = dae and M = bbc. Then let c′ be given by concatenating the geodesic
segments [c(a), c(N)], [c(N), c(N + 1)], [c(N + 1), c(N + 2)], . . . , [c(M −1), c(M)], [c(M), c(b)] and
linearly reparametrizing each segment appropriately.

It turns out that c′ has all the desired properties. See [BH99] for the details.

Lemma 4.13 (Morse Lemma). If X is a δ-hyperbolic space then there is some constant R =
R(δ, λ, ε) such that for any (λ, ε)-quasi-geodesic c̄ : [a, b]→ X,

dH(c̄([a, b]), [c̄(a), c̄(b)]) ≤ R.

Proof. First, we replace c̄ with a (λ, ε′)-quasi-geodesic c ‘tamed’ by the method given in the
sketched proof of Lemma 4.23.

Since [c(a), c(b)] is compact there is some x ∈ [c(a), c(b)] such that

d(x, c([a, b])) = max
y∈[c(a),c(b)]

d(y, c([a, b])).

Define D to be this maximum distance. Choose y, z ∈ [c(a), c(b)] such that

D ≤ d(y, c([a, b])) ≤ 2D and D ≤ d(z, c([a, b])) ≤ 2D.

Let y′ = c(a′), z′ = c(b′) be points on c([a, b]) that are closest to y and z respectively and note
that d(y, y′) ≤ D and d(z, z′) ≤ D by the definition of D. (See Figure 4.6.)

Let γ be the path from y to z that traverses the geodesic segment [y, y′] then follows c from y′

to z′ then traverses the geodesic segment [z′, z]. Then, applying Lemma 4.23 we have that

`(γ) = d(y, y′) + d(z, z′) + `(c|[a′,b′]) ≤ D +D + k1d(y′, z′) + k2

≤ 2D + k1(d(y, y′) + d(y, z) + d(z, z′)) + k2

≤ 2D + 6k1D + k2.

Hence by Lemma 4.22

D = d(x, c([a, b])) ≤ δ| log2(2D + 6k1D + k2)|+ 1.
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Figure 4.7: Images of geodesics under pseudo-isometries are close to geodesics.

Since k1 and k2 depend only on λ and ε this gives rise to an upper bound on D in terms of λ, ε
and δ which we call D0. Observe that [c(a), c(b)] ⊆ ND0(c([a, b])).

For the remainder of the proof, refer to Figure 4.7.

To show that the Hausdorff distance is uniformly bounded it remains to find some R = R(δ, λ, ε)
such that c([a, b]) ⊆ NR([c(a), c(b)]). If c([a, b]) ⊆ ND0([c(a), c(b)]) the choosing R = D0 com-
pletes the proof. So, assume this is not the case.

Let [a′′, b′′] be maximal such that c([a′′, b′′]) is contained in the complement of the open D0

neighbourhood of [c(a), c(b)]. Let

Sa = {x ∈ [c(a), c(b)] : d(x, c([a, a′′])) ≤ D0} and Sb = {x ∈ [c(a), c(b)] : d(x, c([b′′, b])) ≤ D0}.

These are clearly closed and non-empty and cover the connected set [c(a), c(b)]. Hence they are
non-disjoint so we can choose x0 ∈ Sa∩Sb, ta ∈ [a, a′′] and tb ∈ [b′′, b] such that d(x0, c(ta)) ≤ D0

and d(x0, c(tb)) ≤ D0. Then by the triangle inequality d(c(ta), c(tb)) ≤ 2D0, and so since c is a
(λ, ε′)-quasi-isometric embedding, d(ta, tb) ≤ 2λD0 + λε′.

Now take any t0 ∈ [a′′, b′′]. Then

d(c(t0), [c(a), c(b)]) ≤ d(c(t0), c(ta)) + d(c(ta), [c(a), c(b)])
≤ λd(t0, ta) + ε′ +D0

≤ λd(ta, tb) + ε′ +D0

≤ 2λ2D0 + λ2ε′ + ε′ +D0 =: R′

Since ε′ depends only on λ and ε and D0 depends only on λ, ε, and δ, it follows that R′ depends
only on λ, ε, and δ.

Since c and c̄ have the same endpoints, [c̄(a), c̄(b)] = [c(a), c(b)]. Furthermore, since the Hausdorff
distance between c̄([a, b]) and c([a, b]) is at most r, it follows that

dH([c̄(a), c̄(b)], c̄([a, b])) ≤ dH([c(a), c(b)], c([a, b])) + dH(c([a, b]), c̄([a, b])) ≤ R′ + r.

Because r only depends on λ and ε, choosing R = R′ + r completes the proof.
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Chapter 5

The proof of Besson, Courtois,
and Gallot

In this chapter we outline the proof of Mostow Rigidity given by Besson, Courtois, and Gallot
in their 1996 paper [BCG96]. The most striking feature of their proof is that it is construc-
tive — given two closed hyperbolic manifolds with isomorphic fundamental groups, Besson et
al. construct an isometry between them!

From Chapter 4 we know that an isomorphism between fundamental groups of closed hyperbolic
n-manifolds gives rise to a homeomorphism ∂f of ∂Hn. Building on the work of Douady and
Earle [DE86], Besson et al. describe a method of extending ∂f to a smooth map F of Hn which
is often called the ‘barycentric extension’ of ∂f .

Remarkably, it is possible to give tight estimates on the Jacobian of F . In particular it turns out
that the barycentric extension is always volume non-increasing in the sense that the Jacobian at
every point is at most one. If the barycentric extension map, F , is a map of degree one it can
be shown that the Jacobian of F is exactly one at each point. Then a careful analysis of this
equality case shows that F is actually an isometry.

In Section 5.1 we introduce Busemann functions, which give a way to measure the ‘distance’
between points in Hn points in ∂Hn. This will allow us to introduce ‘visual measures’ and
the ‘barycentre of a measure’ — two notions that play a major role in the construction of
the barycentric extension map. The former gives a nice way to associate with each x ∈ Hn a
probability measure µx on ∂Hn. The latter gives a way to associate with (almost) any probability
measure ν on ∂Hn a point bar (ν) ∈ Hn. These constructions will be the subject of Sections 5.2
and 5.3.

In Section 5.4 we describe the construction of the barycentric extension map and its most im-
portant properties. Finally in Section 5.5 we combine the results of Chapter 4 and this chapter
to give a complete proof of Mostow’s Strong Rigidity Theorem for closed hyperbolic manifolds.

The proof of Mostow Rigidity given by Besson, Courtois, and Gallot is actually a special case
of a more general result. In Section 5.6 we outline this more general viewpoint, and show how
Mostow Rigidity arises as a special case.
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5.1 Busemann functions

It makes no sense to define the ‘distance’ between a point in Hn and a point in ∂Hn. But we
can define a sensible notion of ‘relative distance’ between points in Hn and a point in ∂Hn.
Busemann functions capture this notion nicely.

Definition 5.1. Given a point O ∈ Hn, the Busemann function normalized at O is the function
BO : Hn × ∂Hn → R given by

BO(x, [β]) := lim
t→∞

d(β(t), x)− d(β(t), O)

where the representative β is chosen to satisfy β(0) = O.

This definition holds for much more general spaces than hyperbolic spaces. In Hn there is an
equivalent definition that is more geometric in nature.

Proposition 5.2. Suppose O, x ∈ Hn and ξ ∈ ∂Hn and let H denote the horosphere passing
through ξ and O. Then

BO(x, ξ) = ±d(x,H)

where the sign is chosen according to whether x is inside (minus sign) or outside (plus sign) the
horoball whose boundary is H.

We will not prove this, but at this stage a remark is in order about the definition of ‘horosphere’.
In Section 2.1.1 we gave a geometric definition of horosphere that is quite appealing in Hn. A
more intrinsic (and general) definition is to say that horospheres are the level sets of Busemann
functions. From this point of view the previous proposition is a tautology.

From now on we will assume that our Busemann functions are always normalized at the origin
in the Poincaré ball model and at the equivalent point in the other models. Throughout we will
denote this point by O ∈ Hn, but will omit it from our notation for the Busemann function,
writing B : Hn × ∂Hn → R instead. Furthermore, we will write either Bx : ∂Hn → R or
Bξ : Hn → R whenever we want to think of B as a function of one variable with the other left
fixed.

Proposition 5.3.

1. If ϕ ∈ Isom(Hn) is a reflection in a hyperplane containing ξ then

B(ϕ(x), ξ) = B(x, ξ) and dxBξ(·) = (dϕ(x)Bξ ◦ dxϕ)(·).

2. If ϕ ∈ Isom(Hn) fixes O then

B(ϕ(x), ϕ(ξ)) = B(x, ξ) and dxBξ(·) = (dϕ(x)Bϕ(ξ) ◦ dxϕ)(·).

3. Bξ : Hn → R is smooth for any ξ ∈ ∂Hn;

4. ∇Bξ(x) is the unit vector in TxHn parallel to the geodesic line joining x and ξ and pointing
away from ξ.

5. The Hessian of Bξ is given by:

Hessx(Bξ)(u, v) = 〈u, v〉 − 〈∇Bξ(x), u〉 〈∇Bξ(x), v〉 .

6. For all u ∈ TxHn, Hessx(Bξ)(u, u) ≥ 0 with equality if and only if u is parallel to ∇Bξ(x).
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Figure 5.1: Computing the Hessian of the Busemann function.

Proof.

1. Let H denote the horosphere passing through ξ and O. Any reflection ϕ in a hyperplane
containing ξ must satisfy ϕ(H) = H for all horospheres H passing through ξ. Then if x
is inside (outside) the horoball whose boundary passes through ξ and O then ϕ(x) is also
inside (outside) this horoball. Hence

B(ϕ(x), ξ) = ±d(H,ϕ(x)) = ±d(ϕ(H), ϕ(x)) = ±d(H,x) = B(x, ξ).

The second assertion follows by the chain rule.

2. Let β : [0,∞) → Hn be a geodesic ray such that β(0) = O. Then since ϕ(O) = O clearly
(ϕ ◦ β)(0) = O so

BO(ϕ(x), ϕ([β])) = lim
t→∞

d(ϕ(β(t)), ϕ(x))− d((ϕ ◦ β)(t), O)

= lim
t→∞

d(β(t), x)− d(β(t), ϕ−1(O)) = BO(x, [β]).

The second assertion follows by the chain rule.

3. Consider the upper half-space model. Note that in this model O = (0, 0, . . . , 1). Using part
2 above, by composing with a ‘rotation’ about O, assume ξ = ∞. Then the horosphere
through x is the Euclidean plane H = {y ∈ Rn : yn = 1}. If x = (x1, x2, . . . , xn) ∈ Hn
then the distance from x to H is | ln(xn)|. To adapt to the sign convention chosen for Bξ
it follows that B∞(x) = − ln(xn), which is certainly smooth.

4. Again let us work in the half-space model. Let γ(t) be a smooth curve with γ(0) = x ∈ Hn
and γ′(0) = v ∈ TxHn. Then since B∞(x) = − ln(xn) we have that

〈∇B∞(x), v〉 =
d

dt
B∞(γ(t))|t=0 = − vn

xn
= 〈−xnen, v〉 .
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So ∇B∞ = −xnen is the unit vector parallel to the geodesic joining ∞ and x and pointing
away from ∞.

For arbitrary ξ ∈ ∂Hn, ∇Bξ(x) is just the image of −xnen under the (orientation preserv-
ing) isometry that fixes O and sends ∞ to ξ. Since our description of ∇Bξ is invariant
under such isometries, we are done.

5. Recall that since Hessx(Bξ)(·, ·) is a symmetric bilinear form it is completely determined
by the associated quadratic form.

To compute Hessx(Bξ)(u, u) let γ be a geodesic with γ(0) = x and γ′(0) = u. Then if ϕ(t)
is the angle between γ′(t) and ∇Bξ(γ(t)), by (2.6), one of our methods for computing the
Hessian, we have that

Hessx(Bξ)(u, u) =
d

dt

〈
∇γ(t)Bξ, γ

′(t)
〉∣∣∣∣
t=0

=
d

dt
cosϕ(t)

∣∣∣∣
t=0

= −ϕ′(0) sinϕ(0).

If u is parallel to ∇xBξ then ϕ(0) = 0 so the Hessian is zero.

If u is orthogonal to ∇xBξ then ϕ(0) = π/2 and by the hyperbolic cosine rule (2.1), at
time t we have

sinϕ(t) = sech(t).

So

[ϕ′(t) cosϕ(t)]2 =
[
d

dt
(sinϕ(t))

]2

=
[
d

dt
sech(t)

]2

= [−sech(t) tanh(t)]2.

Now cos2 ϕ(t) = 1 − sin2 ϕ(t) = tanh2(t) so ϕ′(0)2 = sech2(0) = 1. It remains to check
whether ϕ(t) is increasing or decreasing at t = 0. Since the angle sum of a hyperbolic
triangle is at most π it follows that ϕ(t) ≤ π/2 for all t. Furthermore, ϕ(0) = π/2 so ϕ(t)
is decreasing. Thus we conclude that ϕ′(0) = −1 and so Hessx(Bξ)(u, u) = 1.

From these two cases it is clear that

Hessx(Bξ)(u, u) = 〈u, u〉 − 〈∇Bξ(x), u〉 〈∇Bξ(x), u〉

on a basis of TxHn and so this holds for all u ∈ TxHn.

6. Simply observe that if u ∈ TxHn,

Hessx(Bξ)(u, u) = 〈u, u〉 − 〈∇Bξ(x), u〉2 ≥ 〈u, u〉 − 〈u, u〉 〈∇Bξ(x),∇Bξ(x)〉

with equality if and only if u and ∇Bξ(x) are parallel (by the Cauchy-Schwarz inequality).
Since ∇Bξ(x) is a unit vector for all x ∈ Hn and ξ ∈ ∂Hn the result follows.

5.2 The visual map and visual measures

5.2.1 The visual map

Recall that we can think of ∂Hn as being identified with UTOHn. We will think of the unit
tangent space to Hn at x as the ‘visual sphere’ — the set of directions in which we can look when
standing at x. The visual map Vx : UTOHn → UTxHn keeps track of how what we see differs
from what someone standing at O would see. That is, if a person standing at O shot a beam of
light out in a particular direction u, if we are standing at x it will appear to converge to a point
Vx(u) in our visual sphere.
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x

Figure 5.2: The visual map. The small sphere around x is the unit sphere in TxHn. The outer
sphere could be thought of as the boundary of the Poincaré model or the unit sphere in TOHn.
Note the variation in ‘density’ of the endpoints of the geodesic rays.
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|B(x, u)|

x

ψ(θ)

Vx(u)

duVx(v)

Vx(γ(θ))

Figure 5.3: Computing the derivative of the visual map (in the upper half-space model).
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Figure 5.4: An isometry mapping x to x′ where x′ is on the geodesic ray β emanating from O
with velocity u.

Given our description of the gradient of the Busemann function in Proposition 5.3, it follows
that if u ∈ UTOHn then

Vx(u) = −∇Bu(x)

where by writing Bu we are silently making the identification between UTOHn and ∂Hn.

Proposition 5.4. If Vx : UTOHn → UTxHn is the visual map then the absolute value of its
Jacobian at u ∈ UTOHn is |Jacu(Vx)| = e(n−1)B(x,u).

Proof. Suppose x lies on the geodesic ray β : [0,∞)→ Hn emanating from O with initial velocity
u. Suppose v ∈ TuUTOHn is a unit tangent vector to UTOHn. Then the hyperbolic plane P
determined by u and v contains x. Furthermore for some ε > 0, the curve γ : (−ε, ε)→ UTOHn

given by γ(θ) = u cos(θ) + v sin(θ) is such that the plane determined by u and γ(θ) is also P .
Hence, by the definition of the visual map, the plane determined by Vx(u) and Vx(γ(θ)) is also
P .

This immediately tells us that Vx is conformal. It remains to find the factor that Vx scales
tangent vectors by, that is ‖duVx(v)‖.

Note that since Vx ◦ γ is restricted to lie in a circle in TVx(u)UTxHn, it can be parametrized by

(Vx ◦ γ)(θ) =
Vx(u)
‖Vx(u)‖

cos(ψ(θ)) +
duVx(v)
‖duVx(v)‖

sin(ψ(θ))

where ψ(θ) is the angle between Vx(u) and Vx(γ(θ)) (see Figure 5.3). Hence

duVx(v) =
d

dθ
(Vx ◦ γ)(θ)

∣∣∣∣
θ=0

=
duVx(v)
‖duVx(v)‖

ψ′(0)

so it remains to find ψ′(0) = ‖duVx(v)‖.

From Figure 5.3 observe that the geodesic rays determined by u ∈ UTOHn, γ(θ) ∈ UTOHn

and Vx(γ(θ)) ∈ UTxHn form an ideal triangle with one side of length |B(x, u)|. Hence by the
hyerbolic cosine rule (2.2)

cosh(|B(x, u)|) =
1− cos(θ) cos(ψ(θ))

sin(θ) sin(ψ(θ))
.
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So taking the limit as θ → 0 (by two applications of L’Hôpital’s rule), we obtain

cosh(|B(x, u)|) =
1
2

(
ψ′(0) +

1
ψ′(0)

)
.

Taking care that our sign convention is correct we conclude that

‖duVx(v)‖ = e−B(x,u).

If v1, v2, . . . , vn−1 is an orthonormal basis for TuUTOHn then Vx(v1), . . . , Vx(vn−1) is an orthonor-
mal basis for TVx(u)UTxHn. Furthermore, the derivative of Vx is represented in these bases by

[duVx] = e−B(x,u)In−1.

So the Jacobian of Vx is just the determinant of this matrix, namely e−(n−1)B(x,u).

In the case where x ∈ Hn does not lie on the geodesic ray β : [0,∞) → Hn emanating from O
with intial velocity u, then there is a reflection ϕ in a hyperplane containing β(∞) so that ϕ(x)
does lie on β (see Figure 5.4).

Then by Part 1 of Proposition 5.3 it follows that

Vx(u) = −∇Bu(x) = −dϕ(x)ϕ
−1(∇Bu(ϕ(x))) = dϕ(x)ϕ

−1 ◦ Vϕ(x)(u).

Since composition with an isometry does not affect the absolute value of the Jacobian the result
holds in this case also.

5.2.2 Visual measures

Let P(∂Hn) be the space of probability measures on ∂Hn. Since we will identify ∂Hn with
UTOHn, giving us a concrete representation of ∂Hn as a Euclidean unit sphere, we will actually
think of P(∂Hn) as P(UTOHn).

Then with each x ∈ Hn we can associate a measure µx ∈ P(∂Hn) by using the visual map in the
following way.

Definition 5.5. Suppose x ∈ Hn and λx is the canonical measure on the unit sphere UTxHn.
Then the visual measure at x ∈ Hn is

µx = (V −1
x )∗[λx],

the pushforward of λx to UTOHn by V −1
x .

The following summarizes the properties of the visual measure that we will use.

Proposition 5.6. Suppose x ∈ Hn.

1. If ϕ ∈ Isom(Hn) then µϕ(x) = ϕ∗[µx]. Hence µx is invariant under isometries that fix x.

2. The visual measure µx is absolutely continuous with respect to µO and so has no atoms.

3. The Radon-Nikodym derivative of µx with respect to µO is

dµx
dµO

(θ) = e−(n−1)B(x,θ).
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O

dµx
dµO

(θ)

Figure 5.5: The Radon-Nikodym derivative of µx.

Proof.

1. Let A be a measurable subset of ∂Hn. Let λx denote the canonical measure on UTx. Since
ϕ is an isometry, it follows from the definition of the canonical measure on the sphere that
if B is a measurable subset of UTxHn then λx(B) = λϕ(x)(dxϕ(B)).

Then repeatedly applying definitions gives

µx(A) = λx(Vx(A)) = λϕ(x)((dxϕ ◦ Vx)(A)) = λϕ(x)((Vϕ(x) ◦ ϕ)(A)) = µϕ(x)(ϕ(A))

from which the result follows.

2. If ϕ ∈ Isom(Hn) is such that ϕ(O) = x then, by part 1, µx = ϕ∗[µO]. Since ϕ∗ is a
homeomorphism, µx is absolutely continuous with respect to µO.

3. We seek a function px(θ) : ∂Hn → R such that for all measurable subsets A ⊆ ∂Hn,

µx(A) =
∫
Vx(A)

dλx =
∫
A

px(θ) dµO(θ).

Since λx and dµO are both the canonical measure on the sphere, it follows from the change
of variables formula and Proposition 5.4 that

px(θ) = |det(dθVx)| = e−(n−1)B(x,θ).

5.3 The barycentre of a measure

In the previous section we showed how to assign to each x ∈ Hn a probability measure µx ∈
P(∂Hn). In this section we describe a method of going back the other way — associating to
(almost) any probability measure ν ∈ P(∂Hn) a unique point x ∈ Hn, known as the ‘barycentre’
of ν.

Given a probability measure ν ∈ P(∂Hn) we want the barycentre of ν to be the point in Hn

whose average ‘distance’ (with respect to ν) to the boundary ∂Hn is minimized. We make sense
of this by minimizing an average (with respect to ν) of Busemann functions.
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(a) Equation (5.1) illustrated.
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(b)

Figure 5.6

As such let βν : Hn → R be defined as

βν(x) =
∫
∂Hn

B(x, θ) dν(θ).

Because Busemann functions are convex (see Section 5.1) it follows that βν is also convex. Indeed
we can say more.

Proposition 5.7. Given ν ∈ P(∂Hn) the Hessian of βν is given by

Hessx(βν)(u, u) = 〈u, u〉 −
∫
∂Hn
〈∇Bθ(x), u〉2 dν(θ).

As a consequence, if ν is atomless then βν is strictly convex.

Proof. Suppose u ∈ TxHn \ {0}. Then since Hessx(Bθ)(u, u) ≥ 0,

Hessx(βν)(u, u) =
∫
∂Hn

Hessx(Bθ)(u, u) dν(θ) ≥ 0.

Equality occurs if and only if ∇Bθ(x) is parallel to u for almost all θ in the support of ν, which
is impossible if ν is atomless. So the inequality is strict and hence βν is strictly convex.

Using the fact that ν is a probability measure and the expression for Hessx(Bθ)(u, u) in Propo-
sition 5.3, we obtain the required expression for Hessx(βν)(u, u).

Definition 5.8. If ν is a probability measure on ∂Hn then a barycentre of ν is any x ∈ Hn that
minimizes βν(x).

Proposition 5.9. If ν ∈ P(∂Hn) and ν is atomless then ν has a unique barycentre which we
will denote bar (ν).

Proof. (Following [BCG95, Appendix A].) Assuming that a barycentre exists, uniqueness follows
from the strict convexity of βν when ν is atomless.

To show that the barycentre exists, we will show that βν(x)→∞ as x moves along a radial path
from O to ∂Hn. It will then follow that βν achieves its minimum on Hn.
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For any x ∈ Hn let J(x) = {θ ∈ ∂Hn : B(x, θ) ≤ 0}. That is, θ ∈ J(x) if and only if x is inside
the horoball passing through θ and O.

Suppose c : [0,∞) → Hn is a radial geodesic from O to θ0 ∈ ∂Hn. (See Figure 5.6b). Choose
t0 ∈ [0,∞) large enough so that if x0 = c(t0) then ∂Hn \ J(x0) has strictly positive measure.
Then let K be a compact subset of ∂Hn \ J(x0) of strictly positive measure.

For any t > t0 let x = c(t). It follows from the convexity of Bθ and Figure 5.6a that

Bθ(x0) ≤ Bθ(x)
d(x,O)

· d(x0, O). (5.1)

Furthermore, since t > t0, J(x) ⊂ J(x0) so

βν(x) =
∫
J(x)

B(x, θ) dν(θ) +
∫
∂Hn\J(x)

B(x, θ) dν(θ)

≥
∫
J(x)

B(x, θ) dν(θ) +
∫
K

B(x, θ) dν(θ)

≥ d(O, x)
d(O, x0)

∫
J(x)

B(x0, θ) dν(θ) +
d(O, x)
d(O, x0)

∫
K

B(x0, θ) dν(θ)

≥ d(O, x)
d(O, x0)

[
min
θ∈∂Hn

{B(x0, θ)}ν(J(x)) + max
θ∈K
{B(x0, θ)}

]
. (5.2)

Notice that the expression in the brackets in (5.2) is the sum of a negative term (depending on x)
and a constant positive term. As t→∞ we see that

⋂
t≥t0 J(x(t)) = {θ0}. Since ν is atomless,

ν(J(c(t)))→ ν({θ0}) = 0. Hence the right hand side of (5.2) goes to infinity as t→∞.

Since the barycentre is defined as the minimum of the differentiable function βν , bar (ν) must be
a critical point of βν . Hence if x = bar (ν) then

∇βν(x) =
∫
∂Hn
∇Bθ(x) dν(θ) = 0 ∈ TxHn. (5.3)

This implicit equation will play a crucial role later on. Equivalently if x = bar (ν) then the
implicit equation can be written ∫

∂Hn
dxBθ(·) dν(θ) = 0(·)

which is to be understood as an equality of linear functionals.

The final property of the barycentre that we will need is that it is equivariant with respect to
isometries.

Proposition 5.10. If ν is an atomless probability measure on ∂Hn and ϕ ∈ Isom(Hn) then

bar (ϕ∗[ν]) = ϕ(bar (ν)).

Proof. Let x = ϕ(bar (ν)) and let y = ϕ−1(x) = bar (ν). Then the implicit equation for the
barycentre tells us that

0 =
∫
∂Hn

dyBθ(·) dν(θ) =
∫
∂Hn

dxBϕ(θ)(dyϕ(·)) dν(θ)

=
(∫

∂Hn
dxBθ(·) dϕ∗[ν](θ)

)
◦ dyϕ.
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x
F (x) = bar (f∗[µx])

dµx
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(f(θ))f∗

F

Figure 5.7: The barycentric extension of f .

Since dyϕ is invertible, ∫
∂Hn

dxBθ(·) dϕ∗[ν](θ) = 0

so by uniqueness of solutions to the implicit equation, x = bar (ϕ∗[ν]).

5.4 The barycentric extension

Suppose f : ∂Hn → ∂Hn is a homeomorphism. In this section we explain one method to extend
f to a particularly nice map F : Hn → Hn.

Definition 5.11. If f : ∂Hn → ∂Hn is a homeomorphism then the barycentric extension of f is
a map F : Hn → Hn defined by

F (x) = bar (f∗[µx])

where µx is the visual measure associated with x.

We have seen in Proposition 5.6 that µx is atomless for any x ∈ Hn. Since f is a homeomorphism
it follows that f∗[µx] is atomless for all x. Thus bar (f∗[µx]) exists and is unique for all x ∈ Hn

and so F is well defined.

Since the barycentre of an atomless measure satisfies an implicit equation, F also satisfies an
implicit equation. To simplify notation a little, we will write βx instead of βf∗[µx] to denote the
function

βx(y) =
∫
∂Hn

Bθ(y) df∗[µx](θ).

Then applying the implicit equation for the barycentre of f∗[µx] we see that the barycentric
extension satisfies

∇βx(F (x)) =
∫
∂Hn
∇Bθ(F (x)) df∗[µx](θ) = 0 ∈ TF (x)Hn (5.4)

for all x ∈ Hn.
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The remainder of this section is devoted to establishing various properties of F .

Lemma 5.12. If f : ∂Hn → ∂Hn is a homeomorphism with barycentric extension F then F is
smooth.

Proof. Since F satisfies an implicit equation, we will use the implicit function theorem to show
that F is smooth.

Fix a point x0 ∈ Hn and let y0 = F (x0). Choose an orthonormal basis {E1(y0), E2(y0), . . . , En(y0)}
for Ty0Hn. Define an orthonormal basis {Ei(y)} at any y ∈ Hn by parallel transport along the
unique geodesic segment joining y0 and y.

Then define a function G : Hn ×Hn → Rn whose component functions are

Gi(x, y) = 〈∇βx(y), Ei(y)〉 =
∫
∂Hn
〈∇Bθ(y), Ei(y)〉 df∗[µx](θ).

Since ∇Bθ(y) is a smooth function, it follows that G is also smooth.

For some ε > 0 let γ : (−ε, ε)→ Hn be a geodesic segment with γ(0) = y0 and γ′(0) = u. Then

d

dt
Gi(x, γ(t))

∣∣∣∣
t=0

=
d

dt
〈∇βx(γ(t)), Ei(γ(t))〉

∣∣∣∣
t=0

= 〈Du∇βx(y0), Ei(y0)〉+ 〈∇βx(y0), DuEi(y0)〉
= Hessy0(βx)(u,Ei(y0))

(where the last equality holds because Ei(γ(t)) is parallel along γ). It follows from Proposition
5.7 that Hessy0(βx) is positive definite. So for all non-zero u ∈ Ty0Hn,

d

dt
Gi(x, γ(t))

∣∣∣∣
t=0

> 0.

Hence the derivative of each Gi(x, y) with respect to the second variable has trivial kernel, so
the same holds for the derivative of G with respect to the second variable.

Since G is smooth and the derivative of G with respect to the second variable is invertible, all
the conditions of the implicit function theorem are satisfied. So it follows that F agrees with a
smooth function on a neighbourhood of x0. Since x0 was arbitrary, the proof is complete.

The next result establishes the volume decreasing properties that make the barycentric extension
such a remarkable construction. The proof is quite involved, but it will be worth the effort. A
proof of Mostow’s rigidity theorem comes as a fairly straightforward corollary of this result.

The main object of interest here is the Jacobian of the barycentric extension F . This is, roughly,
the volume scaling factor of F at each point. One way to compute this is to choose orthonormal
bases for TxHn and TF (x)Hn and find the determinant of the matrix of the derivative of F written
with respect to these bases. Another way to compute the Jacobian, the way we adopt here, is
to compute

√
|det((dxF )∗dxF )| where (dxF )∗ is the adjoint of dxF . Note that since TxHn and

TF (x)Hn have the same dimension,
√
|det((dxF )∗dxF )| =

√
|det(dxF (dxF )∗)|, a fact we will

exploit later on.

Proposition 5.13. Suppose n ≥ 3. If f : ∂Hn → ∂Hn is a homeomorphism and F is its
barycentric extension then

|Jacx(F )| :=
√
|det ((dxF )∗dxF )| ≤ 1

for all x ∈ Hn. Furthermore, if |Jacx(F )| = 1 then dxF : TxHn → TF (x)Hn is an isometry.
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Proof. The proof we give largely follows the argument of Besson et al. [BCG96] as presented by
Pansu [Pan97]. Before delving into the details, we give a brief outline of the proof.

Differentiating the implicit equation gives rise to an expression for the derivative of F . After
some simplification (which will take considerable effort), we can bound dF (dF )∗ (in terms of
the usual partial order on positive operators) by a fairly simple combination of positive definite
linear endomorphisms.

Applying an elementary (yet non-trivial) inequality related to the determinants of positive def-
inite matrices with trace one (Lemma 5.17), we can conclude that F is volume non-increasing,
and preserves volume at x if and only if dxF is an isometry.

Throughout, fix x ∈ Hn. Let u ∈ TxHn and, for some small ε > 0 let γ : (−ε, ε) be a geodesic
segment with γ(0) = x and γ′(0) = u. Let p(x) = e−(n−1)Bθ(x) be the Radon-Nikodym derivative
of µx with respect to µO. Then it follows from the implicit equation for F (5.4) that∫

∂Hn
p(γ(t))∇Bf(θ)((F ◦ γ)(t)) dµO(θ) = 0 (5.5)

for all t ∈ (−ε, ε). Observe that V (t) := p(γ(t))∇Bf(θ)((F ◦ γ)(t)) is a vector field along the
curve F ◦ γ. Since the velocity vector of the curve is dxF (u), taking the covariant derivative of
V (t) and applying the Leibniz rule gives

DV

dt
= dxp(u)∇Bf(θ)(F (x)) + p(x)DdxF (u)∇Bf(θ)(F (x)).

Taking the inner product of both sides with some v ∈ TF (x)Hn yields〈
DV

dt
, v

〉
= dxp(u)dF (x)Bf(θ)(v) + p(x)HessF (x)(Bf(θ))(dxF (u), v). (5.6)

Differentiating under the integral sign in (5.5), substituting in the expression in (5.6), and noting
that dxp(·) = −(n− 1)dxBθ(·)p(x), we obtain

(n− 1)
∫
∂Hn

dxBθ(u)dF (x)Bf(θ)(v) dµx(θ) =
∫
∂Hn

HessF (x)(Bf(θ))(dxF (u), v) dµx(θ).

Replacing HessF (x)(Bf(θ))(dxF (u), v) with the expression we derived in Section 5.1 we obtain

(n− 1)
∫
∂Hn

dxBθ(u)dF (x)Bf(θ)(v) dµx(θ) = (5.7)

〈dxF (u), v〉 −
∫
∂Hn

dF (x)Bf(θ)(dxF (u))dF (x)Bf(θ)(v) dµx.

Now define φ : TxHn → L2(∂Hn, µx) and ψ : TF (x)Hn → L2(∂Hn, µx) by

φ(u) = (θ 7→
√
ndxBθ(u)) and ψ(v) = (θ 7→

√
ndF (x)Bf(θ)(v)).

These are linear maps between inner product spaces. In what follows we frequently make use of
the adjoints of these maps, which we denote φ∗ : L2(∂Hn, µx)→ TxHn and ψ∗ : L2(∂Hn, µx)→
TF (x)Hn.

We can now rewrite (5.7) much more cleanly as

〈dxF (u), v〉 − 1
n
〈ψ(dxF (u)), ψ(v)〉L2 =

n− 1
n
〈φ(u), ψ(v)〉L2 .

By taking adjoints and noting that u ∈ TxHn and v ∈ TF (x)Hn were arbitrary, we finally get an
expression for the derivative of the barycentric extension:

(I − 1
n
ψ∗ψ)dxF =

n− 1
n

ψ∗φ. (5.8)
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From here on, if we have two self-adjoint operators A and B we will write A ≤ B to mean that
B −A is positive semi-definite.

We will defer the proofs of the following properties of φ and ψ until Section 5.7.

Lemma 5.14. tr
(

1
nψ
∗ψ
)

= 1

Lemma 5.15. ϕ is an isometric embedding of TxHn into L2(∂Hn, µx). That is φ∗φ = I.
Furthermore, φφ∗ ≤ I.

The next result will allow us to translate from the ordering on self-adjoint operators to ordering
the traces and determinants of such operators. Again we defer the proof until Section 5.7.

Lemma 5.16. If A and B are self-adjoint matrices and A ≤ B then tr(A) ≤ tr(B). If, in
addition, A is positive definite then det(A) ≤ det(B).

Now let H = 1
nψ
∗ψ. It is clear that H is positive definite and we have shown in Lemma 5.14

that H has trace one. Hence all the eigenvalues of H lie in (0, 1) so I −H is positive definite.
Applying Lemma 5.15 gives

n

(n− 1)2
dxF (dxF )∗ =

1
n

(I −H)−1ψ∗φφ∗ψ(I −H)−1 ≤ (I −H)−1H(I −H)−1. (5.9)

The proof of the entire proposition now hinges on the following rather mysterious inequality.
Note that the inequality fails spectacularly for n = 2. This is the only place where we require
n ≥ 3 in this argument.

Lemma 5.17. Suppose n ≥ 3. If H is an n× n symmetric positive definite matrix of trace one
then

det(H)
det(I −H)2

≤
(

n

(n− 1)2

)n
with equality if and only if H = 1

nI.

The proof is elementary and yet rather involved so we defer it until Section 5.7.

By taking the determinant of both sides of (5.9), and applying Lemma 5.17 to the right hand
side we see that

|Jacx(F )| =
√

det(dxF (dxF )∗) ≤

√(
(n− 1)2

n

)n(
n

(n− 1)2

)n
= 1 (5.10)

with equality if and only if H = 1
nI.

Consider the equality case. To proceed we need the following standard inequality.

Lemma 5.18. If H is an n× n symmetric positive definite matrix then

det(H) ≤
(

tr(H)
n

)n
with equality if and only if H = (det(H))1/nI.

Proof. Apply the AM-GM inequality to the eigenvalues of H, all of which are positive real
numbers.
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In the equality case of (5.10), det(dxF (dxF )∗) = 1, H = 1
nI, and (I −H)−1 = n−1

n I. So

1 = det(dxF (dxF )∗) ≤
(

tr(dxF (dxF )∗)
n

)n
≤

[
tr

((
n− 1
n

)2

(I −H)−1H(I −H)−1

)]n
= tr(H)n = 1.

Hence we must be in the equality case of Lemma 5.18. Consequently

dxF (dxF )∗ = (det(dxF (dxF )∗))1/nI = I

so dxF is an isometry.

5.5 A proof of Mostow’s theorem

In this section we finally prove the following.

Theorem 5.19. Suppose n ≥ 3 and M1 = Hn/Γ1 and M2 = Hn/Γ2 are closed orientable
hyperbolic n-manifolds. If ψ : Γ1 → Γ2 is an isomorphism then ϕ is induced by an isometry
F : M1 →M2.

Proof. In Chapter 4 we showed that given an isomorphism ϕ : M1 → M2 there is a homeomor-
phism

∂f : ∂Hn → ∂Hn

such that for any γ ∈ Γ1

∂f ◦ γ = ψ(γ) ◦ ∂f. (5.11)

Let F̃ be the barycentric extension of ∂f . Then if γ ∈ Γ1 it follows from (5.11) and the
equivariance properties of the visual measure and the barycentre (Propositions 5.6 and 5.10)
that for all x ∈ Hn,

(F̃ ◦ γ)(x) = bar
(
∂f∗[µγ(x)]

)
= bar ((∂f ◦ γ)∗[µx])
= bar ((ψ(γ))∗[∂f∗[µx]])
= ψ(γ)(bar (∂f∗[µx]))
= (ψ(γ) ◦ F̃ )(x).

So F̃ descends to a map F : M1 →M2 that induces an isomorphism on the fundamental groups of
M1 and M2. Then by the corollary of Whitehead’s theorem for hyperbolic manifolds (Corollary
2.14), F is actually a homotopy equivalence and so is a map of degree ±1 depending on whether
F preserves or reverses orientation.

Let Ω1 and Ω2 denote the volume forms on M1 and M2 respectively. Let [M1] and [M2] denote
fundamental classes of M1 and M2 respectively and let F∗ denote the map on homology incuded
by F . Then, by the definition of the degree of a map,

F∗([M1]) = deg(F )[M2] = ±[M2].
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So if 〈·, ·〉 denotes the pairing between de Rham cohomology classes and singular homology classes
induced by integration, and F ∗ : TM∗2 → TM∗1 is the pullback of F , then

Vol(M2) = 〈[Ω2], [M2]〉 = 〈[Ω2],±F∗([M1])〉 = ±〈[F ∗(Ω2)], [M1]〉 = ±
∫
M1

F ∗(Ω2).

If F is orientation preserving then, by Proposition 5.13,

Vol(M2) =
∫
M1

F ∗(Ω2) =
∫
M1

|Jac(F )|Ω1 ≤ Vol(M1).

If F is orientation reversing then, if M1 denotes M1 with the opposite orientation then

Vol(M2) = −
∫
M1

F ∗(Ω2) = −
∫
M1

|Jac(F )|Ω1 =
∫
M1

|Jac(F )|Ω1 ≤ Vol(M1).

By reversing the roles of M1 and M2 and performing the same construction we find that

Vol(M1) ≤ Vol(M2).

Hence Vol(M1) = Vol(M2). In this case we must have |Jacx(F )| = 1 for almost all x ∈M1. But
then we are in the equality case of Proposition 5.13 so dxF is an isometry for almost all x. By
continuity this holds for all x ∈ Hn so F is an isometry.

5.6 The bigger picture: volume, entropy, and rigidity

Besson, Courtois, and Gallot’s proof of Mostow Rigidity arises as a corollary of a much more
general result. In this section we briefly outline this more general setting and discuss the extent
to which the arguments of the first part of this chapter carry through to this setting.

5.6.1 Volume entropy

If (Y, g) is a compact connected Riemannian n-manifold, let (Ỹ , g̃) be the universal cover of Y
with the pulled-back metric. Then for any y ∈ Ỹ define the volume entropy to be

h(g) = lim
R→∞

1
R

log (vol(B(y,R)))

where B(y,R) is the ball of radius R centred at y ∈ Ỹ . It turns out that this limit exists and is
independent of the choice of y. Essentially it measures the growth rate of balls in the universal
cover of Y . For example, if (Y, g) is a hyperbolic n-manifold, (Ỹ , g̃) is isometric to Hn. In this
case we know that vol(B(y,R)) ∼ e(n−1)R from our discussion of the volume of balls in Hn in
Section 2.1.3. Hence

h(g) = lim
R→∞

1
R

log(e(n−1)R) = n− 1.

5.6.2 Entropy and Volume characterize ‘nice’ metrics

Imagine we are given a hyperbolic manifold (X, g0) and some other Riemannian manifold (Y, g).
Suppose, further, that there is a continuous map f : Y → X of non-zero degree. Amazingly, it
turns out that just by calculating the volume and volume entropy of X and Y and comparing
these numbers in the right way, we can tell whether (Y, g) is also hyperbolic.

More precisely, Besson et al. prove the following in [BCG95].
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Proposition 5.20. For n ≥ 3, let (Y, g) be a closed orientable Riemannian n-manifold. Let
(X, g0) be an n-dimensional closed hyperbolic manifold. If f : Y → X is a continuous map of
non-zero degree then

h(g)nVol(Y, g) ≥ |deg(f)|h(g0)nVol(X, g0).

Equality holds if and only if f is homotopic to a covering map that is a local isometry (after
rescaling g by an appropriate constant).

If we set deg(f) = 1 and h(g) = n− 1 then this statement looks rather similar to the expressions
we obtained in section 5.5 on our way to proving Mostow’s Rigidity Theorem.

Before, we assumed that both spaces were hyperbolic. Now, no such assumption is made on
(Y, g). Yet if (Y, g) has a metric of strictly negative curvature and f is a homotopy equivalence
then the general outline of the proof we gave still works, as long as a few modifications are made.

First, while the definition of the Busemann function on Y still makes sense, we can no longer be
sure that it is smooth. It does turn out to be C2, though [BCG95]. Hence the implicit function
theorem will still tell us that the barycentric extension is C1. Second, we can no longer use
the ‘visual’ definition of the measures µx that we use to embed Ỹ into the space of probability
measures on ∂Ỹ . It turns out that in this more general context, the so-called Patterson-Sullivan
measures appropriately generalize the role of the visual measures. (See [Nic91] for an introduction
to this remarkable family of measures.) Finally, the map φ : TxỸ → L2(∂Ỹ , µx) which played a
role in our proof that the barycentric extension map is volume non-increasing, no longer satisfies
φ∗φ = I. It turns out that this is not such a problem — the same bounds on the Jacobian can
be obtained by other, slightly less elegant, means.

In the more general case, that is when we have any Riemannian metric on Y , the technique of
pushing everything out the the boundary ‘at infinity’ no longer works, as such a boundary does
not enjoy the same nice properties as in the negatively-curved case. Nevertheless in [BCG95] the
authors still manage to deal with this case, albeit with a less directly constructive argument.

Besson, Courtois, and Gallot’s results are actually more general than the result we have intro-
duced in this section. Instead of just being able to characterize hyperbolic metrics, it turns
out that the volume and volume entropy together conspire to characterize the negatively curved
locally symmetric metrics on Riemannian manifolds. The modifications required to make this
generalization are surprisingly minor. The main thing that changes is that the expressions for
the Hessian of the Busemann function becomes more complicated, and a stronger version of the
‘mysterious’ inequality (Lemma 5.17) is required to deal with this situation.

5.6.3 Extension to the finite volume case

Storm [Sto06] has recently proved a result analogous to Proposition 5.20 in the case where the
manifolds have finite volume.1

Proposition 5.21. For n ≥ 3, let (Y, g) is a finite volume orientable Riemannian n-manifold.
Let (X, g0) be a finite volume orientable hyperbolic n-manifold. If f : Y → X is a continuous
map of non-zero degree then

h(g)nVol(Y, g) ≥ |deg(f)|h(g0)nVol(X, g0).

Equality holds if and only if f is homotopic to a covering map that is a local isometry (after
rescaling g by an appropriate constant).

1Again this result, like the results of Besson et al. also hold in the locally symmetric case.
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Note that given this proposition we can easily give a proof of Mostow rigidity in the finite
volume case — the case first proved by Prasad in [Pra73] and sometimes known as Mostow-
Prasad rigidity.

Theorem 5.22. For n ≥ 3, let (Y, g) and (X, g0) be finite volume orientable hyperbolic n-
manifolds. If f : Y → X is a homotopy equivalence then f is an isometry.

Proof. Since f is a homotopy equivalence deg(f) = 1. Since (Y, g) is hyperbolic, h(g) = h(g0) =
n − 1. Applying Proposition 5.21 we have Vol(Y, g) ≥ Vol(X, g0). Reversing the roles of X and
Y gives the reverse inequality. So we must be in the equality case of Proposition 5.21. But then
f is homotopic to a local isometry of degree one, i.e. an isometry.

5.7 Details

In this section we give proofs of a number of lemmas from Section 5.4.

Proof of lemma 5.14. Let e1, . . . , en be an orthonormal basis for TF (x)Hn. Then for any θ ∈ ∂Hn,

∇Bf(θ)(F (x)) =
n∑
i=1

〈
∇Bf(θ)(F (x)), ei

〉
ei.

Since the gradient of the Busemann function is a unit vector,

1 = ‖∇Bf(θ)(F (x))‖2 =
n∑
i=1

〈
∇Bf(θ)(F (x)), ei

〉2
.

Hence

tr
(

1
n
ψ∗ψ

)
=

1
n

n∑
i=1

〈ψ∗ψ(ei), ei〉 =
1
n

n∑
i=1

〈ψ(ei), ψ(ei)〉L2

=
1
n

n∑
i=1

∫
∂Hn

[
√
ndF (x)Bf(θ)(ei)]2 dµx

=
∫
∂Hn

n∑
i=1

〈
∇Bf(θ)(F (x)), ei

〉2
dµx

=
∫
∂Hn

dµx = 1

since µx is a probability measure.

Proof of lemma 5.15. To show that φ∗φ = I we can, equivalently, show that for all unit vectors
u ∈ TxHn, 〈φ(u), φ(u)〉L2 = 〈u, u〉 = 1.

Let u ∈ TxHn and v ∈ TOHn be unit vectors. Let ϕ be an isometry of Hn such that ϕ(x) = O
and dxϕ(u) = v. Then using properties of the Busemann function from Proposition 5.3 and
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properties of the visual measure from Proposition 5.6 we obtain

〈φ(u), φ(u)〉L2 = n

∫
∂Hn

[dxBθ(u)]2 dµx(θ)

= n

∫
∂Hn

[dϕ(x)Bϕ(θ)(dxϕ(u))]2 dµx(θ)

= n

∫
∂Hn

[dOBθ(v)]2 dϕ∗[µx](θ)

= n

∫
∂Hn

[dOBθ(v)]2 dµO(θ) = 〈φ(v), φ(v)〉L2 .

So it suffices to show that 〈φ(v), φ(v)〉L2 = 1 for one unit vector v ∈ TOHn. This is particularly
easy because in this case µO is the canonical measure on the sphere.

Let us move to spherical coordinates (θ1, . . . , θn−2, θn−1) (see Section 2.4 of Ratcliffe’s book
[Rat94], for example, for a precise description of the notation and derivation of the associated
volume form). Take v = e1 to be the unit vector in the first coordinate direction. Then the
integrand is exactly cos2(θ1). So we have

1
n
〈φ(v), φ(v)〉L2 =

∫ π
0
· · ·
∫ π

0

∫ 2π

0
cos2(θ1) sinn−2(θ1) · · · sin(θn−2) dθ1 · · · dθn−2dθn−1∫ π

0
· · ·
∫ π

0

∫ 2π

0
sinn−2(θ1) · · · sin(θn−2) dθ1 · · · dθn−2dθn−1

where we have normalized the volume form to have total volume one. This can be simplified to

1
n
〈φ(v), φ(v)〉L2 =

∫ π
0

(1− sin2(θ1)) sinn−2(θ1) dθ1∫ π
0

sinn−2(θ1) dθ1

= 1−
∫ π

0
sinn(θ) dθ∫ π

0
sinn−2(θ) dθ

.

Integrating sinn(θ) = 1
nn sinn−1(θ) sin(θ) by parts and rearranging things gives∫ π

0

sinn θ dθ =
n− 1
n

∫ π

0

sinn−2 θ dθ.

From this it follows that

〈φ(v), φ(v)〉L2 = n

(
1− n− 1

n

)
= 1.

So φ∗φ = I.

To address the second statement in the lemma, it is enough to observe that since φ∗φ = I
it follows that (φφ∗)2 = φφ∗. Because, in addition, φφ∗ is self-adjoint, φφ∗ is the orthogonal
projection onto its image. It follows immediately that φφ∗ ≤ I.

Proof of lemma 5.16. If A ≤ B then B − A is positive semi-definite so has all non-negative
eigenvalues. Hence tr(B − A) ≥ 0. Since the trace is a linear operation it follows that tr(A) ≤
tr(B).

If A is also positive definite then we can write A = PP ∗ for some positive definite matrix P .
Let Q = (P ∗)−1 so that Q∗AQ = I. Observe that because B is self-adjoint, so is Q∗BQ. Hence
there is some unitary U and some diagonal D such that (QU)∗B(QU) = D. Furthermore,
(QU)∗A(QU) = U∗Q∗AQU = I.

Now if A ≤ B then (QU)∗A(QU) ≤ (QU)∗B(QU). Equivalently I ≤ D. Then it follows that
1 = det(I) ≤ det(D). Then

det((QU)∗QU) det(A) ≤ det((QU)∗QU) det(B).

Since det((QU)∗QU) = det(Q∗Q) > 0 the result follows.
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x2
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(a) The constraint set for n = 3. 0

√
2− 1

1

h(t)

t

(b) The graph of h(t).

Figure 5.8

Finally we give a proof of the inequality that was at the heart of the proof that the barycentric
extension is volume non-increasing. The proof we give, which follows the proof in Appendix B
of [BCG95], is rather computational and unenlightening. To our knowledge, no conceptual proof
of this result is known. Such a proof may shed more light on why the techniques of Besson,
Courtois, and Gallot are as successful as they are.

Proof of lemma 5.17. Since H is symmetric and positive definite with trace one its eigenvalues
x1, . . . , xn are positive and sum to one. Then the statement of the lemma is equivalent to showing
that if x ∈ int(∆n−1), the interior of the standard (n− 1)-simplex, then

f(x) =
∏n
i=1 xi∏n

i=1(1− xi)2
≤
(

n

(n− 1)2

)n
with equality if and only if each xi = 1/n.

Taking logarithms, we will show that g(x) = log(f(x)) =
∑
i ln (xi)−2

∑
i ln (1− xi) has exactly

one critical point on the interior of the standard (n − 1)-simplex, at x = (1/n, 1/n, . . . , 1/n).
Then, checking that g does not achieve a maximum on the boundary of the simplex will prove
the result.

Using Lagrange mutipliers, any critical point (x1, . . . , xn) in the interior of the standard (n− 1)-
simplex must satisfy ∇g(x) = λ(1, 1, . . . , 1) for some λ ∈ R. Equivalently,

1
xi

+
2

1− xi
=

1
xj

+
2

1− xj
(5.12)

for all 1 ≤ i, j ≤ n. Note that if x1 = x2 = · · · = xn = 1/n then this is certainly satisfied.

Let h(t) = 1/t+ 2/(1− t) and observe that h(t) has a unique minimum on (0, 1) at t =
√

2− 1.
(See Figure 5.8b.) Since g is symmetric in x1, x2, . . . , xn, without loss of generality assume that
x1 ≥ x2 ≥ . . . ≥ xn. Proving that g has a unique critical point amounts to showing that if
(x1, x2, . . . , xn) satisfies (5.12) then xi ≤

√
2− 1 for i = 1, 2, . . . , n. Then since h is injective on

(0,
√

2− 1] there is a unique solution to (5.12) in this region, namely x1 = x2 = · · · = xn = 1/n.

Suppose 1 > x1, . . . , xk >
√

2 − 1 and 0 < xk+1, . . . , xn ≤
√

2 − 1. Then since h is injective on
(0,
√

2−1] and on [
√

2−1, 1) it follows that x1 = · · · = xk and xk+1 = · · · = xn. Since
∑
i xi = 1,

1 = kx1 + (n− k)xn ≥ k(
√

2− 1)

58



and so k ≤ b1/(
√

2− 1)c = 2. Thus there are two cases to rule out.

If k = 1 then x2 = · · · = xn = (1− x1)/(n− 1). Furthermore,

1
x1

+
2

1− x1
= h(x1) = h(xn) =

n− 1
1− x1

+
2(n− 1)
n− 2 + x1

.

The only solutions to this equation are x1 = 1/n and x1 = n − 2. Since the second solution
is not in the region of interest, the only possible solution is x1 = 1/n <

√
2 − 1, which is a

contradiction.

If k = 2 then x1 = x2 and x3 = · · · = xn = (1− 2x1)/(n− 2). Furthermore,

1
x1

+
2

1− x1
= h(x1) = h(xn) =

n− 2
1− 2x1

+
2(n− 2)

n− 3 + 2x1
.

The only solutions to this equation are x1 = 1/n and

x1 =
n− 3±

√
(n− 7)2 − 16
4

=
n− 3±

√
(n− 3)(n− 11)

4
.

Just as in the case k = 1, we can discard the solution x1 = 1/n because 1/n <
√

2 − 1 for all
n ≥ 3. For 3 < n < 11 the other two solutions are not real, so certainly do not lie in the interval
[
√

2− 1, 1). For n ≥ 11
n− 3 +

√
(n− 7)2 − 16
4

≥ n− 3
4
≥ 1

and
n− 3−

√
(n− 7)2 − 16
4

≥ n− 3− (n− 7)
4

= 1.

So neither of these solutions lie in the interval [
√

2− 1, 1).

Hence the only point in the interior of the standard (n − 1)-simplex that satisfies (5.12) is
x = (1/n, . . . , 1/n).

Finally we show that approaching the boundary of the (n−1)-simplex, f(x)→ 0, or, equivalently,
g(x)→ −∞. There are two cases to consider. The first is when all of the xi are bounded away
from 1, and (at least) one of the xi approaches 0. The second is when one of the xi approaches
1.

Consider the case where x1, say, approaches 0 and all other xi satisfy 0 ≤ xi ≤ K < 1. Then

g(x) = ln(x1)− 2 ln(1− x1) +
n∑
i=2

log(xi)− 2
n∑
i=2

ln(1− xi)

≤ ln(x1)− 2 ln(1− x1) + ln((1−K)2(n−1))→ −∞

as x1 → 0.

Consider the case where x1, say, approaches 1. Then let x1 = 1− δ and observe that the other
xi each satisfy xi ≤ δ. Then

f(x) =
x1

∏n
i=2 xi

(1− x1)2
∏n
i=2(1− xi)2

≤ (1− δ)δn−1

δ2(1− δ)2(n−1)
=

δn−3

(1− δ)2(n−2)
.

Since n ≥ 3, this can be made arbitrarily small by choosing δ small enough. Hence f(x)→ 0 in
this case.
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Chapter 6

The Gromov-Thurston proof

In this chapter we outline Gromov and Thurston’s proof of Mostow Rigidity that appeared in
Thurston’s Princeton lecture notes [Thu79, Chapter 6], and in Gromov’s survey [Gro81] (with
each attributing the results to the other). There are now many other accounts of this approach
in the literature, (for example, [Mun80], [GP91, Section 3.12], [BP92, Chapter C], and [Rat94,
Section 11.6]) all of them a little different in their approach.

Our aim is to present the main ideas, which are quite beautiful, without getting embroiled in
too many technical details.

One aspect of this proof of Mostow Rigidity is that if n ≥ 3, we can gain useful information about
a map ∂f : ∂Hn → ∂Hn by examining how it acts on the vertices of regular ideal simplices. As
such, an understanding of the volumes of ideal simplices in Hn

is an important ingredient in the
proof. We briefly examine this is Section 6.1.

Section 6.2 then introduces a remarkable invariant of orientable manifolds called the Gromov
norm. Roughly speaking, this is a measure of the complexity of the ‘most efficient triangulation’
of the manifold.

While the Gromov norm can be described in terms of singular homology, the definition is rather
difficult to work with in this setting. It turns out that defining the Gromov norm in terms
of a generalization of singular homology, called ‘measure homology’, makes it much more user-
friendly. Section 6.3 gives a brief introduction to measure homology and Section 6.4 gives a
definition of the Gromov norm in terms of measure homology.

Remarkably, for closed orientable hyperbolic manifolds, the Gromov norm is proportional to the
volume of the manifold. We give a proof of this in Section 6.6. Finally, in Section 6.7 we sketch
a proof of Mostow’s Rigidity Theorem using the ideas developed in this chapter.

6.1 Simplices of maximum volume

An n-simplex in Hn
is the convex hull of n + 1 points in Hn

. At the heart of the difference
between hyperbolic geometry in two dimensions and in dimensions three and above is the fact
that all ideal triangles are congruent, yet there is a wealth of different ideal n-simplices for n ≥ 3.

Definition 6.1. An n-simplex in Hn
is regular if it is maximally symmetric.
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Figure 6.1: Showing that opposite dihedral angles are equal in an ideal tetrahedron.

A key step in the Gromov-Thurston proof of Mostow Rigidity is the following characterisation
of simplices of maximal volume.

Theorem 6.2 (Haagerup and Munkholm [HM81]). An n-simplex in Hn
is of maximal volume

if and only if it is regular and ideal.

Outline of the proof. Since every finite n-simplex is contained in an ideal n-simplex, only ideal
simplices need to be considered. Since all ideal triangles are congruent, there is nothing to left
prove in dimension 2.

If n = 3, there is a nice formula for the volume of an ideal tetrahedron in terms of its dihedral
angles which yields a proof of the theorem. Let α, β, γ, δ, ε, η be the dihedral angles of an ideal
tetrahedron. In the upper half-space model, by applying appropriate isometries, we can arrange
for any of the vertices of the tetrahedron to be at infinity (see Figure 6.1). Taking a horospherical
cross section in each case, we see that the dihedral angles must satisfy

α+ β + γ = α+ δ + η = β + δ + ε = ε+ γ + η = π.

We then deduce that opposite dihedral angles are equal, that is α = ε, β = η, and γ = δ. The
volume of an ideal tetrahedron with dihedral angles α, β, γ then turns out to be exactly

L(α) + L(β) + L(γ)

where
L(x) = −

∫ x

0

log |2 sinu| du

is the Lobachevsky function. (See the Appendix of [Mil82] for a proof of this fact.) With this
established, it is then straightforward to show by Lagrange multipliers that L(α)+L(β)+L(γ) is
maximized (subject to the constraint that α+ β + γ = π), exactly when L′(α) = L′(β) = L′(γ).
This occurs when α = β = γ = π/3, that is when the tetrahedron is regular.

The cases n > 3 were first proved in 1981 by Haagerup and Munkholm [HM81]. Their analytic
proof, while elementary, is not at all easy and offers little geometric insight. More recently, in
2002 Peyerimhoff [Pey02] used a version of Steiner symmetrization for subsets of Hn to give
another, more geometric, proof.
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6.2 A first attempt at the Gromov norm

Let M be a closed orientable hyperbolic n-manifold. Let {C∗(M ; R), ∂} denote the usual singular
chain complex of M with coefficients in R. Let H∗(M ; R) denote the homology of this chain
complex. Given any chain c ∈ Ck(M ; R) where c =

∑
i ciσi we define

‖c‖ =
∑
i

|ci|.

The case of most interest to us is when c is a cycle representing a fundamental class [M ] ∈
Hn(M ; R) of M . Then we can essentially think of c as a triangulation of M , and ‖c‖ measures
the ‘complexity’ of the triangulation. In fact if all the coefficients ci are one or minus one then
‖c‖ is the number of simplices in the triangulation.

To turn ‖ · ‖ into an invariant defined on homology classes define

‖[M ]‖ = inf{‖c‖ : c is a cycle representing [M ]}. (6.1)

That is, ‖[M ]‖ tells us something about the lowest complexity of a triangulation of M .

It is fairly clear that to produce a triangulation that is as efficient as possible, we should use
simplices that are as large as possible. In dimension 2 we can ‘triangulate’ closed hyperbolic
manifolds with ideal triangles [BP92, Section C.4], so we can essentially find ideal ‘triangulations’
that achieve the infimum in (6.1). Since it is not generally possible to find ideal ‘triangulations’
of hyperbolic manifolds by regular simplices in higher dimensions, the Gromov norm, as defined
in (6.1) is a difficult invariant to work with.

6.3 Measure homology

In this section we briefly introduce ‘measure homology’, a homology theory designed by Thurston
to make working with the Gromov norm much less cumbersome. The motivation for measure
homology is to (vastly) expand the set of possible chains so that it is easier to describe ‘efficient’
representatives of [M ], and hence easier to work with the Gromov norm.

To define measure homology carefully would require wading through quite a bit of technical detail.
We will skip over such details, referring the interested reader to Ratcliffe’s account [Rat94].

6.3.1 Measure chains

Let ∆n ⊂ Rn+1 denote the standard n-simplex and let SnM be the set of smooth singular simplices
in M . Equip these with the C1 topology in which two simplices are ‘close’ if both the maps and
their derivatives are ‘close’ in the topology of uniform convergence.

Let Ck(M) be the set of signed Borel measures on SkM . To avoid pathological situations, we
will also require that the measures have compact support and finite total variation. This set of
measures will form the k-chains in measure homology.

We can think of these as a generalization of singular k-chains as follows. Suppose c =
∑
i ciσi is

a smooth singular k-chain. Then the corresponding k-chain in measure homology is c =
∑
i ciδσi

where δσi denotes the measure with a point mass at the smooth singular simplex σi.
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6.3.2 The boundary operator

Now we define a boundary operator on measure chains. Given µ ∈ Ck+1, define µ(i) ∈ Ck for
i = 0, 1, . . . , k + 1 as follows. If S is a Borel subset of SkM then

µ(i)(S) = µ({smooth (k + 1)-simplices whose ith face is in S}).

With this definition established the boundary operator ∂ : Ck+1 → Ck in measure homology is
defined by

∂(µ) =
k+1∑
i=0

(−1)iµ(i).

It turns out that {C∗(M), ∂} defines a chain complex. We call the associated homology theory
measure homology. In particular we denote the nth measure homology vector space by Hn(M)
and if z ∈ Cn(M) is a cycle then [z] ∈ Hn(M) denotes the homology class of z.

6.3.3 Induced maps on measure homology

Any smooth map f : M → N between manifolds induces a map f# : SnM → SnN given by
f#(σ) = f ◦ σ. This, in turn, induces a map f#∗ : Cn(M) → Cn(N) defined by µ 7→ f#∗[µ], the
pushforward of µ by f#.

As usual, if f#∗ is a chain map (i.e. f#∗∂ = ∂f#∗) then f#∗ descends to a map f∗ on measure
homology.

6.3.4 Fundamental classes

Remarkably, it turns out that on spaces where they are both defined, measure homology and
singular homology coincide [Löh06]. So just as in singular homology, if M is an orientable n-
manifold then Hn(M) is generated by the inclusion of [M ] ∈ Hn(M ; Z) into Hn(M), which we
continue to call a fundamental class of M .

Recall that if z =
∑
i ziσi ∈ Cn(M ; R) is a singular n-cycle and Ω is the volume form on M we

can find out which multiple of [M ] that z represents by integration. More precisely,

Vol(M)[z] = 〈z,Ω〉[M ] (6.2)

where
〈z,Ω〉 =

∫
z

Ω :=
∑
i

zi

∫
∆n

σ∗i Ω =
∑
i

ziAlgVol(σi). (6.3)

Here AlgVol(σ) :=
∫

∆n σ
∗Ω. (Note that (6.2) is well defined because the pairing depends only

on the homology class of z by Stokes’ theorem.)

An analogous procedure works if µ ∈ Cn(M) is a measure n-cycle. In this case we define the
pairing by

〈µ,Ω〉 =
∫
µ

Ω :=
∫
SnM

∫
∆n

σ∗Ω dµ(σ) =
∫
SnM

AlgVol(σ) dµ(σ). (6.4)

Notice that if we think of smooth singular n-chains as weighted combinations of point masses
then (6.4) reduces to (6.3).
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6.4 The Gromov norm revisited

Now we are in a position to re-define the Gromov norm of a closed orientable manifold, making
use of the technology we introduced in the previous section.

Definition 6.3. Let M be a closed orientable n-manifold and let [M ] ∈ Hn(M) be a fundamental
class of M . Then the Gromov norm of M is

‖[M ]‖ = inf{‖µ‖ : µ ∈ Cn(M) represents [M ]}.

Recall that by ‖µ‖ we mean the total variation of the signed measure µ.

6.5 Straightening and smearing chains

In this section we introduce two constructions that play key roles in what follows.

Figure 6.2: Straightening a singular simplex.

6.5.1 Straightening chains

A straight k-simplex in Hn is a smooth singular simplex whose image is the convex hull of k+ 1
points in Hn. The straight k-simplex with vertices v0, v1, . . . , vk ∈ Hn can be explicitly described
in a number of ways.

We will give a novel description of straightening using the visual measure and barycentre con-
structions from Chapter 5. As such, our discussion will be more detailed in this section than
elsewhere in this chapter.
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For i = 0, 1, . . . , k let µvi be the visual measure on ∂Hn corresponding to each vi ∈ Hn. Since
P(∂Hn) is a vector space, we can then define an ‘affine simplex’ ∆k → P(∂Hn) by

(t0, t1, . . . , tk) 7→
k∑
i=0

tiµvi

(where the ti are barycentric coordinates for ∆k). Using the barycentre construction, we can
map this back to Hn to obtain a new k-simplex in Hn. So if σ is a smooth singular k-simplex
with vertices at v0, v1, . . . , vk ∈ Hn define s̃tr : SkHn → SkHn by

s̃tr(σ)(t0, t1, . . . , tk) = bar

(
k∑
i=0

tiµvi

)
.

Lemma 6.4. For any ϕ ∈ Isom(Hn),

ϕ ◦ s̃tr = s̃tr ◦ ϕ.

Furthermore, for any smooth k-simplex σ in Hn, s̃tr(σ) is a straight simplex.

Proof. Let σ be a k-simplex in Hn with vertices at v0, v1, . . . , vk. Let ϕ ∈ Isom(Hn) be any
isometry and let t0, t1, . . . , tk > 0 be such that

∑k
i=0 ti = 1. Then since ϕ∗[µx] = µϕ(x) for all

x ∈ Hn,

ϕ∗[
m∑
i=0

tiµvi ] =
m∑
i=0

tiϕ∗[µvi ] =
m∑
i=0

tiµϕ(vi).

Since ϕ(bar (ν)) = bar (ϕ∗[ν]) for all atomless measures ν in P(∂Hn),

(ϕ ◦ s̃tr)(σ)(t0, t1, . . . , tk) = ϕ

[
bar

(
m∑
i=0

tiµvi

)]

= bar

(
ϕ∗

[
m∑
i=0

tiµvi

])

= bar

(
m∑
i=0

tiµϕ(vi)

)
= (s̃tr ◦ ϕ)(σ)(t0, t1, . . . , tk).

Now we will show that s̃tr(σ) is actually a straight simplex.

Observe that τ is a straight simplex if and only if all of its faces are straight simplices and every
isometry of Hn that fixes the vertices of τ fixes τ itself. Also note that if τ (i) denotes the ith
face map of τ then

s̃tr(τ (i)) = s̃tr(τ)(i). (6.5)

It is clear that any 0-simplex is straight. Arguing by induction, take any k-simplex σ and assume
that s̃tr(σ) is straight. Then if τ is a k + 1 simplex, its faces τ (i) are k-simplices. Hence for
each i, s̃tr(τ (i)) = s̃tr(τ)(i) is straight, so the faces of s̃tr(τ) are all straight. Now let ϕ be an
isometry that fixes the vertices of τ . Then since straightening only depends on the position of
the vertices of the original simplex,

ϕ(s̃tr(τ)) = s̃tr(ϕ(τ)) = s̃tr(τ)

so s̃tr(τ) is fixed by ϕ and so is actually straight.
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Now if M is a closed orientable hyperbolic n-manifold we want to define a straightening operation

str : SkM → SkM .

Since ∆k is simply connected we can lift any k-simplex σ in M to a k-simplex σ̃ in Hn. Then
s̃tr(σ̃) is a straight simplex in Hn. Then define str(σ) to be the projection of s̃tr(σ̃) back to
M . Since s̃tr is equivariant with respect to isometries, this construction is independent of the
choice of lift of σ, so str(·) is well defined. Furthermore, we can extend str to a map on Ck(M)
by µ 7→ str∗[µ].

Lemma 6.5. s̃tr is a chain map that is homotopic to the identity map on SkHn . Hence str is
a chain map that is homotopic to the identity map on SkM .

Proof. The fact that s̃tr is a chain map (i.e. ∂ s̃tr = s̃tr ∂) follows immediately from (6.5) and
the definition of the boundary operator.

To see that s̃tr is homotopic to the identity, let F̃ : SkHn × [0, 1]→ SkHn be defined by

F̃ (σ̃, s)(t0, t1, . . . , tk) = bar

(
(1− s)µσ̃(t0,t1,...,tk) + s

k∑
i=0

tiµvi

)

for any k-simplex σ̃ in Hn with vertices at v0, v1, . . . , vk and any point (t0, t1, . . . , tk) in the
standard k-simplex (described in barycentric coordinates).

Clearly F̃ is a homotopy and F̃ (σ̃, 0) = σ̃ and F̃ (σ̃, 1) = s̃tr(σ̃).

Since s̃tr is equivariant with respect to isometries and the covering projection Hn → M is
a chain map, it follows that str is a chain map. Furthermore, F̃ projects to a homotopy
F : SkM × [0, 1]→ SkM from the identity on SkM to str, as claimed.

Since str is a chain map, it descends to a map on homology. Moreover, since str is homotopic
to the identity it follows that it induces the identity on homology. Hence any homology class
can be represented by a ‘straight’ cycle, that is a measure supported only on straight simplices.

6.5.2 Smearing chains

Throughout this section, let M = Hn/Γ be a hyperbolic manifold.

Haar measure. Let G = Isom+(Hn). There is a unique positive measure h̃ on G such that
for all Borel H ⊂ G and all g ∈ G,

h̃(gH) = h̃(H) = h̃(Hg) and h̃(H) = Vol(H · x)

where H · x is the set of images of x ∈ Hn under the isometries in H. This measure is called
the Haar measure on G. A left-invariant Haar measure exists for any locally compact Lie group.
In this case the Haar measure is also right-invariant (see [BP92, Section C.4] for a discussion of
Haar measure in this context). The bi-invariance of h̃ means that it descends to a measure h
on G/Γ which we also refer to by the name Haar measure. The normalization of h̃ is such that
h(G/Γ) = Vol(Hn/Γ).
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The smearing construction. Our aim is to start with a singular simplex σ ∈ SnHn and
construct a measure chain smrM (σ) ∈ Cn(M) that is, essentially, a measure uniformly supported
on all projections of isometric copies of σ in M . To do this, let p : Hn → M be the covering
projection and define a function α(σ) : G/Γ→ SnM by

α(σ)(gΓ) = p ◦ g ◦ σ.

Then define
smrM (σ) = α(σ)∗[h],

the pushforward of the Haar measure on G/Γ by α(σ).

Proposition 6.6. If σ is any smooth simplex in Hn then smrM (σ) has the following properties:

1. ‖smrM (σ)‖ = Vol(M)

2. 〈smrM (σ),ΩM 〉 = AlgVol(σ)Vol(M).

where ΩM is the volume form on M .

Proof. The first assertion follows from the fact that smrM (σ) is a positive measure and satisfies

smrM (SnM ) = α(σ)∗[h](SnM ) = h(α(σ)−1[SnM ]) = h(G/Γ) = Vol(M).

To see that the second property holds, let Ω and ΩM be the volume forms on Hn and M
respectively. Then using the facts that p∗ΩM = Ω and g∗Ω = Ω for any g ∈ G,

〈smrM (σ),ΩM 〉 =
∫
SnM

(∫
∆n

τ∗ΩM

)
d smrM (σ)(τ)

=
∫
G/Γ

(∫
∆n

[α(σ)(gΓ)]∗ΩM

)
dh(gΓ)

=
∫
G/Γ

(∫
∆n

σ∗g∗p∗ΩM

)
dh(gΓ)

=
∫
G/Γ

(∫
∆n

σ∗Ω
)
dh(g(Γ))

= AlgVol(σ)Vol(M).

6.6 Gromov norm and volume are proportional

It is a remarkable theorem of Gromov that the Gromov norm and the volume of a closed orientable
hyperbolic n-manifold are proportional to each other. Since the Gromov norm is a homology (and
hence homotopy) invariant, it follows that hyperbolic manifolds that are homotopy equivalent
must have the same volume. Of course this is a corollary of Mostow Rigidity, and we also
came across this corollary in the course of our proof of Mostow Rigidity according to Besson,
Courtois, and Gallot. It is then probably little surprise that this result is a key step in the
Gromov-Thurston proof of Mostow Rigidity.

The proof we give here relies on the straightening and smearing constructions that we sketched
in the previous section. In fact, those constructions were largely motivated by their great utility
in streamlining the proof of this result.
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Theorem 6.7. If M is a closed, orientable, hyperbolic n-manifold then

‖[M ]‖ =
Vol(M)
vn

where vn is the maximum volume of a (straight) n-simplex in Hn.

Proof. First we show that ‖[M ]‖ ≥ Vol(M)/vn. Let ΩM be the volume form for M . Let
µ ∈ Cn(M) be a cycle that represents a fundamental class [M ] of M . Then str∗(µ) represents
the same fundamental class of M . Since projection of simplices from Hn to M never increases
volume, any straight simplex in M has volume at most vn. Thus

Vol(M) =
∫
M

ΩM =
∫
SnM

(∫
∆n

σ∗ΩM

)
d str∗(µ)(σ)

≤ vn

∫
SnM

d str∗(µ)(σ)

≤ vn‖str∗(µ)‖
≤ vn‖µ‖.

Taking the infimum over all µ representing [M ] gives the result.

Now for the reverse inequality. Given any positively oriented straight n-simplex σ in Hn, let σ−
denote the image of σ under some reflection. Let

µ =
1
2

(smrM (σ)− smrM (σ−)) ∈ Cn(M).

Then since smrM (σ) and smrM (σ−) have disjoint support,

‖µ‖ =
1
2
‖smrM (σ)‖+

1
2
‖smrM (σ−)‖ = Vol(M)

from the first part of Proposition 6.6.

Next we argue that µ is actually a cycle. Let p : Hn →M denote the covering projection. Then
for every face of every isometric copy of p ◦ σ (on which smrM (σ) is supported), there is a face
of an isometric copy of p ◦ σ− (on which smrM (σ−) is supported) that matches the first face,
but with opposite orientation. Hence the faces cancel out in pairs and so ∂(µ) = 0.

Applying the second part of Proposition 6.6 gives

[µ] =
1

Vol(M)
〈µ,ΩM 〉[M ]

=
1

2Vol(M)
(〈smrM (σ),ΩM 〉 − 〈smrM (σ−),ΩM 〉) [M ]

=
1

2Vol(M)
(AlgVol(σ)Vol(M)−AlgVol(σ−)Vol(M)) [M ]

= AlgVol(σ)[M ].

Note that for straight n-simplices σ, AlgVol(σ) = ±Vol(σ(∆n)) where the sign is chosen according
to whether σ is positively or negatively oriented. So for any straight simplex σ in Hn, µ/Vol(σ)
represents [M ] and so

‖[M ]‖ ≤ ‖µ‖
Vol(σ)

=
Vol(M)
Vol(σ)

.

Taking the infimum over straight simplices σ in Hn gives

‖[M ]‖ ≤ Vol(M)
vn

.
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6.7 A proof of Mostow’s theorem

Given a homotopy equivalence f between closed hyperbolic manifolds M1 and M2, we can con-
struct a map f̄ : Hn → Hn

which is smooth on Hn, whose restriction to ∂Hn is a homeomorphism,
and which is equivariant with respect to the action of π1(M1) and π1(M2) on Hn.

Such a map exists by a similar construction to the one detailed in Chapter 4. The idea is to first
replace the homotopy equivalence f with a smooth homotopy equivalence in the same homotopy
class (see [Lee03, Theorem 10.21] for a proof). Then lift f to a smooth map f̃ : Hn → Hn with
the appropriate equivariance property. Using the compactness of M1 and M2 it can be shown
that f̃ is a quasi-isometry and so, using arguments from Chapter 4, extends to a continuous map
f̄ : Hn → Hn

whose restriction ∂f̃ to ∂Hn is a homeomorphism.

As in the proof of Besson, Courtois, and Gallot, it remains to show that ∂f̃ is actually the
restriction of an isometry to ∂Hn. To achieve this, first we establish that ∂f̃ takes the vertices
of maximal volume simplices in Hn

to the vertices of maximal volume simplices in Hn
. Second,

we use the characterization of simplices of maximal volume given in Section 6.1 to establish that
∂f̃ takes the vertices of regular ideal simplices to the vertices of regular ideal simplices. Finally,
if n ≥ 3, we show that this implies ∂f̃ is the restriction of an isometry to ∂Hn.

We now give a more detailed account of the first and third of the steps in this strategy.

Proposition 6.8. If u0, u1, . . . , un ∈ ∂Hn are the vertices of a simplex of maximal volume in
Hn

then ∂f̃(u0), ∂f̃(u1), . . . , ∂f̃(un) are the vertices of a simplex of maximal volume in Hn
.

Proof. (Our proof follows that given by Munkholm in [Mun80].) We argue by contradiction.
Suppose that u0, u1, . . . , un ∈ ∂Hn are the vertices of an ideal simplex τ of maximal volume but
∂f̃(u0), ∂f̃(u1), . . . , ∂f̃(un) are not. Then, by continuity, simplices that are sufficiently close to
τ have images under f̃ which, after straightening, have volumes that are bounded away from vn.

More precisely, take ε > 0 and let U0, U1, . . . , Un ⊂ Hn be neighbourhoods of the ui so that if σ
is a (necessarily finite) simplex with ith vertex in Ui then

Vol(s̃tr(f̃(σ))) ≤ vn − ε for some ε > 0. (6.6)

For convenience, let us call simplices with one vertex in each Ui that satisfy (6.6) ‘bad’ simplices.
Let

B = {gΓ : g takes ‘bad’ simplices to ‘bad’ simplices} ⊂ G/Γ.

It turns out that the Haar measure of B is positive. In symbols h(B) =: m > 0 where h denotes
the Haar measure on G/Γ.

Now choose a positively oriented ‘bad’ straight simplex σ in Hn with volume Vol(σ) > vn − δ
for some δ (depending only on ε and m) to be chosen later. We can do this because, rather
oxymoronically, we started with the assumption that a ‘bad’ ideal simplex exists!

If gΓ ∈ B then since σ is ‘bad’, so is g ◦ σ. Hence

Vol(s̃tr(f̃(g ◦ σ))) ≤ vn − ε ≤ Vol(σ) + δ − ε. (6.7)

Similarly if gΓ /∈ B then
Vol(s̃tr(f̃(g ◦ σ))) ≤ vn ≤ Vol(σ) + δ. (6.8)

As in the proof of Theorem 6.7, let µ = 1
2 [smrM (σ) − smrM (σ−)] where σ− is a reflected copy

of σ. We can produce a cycle in Cn(N) by pushing forward µ by str ◦ f#, where f : M → N is
the homotopy equivalence between M and N that lifts to f̃ .
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We will now find out which multiple of [N ] is represented by str∗f#∗[µ]. Now if p : Hn → M
denotes the covering projection,

〈str∗f#∗[smrM (σ)],ΩN 〉 =
∫
SnN

(∫
∆n

τ∗Ωn

)
d str∗f#∗α(σ)∗[h](τ)

=
∫
G/Γ

(∫
∆n

(str ◦ f ◦ p ◦ g ◦ σ)∗ΩN

)
d h(gΓ)

=
∫
G/Γ

(∫
∆n

(str ◦ p ◦ f̃ ◦ g ◦ σ)∗ΩN

)
d h(gΓ)

=
∫
G/Γ

(∫
∆n

(p ◦ s̃tr ◦ f̃ ◦ g ◦ σ)∗ΩN

)
d h(gΓ)

=
∫
G/Γ

(∫
∆n

(s̃tr ◦ f̃ ◦ g ◦ σ)∗Ω
)
d h(gΓ)

=
∫
B

(∫
∆n

(s̃tr ◦ f̃ ◦ g ◦ σ)∗Ω
)
d h(gΓ) +∫

(G/Γ)\B

(∫
∆n

(s̃tr ◦ f̃ ◦ g ◦ σ)∗Ω
)
d h(gΓ)

≤ m(AlgVol(σ) + δ − ε) + (Vol(M)−m)(AlgVol(σ) + δ)
= Vol(M)(Vol(σ) + δ)−mε

where we have used (6.7) and (6.8) and the fact that σ is positively oriented (so AlgVol(σ) =
Vol(σ) ≥ 0) to produce the final estimate. Choosing δ < εm/Vol(M) gives

〈str∗f#∗[smrM (σ)],ΩN 〉 < Vol(σ)Vol(M).

Similarly, since σ− is negatively oriented, a similar calculation shows that

−〈str∗f#∗[smrM (σ−)],ΩN 〉 < −AlgVol(σ−)Vol(M) = Vol(σ)Vol(M).

Hence
〈str∗f#∗[µ],ΩN 〉 < Vol(σ)Vol(M). (6.9)

During the course of the proof of Theorem 6.7, we established that [µ] = Vol(σ)[M ]. Since
Theorem 6.7 implies that homotopy equivalent closed hyperbolic manifolds have the same volume,
Vol(M) = Vol(N). So (6.9) implies that str∗f#∗[µ] = k[N ] where

|k| < Vol(σ)
Vol(M)
Vol(N)

= Vol(σ).

Since str ◦ f# is a homotopy equivalence, it is a map of degree ±1. Then we have the following
contradiction:

k[N ] = str∗f#∗[µ] = Vol(σ)str∗f#∗[M ] = ±Vol(σ)[N ].

Before completing the proof, we need a little lemma about regular ideal simplices. Note that
this is the only point where we use the assumption that n ≥ 3 in this proof.

Lemma 6.9. If n ≥ 3 and v0, v1, . . . vn−1, vn are the vertices of a regular ideal n-simplex σ then
the only other regular ideal simplex with vertices at v0, v1, . . . , vn−1 is the reflection of σ in the
hyperplane containing v0, v1, . . . , vn−1.
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Proof. Consider the half-space model and note that isometries of Hn act on the boundary by
Euclidean similarities. Assume, without loss of generality, that v0 = ∞. Denote by E(σ) the
Euclidean simplex spanned by the n vertices of σ that are not at infinity. Since σ is regular (and
so is ϕ(σ) for any isometry ϕ), it follows that E(σ) and E(ϕ(σ)) are regular Euclidean simplices
and are related by a similarity. If σ and ϕ(σ) share a (vertical) face then E(σ) and E(ϕ(σ)) share
a face. Since n ≥ 3 this means that E(σ) and E(ϕ(σ)) must be related by a Euclidean isometry.
Since there are exactly two such Euclidean isometries that fix a face of E(σ) (the identity and
the reflection in that face), the result follows.

Now we present the final step in proving Mostow’s Theorem using the methods of Gromov and
Thurston.

Proposition 6.10. If n ≥ 3 and ∂f̃ : ∂Hn → ∂Hn takes vertices of regular ideal simplices to
vertices of regular ideal simplices then ∂f̃ = ϕ|∂Hn for some ϕ ∈ Isom(Hn).

Proof. Choose any geodesic ray β : [0,∞)→ Hn with β(0) = O.

Choose any regular ideal simplex σ1 containing O and let its vertices be v0, v1, . . . , vn. Let
ui = ∂f̃(vi) for i = 0, 1, . . . , n. Since the ui also span a regular ideal simplex, there is an
isometry ψ ∈ Isom(Hn) such that ψ ◦ ∂f̃ fixes each vi. It remains to show that ψ ◦ ∂f̃ fixes ∂Hn.

Let H1 denote the face of σ1 that β intersects. Then define ϕ1 to be the reflection in H1 and let
σ2 = ϕ1(σ1). Then since ψ ◦ ∂f̃ fixes the vertices of the common face of σ1 and σ2, and ψ ◦ ∂f̃
sends vertices of regular ideal simplices to vertices of regular ideal simplices, it follows that ψ◦∂f̃
also fixes the vertices of σ2.

Let H2 6= H1 denote another face (possibly of dimension less than n− 1) of σ2 that β intersects.
If this face is a vertex of σ2, then ψ ◦ ∂f̃ fixes β(∞) and so we are done. Otherwise, continue
the process, constructing a sequence of simplices σn whose vertices converge to β(∞). Since
ψ ◦ ∂f̃ fixes the vertices of each σn, it follows by continuity that ψ ◦ ∂f̃ fixes β(∞) and so we are
done.

6.8 Thurston’s generalization of Mostow Rigidity

In his Princeton lecture notes [Thu79, Chapter 6] Thurston proves a significant generalization
of Mostow Rigidity that is similar form to the more general results proved by Besson, Courtois,
and Gallot that we outlined in Section 5.6.

Theorem 6.11. Let f : M1 → M2 be any map of non-zero degree between closed oriented
hyperbolic n-manifolds (n ≥ 3) such that

Vol(M1) = |deg(f)|Vol(M2).

Then f is homotopic to a map which is a local isometry. If |deg(f)| = 1, then f is a homotopy
equivalence. Otherwise it is homotopic to a covering map.

Interestingly, the techniques involved in the proof are rather similar to those used in the Gromov-
Thurston proof of Mostow’s Theorem. The main stumbling block in this more general setting
is that under these hypotheses one cannot extend f to a homeomorphism of the boundary
of hyperbolic space. Indeed, initially it is only possible to show that the map ‘at infinity’ is
measurable. Nevertheless, Thurston manages to adapt the proof techniques to deal with this
situation.
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