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Abstract

In this thesis we consider convex optimization-based approaches to the classical problem of iden-
tifying a subspace from noisy measurements of a random process taking values in the subspace.
We focus on the case where the measurement noise is component-wise independent, known as the
factor analysis model in statistics.

We develop a new analysis of an existing convex optimization-based heuristic for this problem.
Our analysis indicates that in high-dimensional settings, where both the ambient dimension and
the dimension of the subspace to be identified are large, the convex heuristic, minimum trace factor
analysis, is often very successful. We provide simple deterministic conditions on the underlying
‘true’ subspace under which the convex heuristic provably identifies the correct subspace. We
also consider the performance of minimum trace factor analysis on ‘typical’ subspace identification
problems, that is problems where the underlying subspace is chosen randomly from subspaces of
a particular dimension. In this setting we establish conditions on the ambient dimension and the
dimension of the underlying subspace under which the convex heuristic identifies the subspace
correctly with high probability.

We then consider a refinement of the subspace identification problem where we aim to identify
a class of structured subspaces arising from Gaussian latent tree models. More precisely, given the
covariance at the finest scale of a Gaussian latent tree model, and the tree that indexes the model,
we aim to learn the parameters of the model, including the state dimensions of each of the latent
variables. We do so by extending the convex heuristic, and our analysis, from the factor analysis
setting to the setting of Gaussian latent tree models. We again provide deterministic conditions on
the underlying latent tree model that ensure our convex optimization-based heuristic successfully
identifies the parameters and state dimensions of the model.
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Chapter 1

Introduction

Many modern problems in engineering, science, and beyond involve analyzing, understanding,
and working with high dimensional data. This poses challenges in terms of interpretability and
computation—performing inference tasks with complex high-dimensional models is generally in-
tractable. One common approach to dealing with high dimensional complex data is to build a
parsimonious statistical model to explain the data. Very often such models assume the high di-
mensional data arise as perturbations (by ‘noise’) of points in a low-dimensional object, such as a
manifold. Modeling, in this context, involves trying to identify the low-dimensional object, and per-
haps some parameters of the noise model, from the observed data. Depending on the assumptions
on the noise, even the simplest such models, where the low-dimensional object is a linear subspace,
are challenging to work with, especially in high-dimensional settings. In this thesis we consider two
related subspace identification problems, and convex optimization-based methods for solving them
in high-dimensional settings.

1.1 Subspace Identification

We now introduce the two problems on which this thesis focuses and indicate how they can be
thought of as subspace identification problems.

1.1.1 Factor Analysis

Suppose zh is a zero-mean Gaussian1 random variable taking values in a subspace U? ⊂ Rn. Suppose
we do not have access to zh, instead having access to xo = zh + wo where wo can be thought of as
zero-mean Gaussian noise with unknown covariance. Given xo, we would like to form an estimate

1Throughout this thesis we only consider first and second order statistics of random variables, so we can make
this assumption without loss of generality.
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Û of the subspace in which zh lies. Since we would like to have as simple a model as possible for
zh, we would like to find take Û to be the lowest dimensional subspace in which zh could possibly
lie. With no further assumptions on the model, the problem is trivial: assume that zh = 0 (and so
Û = {0}) and that all of the measurement is just noise.

For the model to make sense we must make an assumption about the noise. The assumption
we make is that wo is independent of zh and the components of wo are independent, that is
E[wowTo ] = Qo is diagonal. The resulting model is known as factor analysis 2 in the statistics
literature [53, 54] and the Frisch scheme in the system identification literature [27, 32] and has
received a great deal of attention since its introduction in the early twentieth century. We discuss
a selection of previous work related to this model in Chapter 3.

If A is a matrix with column space U?, we can write zh = Axh and think of factor analysis as
a linear Gaussian model:

xh ∼ N (0, R), wo ∼ N (0, Qo), xo = Axh + wo, (1.1)

that is, each observed variable xo,i is a linear function of xh with additive noise wo,i independent
of each wo,j for j 6= i. Taking covariances we have that

E[xoxTo ] = Σo = ARAT +Qo (1.2)

where Qo is diagonal and ARAT is low rank, with rank equal to the dimension of the subspace U?.
From (1.2) we see that factor analysis can be thought of, concretely, as the problem of decomposing
a positive semidefinite matrix Σo into the sum of a positive semidefinite diagonal matrix Qo and
a positive semidefinite matrix ARAT with the smallest rank possible. Clearly, if we can correctly
decompose Σo into its diagonal and low-rank constituents, we can identify the subspace U?, as we
originally set out to achieve.

Despite our additional assumption on the noise, this matrix decomposition problem is not well-
posed in general—it is quite possible that more than one decomposition exists with the smallest
possible rank for the low-rank term. Furthermore, even if the problem is identifiable, there is no
known general, computationally tractable, procedure for performing this matrix decomposition. In
Chapter 3 of this thesis we analyze a convex optimization-based heuristic, called minimum trace
factor analysis, for factor analysis, showing that this heuristic is often very successful.

The noise model Component-wise independence of the noise is a strong assumption, but it
arises naturally in a number of applications. For example, if the wo,i are the measurements made at
physically well separated sensors in a sensor network, one would expect the associated measurement

2When we refer to factor analysis in this thesis we mean precisely this model, as distinct from principal components
analysis, which makes quite different assumptions about the noise.
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Figure 1-1: On the left is the Gaussian latent tree corresponding to the factor analysis model. If
the hidden variable xh in the factor analysis model is given more structure, as in the diagram on
the right, we obtain a more general Gaussian latent tree model.

noise at any sensor to be independent of the measurement noise at any other sensor. Note that
factor analysis does not assume that we know the noise variances, or that the noise variances are the
same. Also, by changing basis, we need only assume that the noise is component-wise independent
in some basis that is known a priori, rather than the measurement basis.

Covariance information Unless otherwise stated, throughout this thesis we assume that we
have access to the population covariance of the observed random variable xo. In terms of the
matrix decomposition problem (1.2), this assumption means that the matrix Σo can be exactly
expressed as the sum of a diagonal and a low rank positive semidefinite matrix, and so our aim is
to exactly decompose Σo into these pieces. In this thesis we analyze only this exact decomposition
problem. In practice we only expect to have access to samples of xo and hence would use a sample
covariance matrix. We discuss this issue further in Section 4.5 and in the further work section of
Chapter 5.

1.1.2 Gaussian Latent Trees

In the factor analysis model, we try to identify a (potentially) arbitrary subspace U? from measure-
ments with component-wise independent additive noise. In Chapter 4 of this thesis, we consider
refinements of this model where the subspace U? has more structure.

The way in which we impose more structure on U? is most easily seen by considering the
representation of factor analysis as a linear Gaussian model in (1.1). This representation can be
interpreted as a linear state-space model with states indexed by the vertices of a star shaped tree
(see Figure 1-1). The hidden state xh corresponds to the root of the tree and the observed states

13



xo,i for i = 1, 2, . . . , n correspond to the leaves of the tree, with each xo,i being a linear function
(with additive noise) of its parent xh. The dimension of the state xh is precisely the dimension of
the subspace U? we aim to identify.

Generalizing this picture, we can consider a state-space model driven by Gaussian noise with
states indexed by the vertices of a more general tree. In this case, the state at each vertex is a
linear function of the state at its parent with additive noise that is independent of the noise at any
other vertex. As in the factor analysis model, we assume we only observe the leaf variables of the
process. Such models are referred to as Gaussian latent tree models in the literature on probabilistic
graphical models [35], and multiscale autoregressive models [5] in the multiscale modeling literature.
Given the index tree and the covariance among the leaf variables, the problem of determining the
dimensions of the state spaces at each vertex, and the linear maps defining the relationships between
the states at each vertex is the focus of Chapter 4.

1.2 A Motivating Application—Direction of Arrival Estima-

tion in Sensor Networks

One motivating problem where a factor analysis model naturally arises, but is not typically used,
is the direction of arrival estimation problem in array signal processing. Suppose we have N

sensors at locations x1, x2, . . . , xN ∈ R2. Suppose these sensors are passively ‘listening’ for waves
(electromagnetic or acoustic) fromK < N sources in the far field. Let the wave vectors of the sources
be k1, k2, . . . , kK ∈ R3. When can we determine the number of sources K and their directions of
arrival (DOA) given the sensor measurements? This problem has enjoyed great attention since
the early days of wireless communications, in the early 20th century, and has associated with it a
vast literature. The recent book of Tuncer and Friedlander [57] as well as the survey of Krim and
Viberg [36] discuss many aspects of the direction of arrival estimation problem.

The standard mathematical model for this problem (see [36] for a derivation) is to model the
vector of measurements x(t) made by the sensors as

x(t) = As(t) + n(t) (1.3)

where s(t) is the vector of baseband signal waveforms from the sources n(t) is the vector of sensor
noise, and

[A]i` = e−j〈xi,k`〉 (1.4)

where 〈·, ·〉 is the standard Euclidean inner product on R3 and j =
√−1 is the complex unit.

Typically s(t) and n(t) are modeled as a stationary white Gaussian processes with covariances
E[s(t)s(t)H ] = P and E[n(t)n(t)H ] = D respectively (where AH denotes the Hermitian transpose

14



of A). Furthermore s(t) and n(t) are typically assumed to be independent. It is often natural to
assume that the noise at each sensor is independent of the noise at every other sensor. As such we
assume that D is diagonal.

Subspace-based approaches to DOA estimation Under these assumptions, one approach to
estimating the k` involves decomposing the covariance of the measurements

Σ = E[y(t)y(t)H ] = APAH +D

into the contribution from the signal, APAH , and the contribution from the noise, D, and then
trying to estimate the k` from an estimate of APAH . Observe that the rank of APAH is the number
of sources, which is assumed to be smaller than the number of sensors. Under our assumption on
the sensor noise, we are faced with the problem of decomposing Σ into a diagonal and a low-rank
matrix.

Subspace based approaches to direction of arrival estimation rose to prominence in the 1980s
with the MUSIC [9, 50] and ESPRIT [49] algorithms, to name two more celebrated approaches.
Both of these, and the many other approaches along the same lines, consist of two rather distinct
steps:

1. Estimating the signal subspace: Given Σ = APAH +D estimate the column space of A.

2. Estimating the source directions: Use the estimate of the column space of A to estimate the
wave vectors k`.

These classical subspace-based algorithm for direction of arrival estimation make the additional
assumptions that the variance of the noise at each sensor is the same, so that E[n(t)n(t)H ] = σ2I

and the number of sources K is known (or has already been estimated). Under these additional
assumptions, it is reasonable to take the span of the K eigenvectors of Σ corresponding to the K
largest eigenvalues as the signal subspace. This is the method of subspace estimation used in all of
these classical subspace methods.

Suppose we are in the setting where we have a large number of sensors, perhaps of different
types operating under different operating conditions. It is likely that the noise variances at all of
the sensors are quite different. It is also unlikely that the number of sources is known a priori.
As such, the assumptions, on which the classical method of estimating the signal subspace using
eigenvector computations is based, are not appropriate. However, in this setting directly using
a factor analysis model, the central model of interest in Chapter 3, is quite natural. Indeed in
Chapter 3 we illustrate how convex optimization-based heuristics for factor analysis can provide an
alternative method of identifying the signal subspace in the setting where the sensor variances are
all different and potentially large.
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1.3 Summary of Contributions

Our first main contribution is the development of a new analysis of minimum trace factor analysis,
an existing convex optimization-based heuristic for factor analysis. In particular, our analysis
focuses on understanding how well minimum trace factor analysis works as a heuristic in the high-
dimensional setting where the ambient dimension is large and the dimension of the subspace we are
trying to identify is also large. This setting is becoming increasingly important in applications—
modern sensor networks, for example, consist of large numbers of cheap sensors spread our over a
large area, aiming to detect as many sources as possible. From an analytical point of view, focusing
on this setting allows us to perform analysis that is coarse enough to be tractable, and also coarse
enough to provide useful intuition about the performance of the heuristic we analyze.

More specifically the two main aspects of our analysis are the following.

• We establish simple deterministic conditions on a subspace that ensure minimum trace factor
analysis can identify that subspace. These conditions are expressed in terms of incoherence
parameters that can easily be translated into more problem specific information (as we do for
the direction of arrival estimation problem).

• We establish conditions on the rank of a random subspace that ensure that subspace can be
identified by minimum trace factor analysis with high probability.

The key intuition to be extracted from these results is that minimum trace factor analysis is a good
heuristic for factor analysis in the high-dimensional regime.

The second main contribution of the thesis is that we describe a way to generalize the com-
putational methods and deterministic analysis of minimum trace factor analysis to the problem
of learning the parameters and state dimensions of Gaussian latent tree models. In particular
we formulate a semidefinite program that, given the covariance among the leaf variables and the
tree structure, attempts to recover the parameters and state dimensions of an underlying Gaussian
latent tree model.

We then analyze this semidefinite program, giving two deterministic conditions on the under-
lying tree model that ensure our semidefinite program correctly recovers the parameters and state
dimensions of the model. The first condition characterizes when recovery is possible in the case
where the underlying tree model has all scalar-valued variables. The second condition directly
generalizes our deterministic conditions for recovery in the case of diagonal and low-rank decom-
positions. In the course of our analysis, we show how to reduce the analysis of our semidefinite
program to the analysis of block diagonal and low-rank decomposition problems.
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1.4 Organization of the Thesis

The remainder of the thesis is organized in the following way. Chapter 2 summarizes some of the
technical background required for the subsequent chapters. Chapter 3 considers the diagonal and
low rank decomposition problem, including a discussion of previous work on the problem and our
analysis of the semidefinite programming-based heuristic, minimum trace factor analysis, for this
problem. Chapter 4 extends these methods and analysis to the problem of learning the parameters
and state dimensions of a Gaussian latent tree model given the index tree and observations of the
leaf-indexed variables. Finally Chapter 5 summarizes our contributions and discusses potential
future research directions that arise naturally from the content of this thesis.
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Chapter 2

Background

In this chapter we summarize some technical background required for the remainder of the thesis.
In Section 2.1 we briefly introduce the notation we use for the linear algebra and matrix analysis
that is present throughout the thesis. In Section 2.2 we discuss convex heuristics for non-convex
optimization problems, with a focus on rank minimization problems, before reviewing key results
about semidefinite programs, the class of convex optimization problems that arise in our work.
Finally in Section 2.3 we briefly consider the concentration of measure phenomenon, with a focus
on functions of Gaussian random variables, reviewing results that play an important role in our
randomized analysis in Chapter 3.

2.1 Notation

2.1.1 Basic Notions

Most of the linear algebra we do will be over either the n-dimensional real vector space Rn or the(
k+1
2

)
-dimensional vector space of k× k symmetric matrices, which we denote by Sk. We equip Rn

with the standard Euclidean inner product 〈x, y〉 =
∑n
i=1 xiyi and Sk with the trace inner product

〈X,Y 〉 = tr(XTY ) =
∑k
i=1

∑k
j=1XijYij .

On two occasions we use complex scalars and so work in Cn and the set of k × k Hermitian
matrices. In this case we use 〈x, y〉 =

∑n
i=1 x̄iyi and 〈X,Y 〉 = tr(XHY ) =

∑k
i=1

∑k
j=1 X̄ijYij

where x̄ is the complex conjugate of x ∈ C and AH denotes the hermitian transpose of a matrix.
We will almost always think of linear maps A : Rn → Rm as m×n matrices with respect to the

standard bases for Rn and Rm, and will concretely denote the adjoint of A by AT . By contrast,
we often prefer to think of linear maps A : Sk → Rn abstractly. In this case we denote the adjoint
map by A∗ : Rn → Sk.
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We denote the eigenvalues of a k × k symmetric matrix X by

λmax(X) = λ1(X) ≥ · · · ≥ λk(X) = λmin(X)

and the singular values of an n× k matrix A by

σmax(A) = σ1(A) ≥ · · · ≥ σmin{n,k}(A) = σmin(A) ≥ 0.

The (Moore-Penrose) pseudoinverse of a matrix A is denoted A†. Note that singular values and
the pseudoinverse of a matrix are basis-independent and so are really properties of the underlying
linear map.

Finally, the column space or range of a matrix A will be denoted by R(A).

Projections If V is a subspace of Rn then we denote by PV : Rn → Rn the orthogonal (with
respect to the Euclidean inner product) projection onto V , that is the unique map that satisfies
PV (v) = v for all v ∈ V and PV (w) = 0 for all w ∈ V ⊥. If V is an r dimensional subspace of Rn

we use the notation πV : Rn → Rr to indicate some (fixed) choice of map that satisfies πTV πV = PV

and πV π
T
V = I. We call such a map a partial isometry.

If V is a subspace of Sk we use calligraphic letters to denote the corresponding orthogonal
projection, i.e. PV : Sk → Sk. In the particular case where we are projecting onto the subspace
of diagonal matrices we write diag : Sk → Rk and diag∗ : Rk → Sk for the maps such that
diag∗diag : Sk → Sk is the orthogonal projection onto the subspace of diagonal matrices.

Convex Cones A convex cone is a convex subset K of a real vector space V that is closed under
multiplication by non-negative real scalars. The two convex cones of most interest to us in this
thesis are the non-negative orthant

Rn+ = {x ∈ Rn : xi ≥ 0 for i = 1, 2, . . . , n},

and the positive semidefinite cone

Sk+ = {X ∈ Sk : uTXu ≥ 0 for all u ∈ Rk}.

We denote by ≤ and � respectively, the partial order on Rn induced by Rn+ and the partial order
on Sk induced by Sk+.

Given a vector space V and a convex cone K ⊂ V we say a linear map A : V → V is cone
preserving if A(K) ⊂ K. Clearly compositions of cone preserving maps are cone preserving. For
example, the cone preserving linear maps on Rn+ correspond to n × n matrices with non-negative
entries.
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Hadamard Products We denote the Hadamard (or Schur or entry-wise) product of matrices A
and B of compatible dimensions by A ◦ B. The matrix all entries of which are one is the identity
for this product and is denoted J . Perhaps the most basic among the many interesting spectral
properties enjoyed by the Hadamard product is that if A and B are positive semidefinite matrices,
then A ◦B is also positive semidefinite.

2.1.2 Norms

We employ a variety of matrix and vector norms throughout this thesis.

Vector norms The norms on Rn of principal interest are the `p norms for p ≥ 1 defined by
‖x‖p = (

∑n
i=1 |xi|p)1/p and ‖x‖∞ = maxi |xi|. Note that if x ∈ Rn we often use ‖x‖ instead of

‖x‖2 to denote the Euclidean norm. Given a norm ‖ · ‖ on Rn its dual norm ‖ · ‖∗ with respect to
the inner product is defined by

‖x‖∗ = sup
‖y‖=1

〈x, y〉.

If 1 ≤ p, q ≤ ∞ and 1/p+ 1/q = 1 then ‖x‖p and ‖x‖q are dual norms. Hölder’s inequality follows
from the duality of ‖·‖p and ‖·‖q, giving a nice way to relate norms and the standard inner product:

〈x, y〉 ≤ ‖x‖p‖y‖q

where 1 ≤ p, q ≤ ∞ and 1/p+ 1/q = 1.

Matrix norms The principal norms on Sk of interest to us are the Frobenius norm

‖X‖F = 〈X,X〉1/2 =

 k∑
i=1

k∑
j=1

X2
ij

1/2

=

(
k∑
i=1

σi(X)2
)1/2

the spectral norm, ‖X‖sp = σ1(X) (which we usually denote by ‖X‖) and the trace norm

‖X‖∗ =
k∑
i=1

σi(X).

Note that each of these are examples of Schatten p-norms (the `p norms applied to the singular
values of the matrix) and enjoy remarkably analogous behaviour to the corresponding `p norms on
Rn in certain settings. For example, if 1/p+ 1/q = 1 then the Schatten p and q norms are dual and
so obey Hölder’s inequality with respect to the trace inner product.
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Operator norms Given a linear map A between two normed spaces with norms ‖ · ‖a and ‖ · ‖b,
we denote the corresponding induced norm by

‖A‖a→b = sup
x 6=0

‖Ax‖b
‖x‖a .

For example, if A : Rn → Sk where Rn is equipped with the `∞ norm and Sk with the spectral
norm, we denote the induced norm by ‖A‖∞→sp.

2.2 Convex Relaxations and Semidefinite Programming

At the core of this thesis is the well-known idea that one can often approach intractable, (typically
non-convex) optimization problems by solving a related tractable convex optimization problem.
Furthermore, one can often give conditions on the original intractable problem instance under which
the convex relaxation actually solves the original problem. This general principal is of central
importance in combinatorial optimization, and is of increasing significance in signal processing
[14,42], statistics [55], machine learning [60], coding theory [24], and many other areas.

In this thesis the generally intractable non-convex problems we wish to solve are rank minimiza-
tion problems of the form

min rank(X) s.t. X ∈ C, X � 0

where C is some convex set and X is a symmetric matrix. A long-employed heuristic for such
problems is to minimize the trace of X rather than the rank of X, yielding the convex optimization
problem

min tr(X) s.t. X ∈ C, X � 0.

In the factor analysis literature, the idea of minimizing trace as a surrogate for rank dates to
Ledermann [37]. This heuristic has been put on firm theoretical ground more recently [43, 47].
One explanation for why it is reasonable to minimize trace as a surrogate for rank is that the trace
function is the best pointwise convex approximation to the rank function when restricted to positive
semidefinite matrices with spectral norm at most one [47].

2.2.1 Semidefinite Programming

When we employ the relaxation outlined in the previous section, all of the optimization problems
we consider in this thesis can be cast as semidefinite programs (SDPs). (See [58] as a reference for
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the material in this section.) These are convex optimization problems of the form

min
X
〈C,X〉

s.t. A(X) = b (2.1)

X � 0

where X,C and n× n symmetric matrices, b ∈ Rm and A : Sn → Rm is a linear map. The dual of
this problem is

max
y
〈b, y〉

s.t. C −A∗(y) � 0 (2.2)

where A∗ : Rm → Sn is the adjoint of A. It is straightforward to verify that (2.1) and (2.2) satisfy
weak duality, that is

〈C,X〉 ≥ 〈b, y〉

whenever X is a feasible point for (2.1) and y is a feasible point for (2.2). In fact under quite
mild conditions, strong duality holds. General sufficient conditions for strong duality in convex
optimization can be specialized to this case to give the following result.

Theorem 1. Suppose (2.1) and (2.2) are strictly feasible, that is there is an X � 0 such that
A(X) = b and there is some y such that C − A∗(y) � 0, then the optimal primal and dual costs
coincide and are finite.

The following summarizes the optimality conditions for semidefinite programming.

Theorem 2. Under the conditions of Theorem 1, X? is optimal for for (2.1) if and only if there
exists some y? such that

1. X? is primal feasible

2. y? is dual feasible

3. X?(C −A∗(y?)) = 0.

2.3 Concentration of Measure

In this thesis we focus on gaining qualitative understanding of the problems of interest in a high-
dimensional setting. As such we are interested in understanding questions like, “For what problem
parameters does a particular convex heuristic succeed on typical problem instances?”. Questions of
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this type are often quite tractable because of the so-called ‘blessing of dimensionality’, that is the
observation that in high dimensions, many quantities of interest typically behave in a very regular
manner.

These notions are often formalized through the notion of concentration inequalities in probability
theory. Suppose we are given a random variable X taking values in Rm (for concreteness) and a
real valued function f : Rm → R on that space. By ‘typical’ behaviour of f , we mean the values
it takes except on a set of rather small measure. To fix terminology we say that an event E ⊂ Rm

holds with high probability if there is a constant α > 0 such that Pr[Ec] = O(e−m
α

), and that E
holds with overwhelming probability if we can take α ≥ 1. The informal notion of f typically being
well behaved is formalized by bounding expressions of the form Pr[|f(X) − E[f(X)]| ≥ t] to show
that f is very close to its mean with high or overwhelming probability.

There is a considerable literature on concentration inequalities. The book of Ledoux [39] cov-
ers many modern techniques for obtaining such inequalities. In this thesis the main concentra-
tion inequality we use is Borell’s celebrated result on the concentration of Lipschitz functions of
i.i.d. Gaussian random variables.

Theorem 3 (Borell [10]). Suppose f : Rn → R is L-Lipschitz with respect to the Euclidean norm,
that is |f(x)− f(y)| ≤ L‖x− y‖ for all x, y ∈ Rn. Then

Pr[f(X) ≥ E[f(X)] + t] ≤ e− (t/L)2

2 .

This tells us that any L-Lipschitz function of i.i.d. Gaussian random variables has tails like that
of a scalar Gaussian with variance L. Examples of 1-Lipschitz functions that can be controlled in
this way include:

• any `p norms with p ≥ 2 of a standard Gaussian vector;

• any singular value of a random matrix with i.i.d. Gaussian entries;

• restricted singular values such as maxx∈S ‖Ax‖ where S is a subset of the unit sphere and A

is a matrix with i.i.d. Gaussian entries.

As an example of applying this concentration result, consider the problem of obtaining tail-
bounds on the largest and smallest singular values of an n× k matrix (n > k) with i.i.d. Gaussian
entries. As stated above, f : Rn×k → R given by f(V ) = σmax(V ) is a 1-Lipschitz function of V ,
that is,

|σmax(V )− σmax(W )| ≤ ‖V −W‖F .

Similarly σmin(V ) is a 1-Lipschitz function of V . Hence Theorem 3 tells us that σmax and σmin

concentrate around their respective means. The remaining challenge is to estimate the means
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E[σmin(V )] and E[σmax(V )]. For Gaussian matrices, techniques involving comparison inequalities
[28] can be used to show that

E[σmax(V )] ≤ √n+
√
k and E[σmin(V )] ≥ √n−

√
k.

Combining Theorem 3 with these bounds gives sharp tail bounds for the largest and smallest
singular values of rectangular Gaussian matrices.

Theorem 4. If V is a n× k matrix (with n ≥ k) with i.i.d. standard Gaussian entries then

Pr[
√
n−
√
k − t ≤ σmin(V ) ≤ σmax(V ) ≤ √n+

√
k + t] ≤ 2e−t

2/2.

This example illustrates a common pattern of analysis to establish concentration inequalities for
a function: first show that the function concentrates about some central value, and then estimate
that central value using separate arguments. We repeatedly use the specific result in Theorem 4,
as well as the pattern of controlling the mean and separately obtaining a concentration result, in
our analysis in Chapter 3.
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Chapter 3

Diagonal and Low-Rank Matrix

Decompositions

3.1 Introduction

In this chapter we study a convex optimization-based heuristic for decomposing a matrix Σ, formed
as the sum of a diagonal matrix D? and a low-rank matrix L?, into these constituents. In particular,
we focus on the case where Σ, L? and D? are all positive semidefinite, the situation that arises in
factor analysis. We are particularly interested in this problem in high dimensional settings where
the problem size n is large and the rank of the low-rank matrix is perhaps comparable to n.

To decompose Σ, the ideal problem we might wish to solve is known as the minimum rank factor
analysis problem [51]

min rank(L) (3.1)

s.t. Σ = D + L

L � 0, D � 0

D diagonal.

This non-convex optimization is generally intractable. Our aim is to show that the heuristic of
minimizing trace instead of rank very often allows us to successfully solve the minimum rank
problem. This heuristic involves solving the following optimization problem, known as minimum

27



trace factor analysis

min tr(L) (3.2)

s.t. Σ = D + L

L � 0, D � 0

D diagonal.

We are interested in two subtly different questions about minimum trace and minimum rank
factor analysis.

1. If Σ = L? + D? then when is (L?, D?) the unique optimal point of minimum trace factor
analysis?

2. When can we, in addition, assert that the optimal point of minimum trace factor analysis
coincides with the optimal point of minimum rank factor analysis?

Our primary focus is on the first of these questions, although we briefly touch on the second when we
discuss identifiability in Section 3.3. The relationship between minimum trace and minimum rank
factor analysis has been studied before, most notably by Della Riccia and Shapiro [18]. However,
many of the previous efforts related to understanding minimum rank and minimum trace factor
analysis have focused on exact characterizations of the solutions of these problems in low dimensions.
For example, in the system identification literature considerable effort has been put into the problem
of determining the maximum corank in the Frisch scheme, that is characterizing the set of matrices
Σ that can be expressed as the sum of a diagonal matrix and a positive semidefinite matrix of rank
r. The case r = n− 1, resolved by Kalman [32], is the only case where a simple characterization is
known.

We take a more coarse view in this chapter, focusing on the following two problems that, while
quantitative in nature, also give a clear sense of how good minimum trace factor analysis is as a
heuristic when applied to ‘typical’ problems.

1. Determine simple deterministic sufficient conditions on L? that ensure minimum trace factor
analysis correctly decomposes Σ = L? +D?.

2. Suppose L? is chosen to have ‘random’ row/column space. For what values of r, the rank of
L?, and n, the dimension of L?, does minimum trace factor analysis correctly decompose Σ
with high probability?

(Here, and elsewhere in this chapter, by a random r-dimensional subspace of Rn we always mean a
random subspace distributed according to the invariant (Haar) measure on the set of r dimensional
subspaces of Rn.)
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Figure 3-1: Consider the page as a two-dimensional subspace U ⊂ R3. Then
√
mU and

√
MU are

the radii of the inner and outer circles shown, corresponding to the smallest and largest norms of
projections of the standard basis vectors of R3 onto the page.

3.1.1 Incoherence parameters

The conditions we impose on L? to ensure minimum trace factor analysis correctly decomposes
Σ = L? + diag∗(d?) are stated in terms of incoherence parameters. These parameters are (closely
related to) parameters used in the matrix completion literature [13] which are, in turn, inspired by
the work of Donoho and Huo [21]. These parameters depend only on the row/column space U?, of
L?, and aim to capture the extent to which U? aligns with the coordinate directions. As such for
a subspace U? of Rn we define

mU? = min
i=1,...,n

‖PU?ei‖2 and MU? = max
i=1,...,n

‖PU?ei‖2 (3.3)

where ei is the ith standard basis vector in Rn. Note that if U? has dimension r then 0 ≤ mU? ≤
r/n ≤ MU? ≤ 1 (see [13]). These parameters are illustrated in Figure 3-1. Note that the closer
MU? is to r/n, the less U? lines up with any of the coordinate axes, and so the easier we expect it
might be to distinguish between a matrix L? with column space U? and a diagonal matrix.

3.1.2 Main Results

We now state the main results established in this chapter. The first result confirms our intuition
that as long as the column space of the low rank matrix is sufficiently incoherent with respect to
the standard basis vectors, then minimum trace factor analysis succeeds.
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Theorem 5. Suppose Σ = L? + D? where D? is diagonal and positive semidefinite, L? � 0, and
the column space of L? is U?. If MU? < 1/3, minimum trace factor analysis has (L?, D?) as its
unique solution.

In the setting where we solve a random instance of minimum trace factor analysis, we have the
following result.

Theorem 6. Suppose Σ = L? + D? where D? is diagonal and positive semidefinite, L? � 0 and
the column space of L? is according to the Haar measure on the set of r-dimensional subspaces of
Rn. Then for any α ∈ (0, 1/6) there are positive constants C, c̃, c̄, such if r ≤ n − Cn 5

6(1−α) and
n is sufficiently large then (L?, D?) is the unique solution of minimum trace factor analysis with
probability at least 1− c̄ne−c̃k3α

.

The key point of this theorem is that we can, for large n, decompose sums of diagonal and
‘typical’ matrices with ranks r that satisfy r/n = 1− o(1).

3.1.3 Related Results

The diagonal and low-rank decomposition problem can be viewed as a special case of two related
matrix recovery problems in the recent literature. The first is the work of Chandrasekaran et al. [16]
on decomposing matrices into sparse and low-rank components. The second is the work on low-rank
matrix completion by convex optimization, initiated by Candes and Recht [13].

Comparison with sparse and low-rank decompositions Since a diagonal matrix is also
sparse, we could try to solve the diagonal and low-rank decomposition problem using the convex
program for sparse and low-rank decomposition outlined in [16]. In that work, deterministic condi-
tions on the underlying sparse and low rank matrices under which the convex program successfully
performs the desired decomposition are stated in terms of quantities µ and ξ. The parameter µ
essentially measures the degree to which the non-zero entries in the sparse matrix are concentrated
in a few rows and columns. For diagonal matrices µ = 1. The parameter ξ essentially measures how
much a low-rank matrix ‘looks like’ a sparse matrix. In fact the parameter ξ is very closely related
to the incoherence parameters we use. Indeed if U? is the column space of a symmetric matrix L?

then
MU? ≤ ξ2 ≤ 4MU? .

The main deterministic result in the work of Chandrasekaran et al. is that given a matrix made
up of a sparse and a low-rank matrix such that µ · ξ < 1/6 then their convex program exactly
decomposes the matrix into its constituents. Since µ = 1 in the diagonal and low rank case, this
result specializes to ξ < 1/6 being sufficient for exact decomposition. In terms of incoherence
parameters these results require MU? < 1/144 for exact recovery, compared with the much milder
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condition of MU? < 1/3 given in Theorem 5. This difference is hardly surprising as Chandrasekaran
et al. deal with a much more general problem.

Relation to low-rank matrix completion We can also view the diagonal and low-rank de-
composition problem as a low-rank matrix completion problem—given the off-diagonal entries of
a low-rank matrix L? we aim to fill in the diagonal entries correctly to obtain L?. In all of the
recent work on low-rank matrix completion [13,29,34] the pattern of entries of the matrix that are
revealed is random, whereas in our setting, the revealed entries consist of all of the off-diagonal
entries. This makes it difficult to directly compare our results with exiting work on that problem.
Furthermore this difference affects both the natural questions posed and answered, and the anal-
ysis. In the literature on low-rank matrix completion, one typically tries to determine, for a fixed
rank, the smallest number of randomly sampled entries that are required to complete matrices of
that rank correctly. On the other hand, we fix the pattern of known entries and essentially aim to
determine the largest rank of a ‘typical’ matrix that can be completed correctly given these entries.
We note, also, that having a random sampling procedure makes some aspects of the analysis of the
associated convex program easier.

3.1.4 Outline of the Chapter

In Section 3.2 we consider some of the implications of our new results on minimum trace factor
analysis for the direction of arrival estimation problem introduced in Section 1.2. We then proceed,
in Section 3.3 to describe identifiability issues related to factor analysis, including presenting a
simple new sufficient condition for local identifiability in terms of incoherence parameters. In
Section 3.4 we discuss the key properties of minimum trace factor analysis. In Section 3.5 we
provide a geometric interpretation of the optimality conditions for minimum trace factor analysis
in terms of the problem of fitting an ellipsoid to a collection of points. The proofs of our main
results on diagonal and low-rank decompositions then arise as corollaries of ellipsoid fitting results,
the proofs of which are in Sections 3.5 and 3.9.

3.2 Some Implications for DOA Estimation

Let us revisit the direction of arrival estimation problem discussed in Section 1.2 of the introduction
to see what our main deterministic result (Theorem 5) implies in this setting. Our discussion is at
a fairly high level, with the aim to establish some intuition rather than a catalog of results.

Recall from (1.4) that the subspaces we are trying to identify in the direction of arrival problem
are the column spaces of N ×K matrices A with entries of the form

Ai` = e−j〈xi,k`〉
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where xi (i = 1, 2, . . . , N) denotes the location of the ith sensor and k` (` = 1, 2, . . . ,K) the wave
vector of the `th source. The first point to note is that in the direction of arrival problem, we are
interested in identifying a subspace of CN , rather than a subspace of RN . This is not a problem as
Theorem 5 and its proof are unchanged when we switch from real to complex scalars. The basic
reason for this is that the optimality conditions for complex semidefinite programming have the
same essential structure as those for real semidefinite programming.

Since Theorem 5 is stated in terms of the incoherence parameter MU of the subspace U = R(A),
to understand the implications of our analysis for the DOA problem, we need a way to translate
between the geometry of the DOA problem and incoherence parameters. A first approach to this
is to relate incoherence to the conditioning of the matrix 1

NA
HA. Indeed suppose that 1

NA
HA has

smallest and largest eigenvalues given by λmin and λmax respectively. Then

[PU ]ii =

[
1
N
A

(
1
N
AHA

)−1

AH

]
ii

and so since
1

λmax
I �

(
1
N
AHA

)−1

� 1
λmin

I

and the rows of A each have squared Euclidean norm K it follows that

K

Nλmax
≤ [PU ]ii ≤ K

Nλmin

for i = 1, 2, . . . , N . Hence
K

Nλmax
≤ mU ≤ K

N
≤MU ≤ K

Nλmin

giving us a method to translate between incoherence parameters and the largest and smallest
eigenvalues of AHA. In this setting Theorem 5 implies the following Corollary.

Corollary 1. If λmin is the smallest eigenvalue of 1
NA

HA and λmin >
3K
N then minimum trace

factor analysis correctly decomposes Σ into the noise and signal contributions.

Let us now apply Corollary 1 to two different scenarios.

One source case Suppose there is only one source, that is K = 1. Then 1
NA

HA = 1 and so
λmin = 1. Then as long as N > 3 we have λmin > 3K/N and so minimum trace factor analysis
correctly decomposes Σ.

Random sensor case Consider, now, a situation where we have a fixed number of sources K,
and a potentially large number of randomly located sensors. More precisely let X1, . . . , XN be inde-
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pendent and identically distributed with some distribution taking values in R2. (For concreteness,
one could think of the Xi as being uniformly distributed on the unit square in R2.)

For a fixed set of sources k1, . . . , kK ∈ R3 consider the random vectors

Yi =

e
j〈Xi,k1〉

· · ·
ej〈Xi,kK〉

 for i = 1, 2, . . . N.

Note that the Yi are independent and identically distributed. Furthermore, the Yi are bounded as
‖Yi‖2 = K for all i. In general the (common) covariance of the Yi has the form

E[YiY Hi ]a,b = ϕXi(Psensor(ka − kb)) (3.4)

where ϕXi is the (common) characteristic function of the Xi and Psensor is the Euclidean projection
onto the plane in which the sensors lie. We expect that if the projection of the source locations onto
the sensor plane are well-separated, then E[YiY Hi ] will be positive definite, with smallest eigenvalue
depending on the geometry of the source locations, and the distribution of the sensor locations.

Now notice that
1
N
AHA =

1
N

N∑
i=1

YiY
H
i .

So 1
NA

HA is the sum of independent identically distributed rank one positive semidefinite matrices.
The following non-commutative Chernoff bound for bounded rank-one positive semidefinite matrices
due to Oliveira [44] allows us to relate the smallest eigenvalue of 1

NA
HA = 1

N

∑N
i=1 YiY

H
i to that

of E[Y1Y
H
1 ].

Theorem 7. Suppose Y1, Y2, . . . , YN are i.i.d. column vectors in CK with ‖Y1‖2 ≤ K almost surely.
Then for any t > 0,

Pr

[∥∥∥∥∥ 1
N

N∑
i=1

YiY
H
i − E[Y1Y

H
1 ]

∥∥∥∥∥ > t‖E[Y1Y
H
1 ]‖

]
≤ (2N)2e−

Nt2
8K(2+t) .

We specialize this result to the situation we are interested in.

Corollary 2. With probability at least 1− 1/N

λmin(
1
N
AHA) ≥ λmin(E[Y1Y

H
1 ])−O

(√
log(N)
N

)
.

Note that λmin(E[Y1Y
H
1 ]) depends only on the source geometry and the sensor distribution, but

is independent of N . So if E[Y1Y
H
1 ] is non-singular, we can conclude from Corollary 2 that for large
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enough N

λmin(
1
N
AHA) >

3K
N

with high probability. Hence it follows from Corollary 1 that minimum trace factor analysis identifies
the signal subspace for large enough N with high probability.

The settings considered here are a simple illustration of the sort of non-trivial implications
Theorem 5 has in the particular example of the direction of arrival estimation problem.

3.3 Identifiability

Let us begin by focusing on the minimum rank factor analysis problem (3.1). The factor analysis
model is, in general, not identifiable, in the sense that given Σ = L? + diag∗(d?) where L? has low
rank, we cannot always hope to unambiguously identify L? and d?. The identifiability of factor
analysis has been studied by a number of authors [2, 3, 7, 52] in work dating back to the 1940s. In
this section we review some key results from that body of work. We also provide a new, simple,
sufficient condition for identifiability in terms of the incoherence parameters (3.3) introduced in
Section 3.1.

Definition 1. Minimum rank factor analysis is globally identifiable at (d?, L?) if (d?, L?) is the
unique solution of (3.1). Minimum rank factor analysis is locally identifiable at (d?, L?) if (d?, L?)
is the unique solution of (3.1) when restricted to some neighborhood of (d?, L?).

3.3.1 Local identifiability

The following algebraic characterization of local identifiability for factor analysis appears in Theo-
rem 3.1 of [52].

Theorem 8. Factor analysis is locally identifiable at (d?, L?) if and only if the Hadamard product
P(U?)⊥ ◦ P(U?)⊥ is invertible, where U? is the column space of L?.

Other, more geometric characterizations along the lines of those considered by Chandrasekaran
et al. [16] can also be given for this problem, and can be shown to be equivalent to the characteri-
zation in Theorem 8.

We now establish a new local identifiability result that gives a simple sufficient condition for
local identifiability in terms of incoherence parameters.

Proposition 1. Factor analysis if locally identifiable at (d?, L?) if MU? < 1/2 where U? = R(L?).

Proof. Note that since PU? ◦ PU? � 0 it follows that

P(U?)⊥ ◦ P(U?)⊥ = (I − PU?) ◦ (I − PU?) = I − 2I ◦ PU? + PU? ◦ PU? � I − 2I ◦ PU? . (3.5)
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So if [PU? ]ii < 1/2 for all i = 1, 2, . . . , n (that is MU? < 1/2) then I − 2I ◦ PU? � 0. Then (3.5)
implies that P(U?)⊥ ◦ P(U?)⊥ � 0 and so is invertible, as we set out to establish.

Since we consider random instances of factor analysis, we are interested in generic identifiability
properties (where we say that a property holds generically if it holds except on a set of Lesbegue
measure zero). Factor analysis is generically locally identifiable as long as n ≤ (n−r+1

2

)
[51]. This

bound is known in the factor analysis literature as the Ledermann bound [38].

Remark. Throughout this chapter we focus on generically identifiable problem instances, so we
always assume that the bound n ≤ (n−r+1

2

)
holds.

3.3.2 Global identifiability

One approach to solving the minimum rank problem (3.1) is somehow to produce a feasible decom-
position Σ = L̂ + diag∗(d̂) and then certify that the pair (L̂, d̂) is a solution of the minimum rank
problem (3.1), by certifying that the minimum rank problem is globally identifiable at (L̂, d̂).

From a computational point of view we would like such global identifiability conditions to be
‘small’—polynomial in the problem size. The following result of Anderson and Rubin gives an
explicit sufficient condition for global identifiability of factor analysis.

Theorem 9 (Anderson and Rubin [3]). Factor analysis is globally identifiable at (d?, L?) if

• rank(L?) < n/2 and

• if R is an n× r matrix such that L? = RRT then if we delete any row of R, there remain two
distinct r × r submatrices with full rank.

Furthermore this condition is necessary and sufficient in the cases rank(L?) = 1 and rank(L?) = 2.

Note that the condition in Theorem 9 requires us to exhibit only 2n, r× r minors of R that are
non-zero to certify global identifiability of factor analysis. Weaker sufficient conditions for global
identifiability of factor analysis are known (for example, see Theorem 5 of [18]), but these tend to
involve certificates that are much larger, such as the non-vanishing of all r × r minors of R.

The following generic global identifiability result essentially tells us that, except for the border
case where n =

(
n−r+1

2

)
, any generically locally identifiable instance of factor analysis is also

generically globally identifiable.

Theorem 10 (Bekker, ten Berge [7]). If n <
(
n−r+1

2

)
then factor analysis is generically globally

identifiable at (d?, L?) as long as d? ≥ 0 and rank(L?) = r.

As such, whenever we consider random instances of factor analysis problems, if we can construct
a decomposition of Σ = L? + diag∗(d?) into L̂+ diag∗(d̂) with rank(L̂) = r satisfying n <

(
n−r+1

2

)
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then with probability 1 (over the randomness in the problem instance) we have that (L̂, d̂) =
(L?, d?). Hence under the assumptions of our main randomized result, Theorem 6, we can, in
addition, conclude that the optima of minimum trace and minimum rank factor analysis coincide
with high probability.

3.4 Minimum Trace Factor Analysis

We now turn our attention to minimum trace factor analysis (3.2), a convex relaxation of the non-
convex minimum rank factor analysis problem (3.1). Throughout this section we always assume
that Σ = L? + diag∗(d?) for some n× n matrix L? � 0 and some d? ≥ 0.

Let us first rewrite (3.2) in an equivalent form that is slightly easier to analyze.

d̂(Σ) = arg max
d
〈1n, d〉 (3.6)

s.t. Σ− diag∗(d) � 0

d ≥ 0

where here and throughout the remainder of this chapter, 1n denotes the vector in Rn all entries
of which are one. Note that (3.6) is a conic program in standard form (see Section 2.2) and so its
dual is given by

min
Y
〈Σ, Y 〉 (3.7)

s.t. diag(Y ) ≥ 1n

Y � 0.

As long as Σ � 0, strong duality holds for this pair of semidefinite programs. This is because the
point d = Σ− λmin(Σ)I/2 is strictly feasible for the primal problem, Y = 2I is strictly feasible for
the dual, and the dual cost is clearly bounded below by zero.

Our main interest is in understanding conditions on L? and d? such that minimum trace factor
analysis can correctly decompose Σ into its constituents. For convenience we formalize this notion.

Definition 2. We say that minimum trace factor analysis correctly decomposes Σ if d̂ = d? is the
unique optimal point of the semidefinite program (3.6).

Applying the usual optimality conditions for semidefinite programming we obtain necessary
and sufficient conditions under which minimum trace factor analysis correctly decomposes Σ. This
result, albeit in a rather different form, was first established as Theorems 3 and 4 of [18].
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Proposition 2. Minimum trace factor analysis correctly decomposes Σ if and only if there exists
Y � 0 such that Yii = 1 if d?i > 0, Yii ≥ 1 if d?i = 0 and Y L? = 0.

Remark. It is a straightforward application of the optimality conditions for semidefinite program-
ming (Theorem 2 of Section 2.2) to see that the existence of a Y with the stated properties certifies
that d? is an optimal point. We focus, here, on showing that under these conditions d? is the unique
optimal point. We supply a slightly different proof to that in [18] because we want an argument
that generalizes easily as we need a more general version of this result in Proposition 9 in Chapter
4.

Proof. Suppose d1, d2 are optimal points and let L1 = Σ − diag∗(d1) and L2 = Σ − diag∗(d2).
Then by convexity (d1 + d2)/2 is also optimal. Hence there is some Y � 0 such that diag(Y ) ≥ 1n
and Y (L1 + L2) = 0. Since Y � 0 and L1 + L2 � 0 it follows that the column space of Y
is contained in the intersection of the nullspaces of L1 and L2. Hence Y (L1 − L2) = 0 and so
Y (diag∗(d2)−diag∗(d1)) = 0. Since all of the diagonal elements of Y are non-zero this implies that
d1 − d2 = 0 as we require.

Remark. We are usually interested in the case where d? > 0 (note that in a factor analysis setting
di = 0 indicates no noise in a particular entry). In this case the conditions on Y in Proposition 2
become Y � 0, Yii = 1, Y L? = 0. In general requiring that Yii = 1 gives a sufficient condition for
optimality of (d?, L?). We use this sufficient condition in all of our analysis.

3.5 Ellipsoid Fitting

In this section we interpret the optimality conditions for minimum trace factor analysis in a geo-
metric way in terms of the problem of finding an ellipsoid that interpolates a given set of points.
We then proceed to describe the intuition behind, and high level strategy of, the proofs of the main
technical results of this chapter. While in this section we state, and think of, these main results
in terms of the ellipsoid fitting problem, we also show how to translate them into the form of the
results stated in the introduction to this chapter. The details of some of the proofs in this section
appear in the appendix to this chapter, Section 3.9.

3.5.1 Optimality Conditions and Ellipsoid Fitting

Recall from the optimality conditions for minimum trace factor analysis, Proposition 2, that to
decompose the sum of a diagonal matrix and a n × n positive semidefinite matrix L? we needed
to be able to find an n × n matrix Y satisfying Y � 0, diag(Y ) = 1n and Y L? = 0. Suppose

W =
[
v1 · · · vn

]T
is a k × n matrix (where k is the corank of L?) whose column space is

the orthogonal complement of the column space of L?. Then any Y � 0 satisfying Y L? can be
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expressed as Y = WZWT for some k× k positive semidefinite matrix Z. The additional condition
that diag(Y ) = 1n can be expressed in terms of Z as the condition vTi Zvi = 1 for i = 1, 2, . . . , n.

To summarize, the problem of finding an n × n matrix Y � 0 such that diag(Y ) = 1n and
Y L? = 0 is equivalent to the problem of finding a k × k positive semidefinite matrix Z such that
vTi Zvi = 1 for i = 1, 2, . . . , n. Since any positive semidefinite matrix can be interpreted as an
origin-symmetric ellipsoid, this problem is equivalent to the following ellipsoid fitting problem.

Problem 1 (Ellipsoid fitting). Given n points v1, v2, . . . , vn ∈ Rk find an origin symmetric ellipsoid
that passes through v1, v2, . . . , vn.

We say that a collection of points v1, v2, . . . vn ∈ Rk has the ellipsoid fitting property if there is
Z � 0 such that vTi Zvi = 1 for i = 1, 2, . . . , n. Clearly this property is invariant under changing

basis in Rk. Hence if, as before, W =
[
v1 · · · vn

]T
then the ellipsoid fitting property of the points

v1, . . . , vn depends only on the column space of W , a subspace of Rn. This observation allows us
to give a more abstract definition of the ellipsoid fitting property that we will use throughout the
remainder of this chapter.

Definition 3. A k-dimensional subspace V ⊂ Rn has the ellipsoid fitting property if the points
πV ei ∈ Rk for i = 1, 2, . . . , n have the ellipsoid fitting property.

We consider two flavors of the ellipsoid fitting problem.

1. Determine simple deterministic sufficient conditions on a subspace V to ensure V has the
ellipsoid fitting property.

2. For what values of k and n does a random k dimensional subspace of Rn have the ellipsoid
fitting property with high probability?

Monotonicity It is useful to observe that the ellipsoid fitting property enjoys certain monotonic-
ity relations. In particular, it is clear that if a subspace V has the ellipsoid fitting property then
any subspace V̄ ⊃ V also has the ellipsoid fitting property. This simple observation implies the
following monotonicity property in the randomized setting.

Proposition 3. If k1 ≤ k2 ≤ n and V1 is a random k1 dimensional subspace of Rn and V2 is a
random k2 dimensional subspace of Rn then

Pr[V1 has the ellipsoid fitting property] ≤ Pr[V2 has the ellipsoid fitting property].

We also note that there are two different, but equivalent, ways to think of the randomized

ellipsoid fitting problem. If v1, . . . , vn ∈ Rk are i.i.d. Gaussian vectors and W =
[
v1 · · · vn

]T
then there is an ellipsoid passing through v1, . . . , vn if and only if the column space of W has
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the ellipsoid fitting property. But the column space of W is uniformly distributed on the set of
k-dimensional subspaces of Rn by the rotation invariance of the Gaussian measure. As such if V is
a random k-dimensional subspace of Rn and v1, . . . , vn ∼ N (0, Ik) are i.i.d. then

Pr[v1, . . . , vn have the ellipsoid fitting property] = Pr[V has the ellipsoid fitting property].

So when we analyze the randomized ellipsoid fitting problem we can choose either to think in terms
of a random subspace having the ellipsoid fitting property, or in terms of fitting an ellipsoid to a
collection of i.i.d. Gaussian vectors.

3.5.2 Least Squares-based constructions

In this section we give a sufficient condition for a set of points v1, v2, . . . , vn ∈ Rk to have the
ellipsoid fitting property. The sufficient condition is based on choosing a quadratic form on which
all of the points v1, v2, . . . , vn lie, and then checking that the chosen quadratic form is positive
definite. Since the set of quadratic forms on which a given set of points lie is a subspace of the
set of all quadratic forms, the first part of the construction is purely linear-algebraic in nature.
Showing that this quadratic form is positive definite is the challenging part of the construction.

A similar construction has been used in the analysis of a number of convex optimization prob-
lems. The basic idea was at the heart of the proofs in Candes, Romberg, and Tao’s work on ‘com-
pressive sensing’ [14]. The construction has been adapted and extended to assist in the analysis
of a number of other convex heuristics for non-convex problems such as low-rank matrix comple-
tion [13], and sparse and low-rank decompositions [12], referred to by the name of ‘Robust PCA’
in that work. We first introduce the least-squares sufficient condition in a rather algebraic way and
then appeal to geometric intuition to understand when we might expect it to be useful.

Given points v1, v2, . . . , vn ∈ Rk we define a map A : Sk+ → Rn by

[A(Z)]i = vTi Zvi.

Observe that the collection of points v1, v2, . . . , vn has the ellipsoid fitting property if and only if
1n ∈ A(Sk+). The following proposition establishes a sufficient condition for ellipsoid fitting based
on this observation.

Proposition 4. If A†(1n) ∈ Sk+ then v1, v2, . . . , vn have the ellipsoid fitting property.

Proof. Since AA†(1n) = 1n it follows that A†(1n) ∈ Sk+ implies 1n = AA†(1n) ∈ A(Sk+).

Our choice of basis for Rk affect the quadratic form A†(1n) that we construct, and also affects
whether or not A†(1n) � 0.
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Due to this non-uniqueness, to establish that a subspace V of Rn has the ellipsoid fitting
property, we often define A in a canonical way with respect to V as

[A(Z)]i = eTi (πTVXπV )ei (3.8)

and establish that A†(1n) � 0.
While proving that A†(1n) � 0 suffices to prove that the ellipsoid fitting property holds for

the associated set of points, it is not obvious that this should be a good sufficient condition. By
interpreting A†(1n) geometrically, we can gain some understanding of when we expect this sufficient
condition to work well.

First we note that for any fixed c ∈ Rn, A†(1n) is the optimal point of the following optimization
problem

min
Z
‖Z −A∗(c)‖2F

s.t. A(Z) = 1n.

Suppose there exists some c ∈ Rn such that we know, a priori that

• A∗(c) � 0 and A∗(c) is far from the boundary of the positive semidefinite cone and

• AA∗(c) is close to 1n.

Then since AA∗(c) is close to 1n, we expect that A†(1n) = A∗(AA∗)−1(1n) is close to A∗(c), and
so might expect that A†(1n) is also positive definite. The canonical choice of A given by (3.8)
satisfies A∗((n/k)1n) = (n/k)πV πTV = (n/k)I. With the choice c = (n/k)1n our construction
chooses the quadratic form (scaled to that it has the correct trace) passing through the points πV ei
for i = 1, 2, . . . , n and also ‘closest’ in some sense to a sphere, an intuitively appealing construction.

The map A corresponding to a set of points v1, . . . , vn plays an important role in the following
discussion. The next lemma summarizes some easily verifiable properties of A that we use in the
sequel.

Lemma 1. If v1, . . . , vn ∈ Rk and W is the n× k matrix whose ith row is vi then

1. A(Z) = diag(WZWT ) and A∗(x) = WT diag∗(x)W

2. AA∗ : Rn → Rn has the matrix representation WWT ◦WWT .

The canonical choice of A defined with respect to a k dimensional subspace V satisfies

1. AA∗ = PV ◦ PV
2. A∗(1n) = I
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3. [AA∗(1n)]i = ‖πV ei‖2 for i = 1, 2, . . . , n.

Remark. We note that in light of Proposition 8, AA∗ is invertible if and only if minimum rank
factor analysis is locally identifiable.

3.6 Deterministic Ellipsoid-Fitting Results

In this section we state and prove our main deterministic results for ellipsoid fitting, indicating how
the deterministic results for minimum trace factor analysis stated in the introduction of this chapter
follow from these results. We begin, however, with the main previously known deterministic result
for ellipsoid-fitting. The result, due to Delorme and Poljak [19] was established in the context of
analyzing the properties of an approximation algorithm for the MAXCUT problem.

Theorem 11 (Delorme, Poljak [19]). If u ∈ Rn then there is a matrix Y � 0 with diag(Y ) = 1n
such that Y u = 0 if and only if u is balanced, that is

|ui| ≤
∑
j 6=i

|uj | for all i = 1, 2, . . . , n.

The corresponding ellipsoid-fitting result is the following.

Theorem 12. A collection of points v1, . . . , vn ∈ Rn−1 has the ellipsoid fitting property if and only
if no vi is in the interior of the convex hull of the vj for j 6= i.

Remark. It is clear that for an ellipsoid to pass through n points in Rk, it is necessary that none of
these points is in the interior of the convex hull of the points (otherwise we could not fit any convex
body to the points). Delorme and Poljak’s result can be interpreted as saying that this obvious
necessary condition is also sufficient when k = n− 1.

As a corollary of Theorem 11 we obtain a result about minimum trace factor analysis that plays
an important role in Chapter 4.

Corollary 3. If Σ = diag(d?) + u?u?T for some u? ∈ Rn then minimum trace factor analysis
correctly decomposes Σ if and only if u? satisfies

|u?i | ≤
∑
j 6=i

|u?j | for all i = 1, 2, . . . , n.

This result, however, only applies in the case where the low rank matrix has rank one. No such
characterizations are known for higher ranks, except in the case of n = 4 and r = 2 [4]. Our next
result establishes a simple sufficient condition for a subspace to have the ellipsoid fitting property
without explicit assumptions on the dimension of the subspace V .
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Theorem 13. If V is a subspace of Rn with mV > 2/3 then V has the ellipsoid fitting property.

Let us first explain why we might expect a result like this to hold. The condition mV > 2/3
tells us that all of the points πV ei to which we are trying to fit an ellipsoid lie outside a sphere of
radius

√
2/3. Also, since the πV ei are orthogonal projections of unit vectors, these points lie inside

a sphere of radius 1. Hence the assumptions of Theorem 13 confine the points to which we are
trying to fit an ellipsoid to lie in a spherical shell, which might be expected to make it ‘easier’ to fit
an ellipsoid to those points. Of course, we cannot take any points in this spherical shell and hope
to fit an ellipsoid to them, it is important that these points arise as projections of the standard
basis vectors onto a subspace.

Before proving Theorem 13, we show how it implies our main deterministic result about mini-
mum trace factor analysis.

Proof of Theorem 5. Observe that if V is the orthogonal complement of U? then MU? = 1 −mV .
Hence if MU? < 1/3, the assumption in Theorem 5, then mV > 2/3 and so V has the ellipsoid
fitting property. Then by Proposition 2 it follows that minimum trace factor analysis correctly
decomposes any Σ of the form diag∗(d?) +L? where L? � 0 and the column space of L? is U?.

Proof of Theorem 13. We use the least squares approach outlined in Section 3.5.2 with the canonical
choice of A corresponding to V , that is [A(X)]i = eTi (πTVXπV )ei. Instead of showing that A†(1n) �
0 we establish the sufficient condition that (AA∗)−1(1n) ≥ 0. This is sufficient because A∗ maps
the non-negative orthant into the positive semidefinite cone.

Recall from Lemma 1 that AA∗ can be represented as PV ◦ Pv which can be decomposed as

PV ◦ PV = (I − PU ) ◦ (I − PU ) = I − 2I ◦ PU + PU ◦ PU = (2I ◦ PV − I) + PU ◦ PU = A+B

where U is the orthogonal complement of V and A = (2I ◦ PV − I) and B = PU ◦ PU . Note that if
mV > 2/3 then

A = 2I ◦ PV − I � (2mV − 1)I � (1/3)I.

Hence A is diagonal, non-negative, and so has a non-negative inverse.
We now expand (PV ◦PV )−1 = (A+B)−1 as a Neumann series. This is valid as, using properties

of PU ◦ PU in Lemma 1, we see that

‖A−1B‖ ≤ ‖A−1‖‖PU ◦ PU‖∞→∞ =
1

2mV − 1
max
i

[PU ◦ PU1n]i =
MU

2mV − 1
=

1−mV

2mV − 1

which is strictly less than one as long as mV > 2/3. Then

(PV ◦ PV )−1(1n) = A−1(1n −BA−11n) +A−1BA−1B
[
(PV ◦ PV )−1(1n)

]
(3.9)
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so that

(PV ◦ PV )−11n = (I −A−1BA−1B)−1
[
A−1(1n −BA−11n)

]
=
∞∑
i=0

(A−1BA−1B)i
[
A−1(1n −BA−11n)

]
.

As such, to show that (PV ◦ PV )−11n ≥ 0 it suffices to show that

1. A−1BA−1B preserves the non-negative orthant and

2. A−1(1n −BA−11n) ≥ 0.

The first of these properties holds because A−1 and B are entrywise non-negative matrices. The
second property holds because

BA−11n ≤ PU ◦ PU
(

1
2mV − 1

1n

)
≤ MU

2mV − 1
1n =

1−mV

2mV − 1
1n < 1n

since mV > 2/3.

Remark. The proof technique we use here could potentially be strengthened in a number of ways.
First, we could modify our decomposition of PV ◦ PV into any positive diagonal part A and

non-negative remainder B, and carry out the same analysis. Slightly better results can be obtained
this way, but none are as clean as the result stated here.

Second, we could try to work directly with the cone K = {x ∈ Rn : A∗(x) � 0} instead of
the non-negative orthant. The same idea could work in this setting. We would need to choose
a decomposition of PV ◦ PV = A + B so that A−1BA−1B preserves the cone K and so that
A−1(1n −BA−11n) ∈ K.

Importantly, this method of proof generalizes nicely to other situations, such as the case of block
diagonal and low-rank decompositions that we consider in Chapter 4.

3.7 Randomized Ellipsoid-Fitting Results

We now consider the randomized version of the ellipsoid-fitting problem introduced in Section 3.5.
In particular, for given integers k ≤ n we seek lower bounds on the probability that there is an
origin-symmetric ellipsoid passing through n standard Gaussian vectors in Rk. First we establish
that if 2/3 < c ≤ 1 and k ≥ cn then the deterministic conditions of Theorem 13 hold with high
probability, and so under these conditions ‘most’ k-dimensional subspaces of Rn have the ellipsoid
fitting property. We then present empirical evidence that subspaces of much smaller dimension
also have the ellipsoid fitting property with high probability. We conclude the section with our
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main result—that there is a constant C such that if k ≥ Cn5/6−ε (for some small ε) then a random
k-dimensional subspace of Rn has the ellipsoid fitting property with high probability.

3.7.1 Theorem 13 in the randomized setting

Theorem 13 specifies conditions under which a subspace of Rn has the ellipsoid fitting property.
We now provide conditions on n and k such that a random k dimensional subspace of Rn satisfies
the conditions of Theorem 13 with overwhelming probability.

Theorem 14. Let 2/3 < c ≤ 1 be a constant. Then there are positive constants c̄, c̃, and K

(depending only on c) such that if V is a random k dimensional subspace of Rn with k ≥ max{K, cn}
then

Pr[V has the ellipsoid fitting property] ≥ 1− c̄n1/2e−c̃n.

Proof. Since mV > 2/3 implies that V has the ellipsoid fitting property, it suffices to show that
‖πV ei‖2 ≥ 1

2 (c+ 2
3 ) > 2/3 for all i with overwhelming probability. The main observation we use is

that if V is a random k dimensional subspace of Rn and x is any fixed vector with ‖x‖ = 1 then
‖πV x‖2 ∼ β(k/2, (n − k)/2) where β(p, q) denotes the beta distribution [26]. In the case where
k = cn, using a tail bound for β random variables [26] we see that if x ∈ Rn is fixed and 0 < ε < 1
and k > 12/ε2 then

Pr[‖πV x‖2 ≤ (1− ε)c] ≤ 2
(ε2πc(1− c))1/2n

−1/2e−
ε2
2 k.

Taking ε = 1
2 − 1

3c > 0 and a union bound over n events, as long as k > K = 12/ε2

Pr [mU ≤ 2/3] ≤ Pr
[‖πV ei‖2 < (c+ 2/3) /2 for some i

]
≤ n · 2

(ε2πc(1− c))1/2n
−1/2e−

ε2
2 k = c̄n1/2e−c̃n

for appropriate constants c̄ and c̃.
Finally we note that by the monotonicity of the ellipsoid fitting property (Proposition 3), the

result also holds for any k ≥ cn.

3.7.2 Numerical Results

We now investigate, numerically, for which pairs (n, k) a random k-dimensional subspace of Rn has
the ellipsoid fitting property with high probability.

To test the ellipsoid fitting property we perform the following experiment. For each (n, k) with
50 ≤ n ≤ 550 and 0 ≤ k ≤ n we sample 10 independent k × n matrices with i.i.d. N (0, 1) entries,
thinking of the rows v1, . . . , vk as vectors in Rk to which we are trying to fit an ellipsoid. We test
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Figure 3-2: For each (n, k) with 50 ≤ n ≤ 550 and 0 ≤ k ≤ n we repeat the following experiment 10
times. We sample a random k-dimensional subspace of Rn and check whether it has the ellipsoid
fitting property. Cells are shaded according to the number of successful trials, with white corre-
sponding to success on all trials, and black corresponding to failure on all trials. The red line is
the line k = 2

√
n, our conjectured form for the threshold between success and failure of the convex

program.

the ellipsoid fitting property in each case by checking whether there exists a positive semidefinite
Z ∈ Sk such that vTi Zvi = 1 for i = 1, 2, . . . , n. We carry out this experiment using a combination
of YALMIP [41] and SDPT3 [56]. The results are shown in Figure 3-2.

Recall from Theorem 14 that the deterministic conditions of Theorem 5 only hold with high
probability if k/n > 2/3. It is evident from the results in Figure 3-2 that with overwhelming
probability one can fit an ellipsoid to many more than n = 3k/2 points in Rk (i.e. the phase
transition happens for much smaller values of k/n). This provides us with motivation to analyze
the randomized ellipsoid fitting problem directly, as we do in Section 3.7.3. A comparison of the
phase transition in Figure 3-2 with a plot of k = 2

√
n, suggests the following conjecture.

Conjecture 1. If n and k are large and n ≤ k2/4 then we can fit an ellipsoid to n i.i.d. standard
Gaussian vectors in Rk with overwhelming probability.
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3.7.3 Improved Randomized Results

In light of the numerical results presented in the previous section, we directly analyze the randomized
ellipsoid fitting problem, with the aim of closing the gap between the results we obtain via the
incoherence conditions in Theorem 14 and the numerical results. While our main result does not
quite achieve the scaling suggested by the numerical results of Section 3.7.2, it is a significant
qualitative improvement on the results of Theorem 14 in the randomized setting.

Theorem 15. Fix α ∈ (0, 1/6). There are absolute positive constants C, c̄, c̃ such that for suffi-
ciently large n and k, if n ≤ Ck6(1−α)/5 and v1, v2, . . . , vn ∼ N (0, Ik) are i.i.d. then

Pr[v1, . . . , vn have the ellipsoid fitting property] ≥ 1− c̄e−c̃k3α
.

Our main randomized result about minimum trace factor analysis (Theorem 6) follows directly
from Theorem 15. We simply need to observe that the orthogonal complement of a random subspace
is also a random subspace and so substitute n− r for k in Theorem 15.

We only give a high level outline of the proof of Theorem 15 here and defer proofs of a number
of technical lemmas to Section 3.9. The proof, like that of our incoherence based deterministic
result—uses the least squares construction as explained in Section 3.5.2. In this case, rather than
thinking in terms of a random subspace and using the canonical choice of A, we think directly in
terms of fitting a ellipsoid to standard Gaussian vectors v1, v2, . . . , vn ∈ Rk. As such, throughout
this section we take A : Sk → Rn to be defined by [A(X)]i = vTi Xvi. We do so because in this case
many random quantities of interest have a good deal of independence.

Proof. Recall that our overall aim is to show that A†(1n) � 0.
Let n = δk6(1−α)/5 for some sufficiently small constant δ to be determined later. Since the

probability that v1, . . . , vn have the ellipsoid fitting property is monotonically increasing with k,
establishing the result for this choice of n implies it holds for all n ≤ δk6(1−α)/5.

The key idea of our proof is that AA∗ is close to a deterministic matrix M = (k2−k)I+kJ with
high probability, and the matrix M has 1n as an eigenvector. As such, we expand the term (AA∗)−1

of A† = A∗(AA∗)−1 as a Neumann series around M . Defining ∆ = M −A∗A and choosing η > 0

46



such that M−1(η1n) = 1n, as long as ‖M−1∆‖ < 1 we can write

A†(η1n) = A∗
[
M−1η1n +M−1∆M−1η1n +

∞∑
i=1

(M−1∆)i(M−1∆M−1η1n)

]
(3.10)

= A∗(1n) +A∗(M−1∆1n) +A∗
[ ∞∑
i=1

(M−1∆)iM−1∆1n

]
(3.11)

�
(
σmin(A∗(1n))− ‖A∗(M−1∆1n) +A∗

[ ∞∑
i=1

(M−1∆)iM−1∆1n

]
‖
)
I. (3.12)

So by the triangle inequality it suffices to show that

σmin(A∗(1n)) ≥ ‖A∗‖∞→sp‖M−1∆1n‖∞ + ‖A∗‖2→sp

( ∞∑
i=1

‖M−1∆‖i
)
‖M−1∆1n‖2 (3.13)

which certainly holds if ‖M−1‖‖∆‖ < 1 and

σmin(A∗(1n)) ≥
(
‖A∗‖∞→sp +

√
n‖A∗‖2→sp

‖M−1‖‖∆‖
1− ‖M−1‖‖∆‖

)
‖M−1‖∞→∞‖∆1n‖∞. (3.14)

Since M = (k2 − k)I + kJ it is straightforward to check that M−1 = 1
k(k−1)

[
I − 1

n+k−1J
]

and so
that ‖M−1‖ ≤ 2

k2 and ‖M−1‖∞→∞ ≤ 6
k2 .

So we need only bound below σmin(A∗(1n)) with high probability and bound above ‖∆1n‖∞,
‖A∗‖∞→sp, ‖A∗‖2→sp and ‖∆‖ with high probability. The following sequence of lemmas establish
such bounds. The proofs are given in Sections 3.9.1, 3.9.2, 3.9.4, and 3.9.3 respectively.

Lemma 2. If k = o(n), there are positive constants c̃1 and c1 and c′1 such that with probability at
least 1− 2e−c̃1n,

σmin(A∗(1n)) ≥ c1n and ‖A∗‖∞→sp ≤ c′1n.

Lemma 3. With probability at least 1− 2e−
1
2 (k+

√
n), ‖A∗‖2→sp ≤ 8(k +

√
n).

Lemma 4. If k ≥ √n, there are positive constants c̃3, c3 and c̄3 such that with probability at least
1− c̄3ne−c̃3

√
n

‖∆‖ ≤ c3kn3/4.

Lemma 5. If 0 < α < 1/6 there are positive constants c̃4, c4 and c̄4 such that with probability at
least 1− c̄4ne−c̃4k3α

‖∆1n‖∞ ≤ c4nk1/2+3α/2.

We now prove the result assuming these bounds. We take a union bound over the complements
of the events implicitly defined by Lemmas 2, 3, 4, and 5. Then since n = δk6(1−α)/5, for suitable
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constants c̄ and c̃ and with probability at least

1− (2e−c̃1k + 2e−c̃2(k+
√
n + c̄3ne

−c̃3
√
n + c̄4ne

−c̃4k3α
) ≥ 1− c̄ne−c̃k3α

we have that σmin(A∗(1n)) ≥ c1n, ‖A∗‖∞→sp = O(n), ‖A∗‖2→sp = O(k), ‖∆‖ = O(n3/4k), and
‖∆1n‖∞ = O(nk(1+3α)/2). As a result ‖M−1‖‖∆‖ = O(n3/4k−1) = o(1) under our assumption that
n = δk6(1−α)/5, so the Neumann series converges and

∑∞
i=1 ‖M−1‖i‖∆‖i = O(n3/4k−1). Combining

these bounds with equation (3.14) we see that

T :=
(
‖A∗‖∞→sp +

√
n‖A∗‖2→sp

‖M−1‖‖∆‖
1− ‖M−1‖‖∆‖

)
‖M−1‖∞→∞‖∆1n‖∞

= O
(

(n+
√
n · k · n3/4k−1)k−2 · nk(1+3α)/2

)
= O

(
n9/4k−3(1−α)/2

)
.

So there exists a constant C such that for large enough n, T ≤ Cn9/4k−3(1−α)/2. Since σmin(A∗(1n)) ≥
c1n and n = δk6(1−α)/5, by (3.14) we need to choose δ so that

T

σmin(A∗(1n))
≤ Cn9/4k−3(1−α)/2

c1n
=
C

c1
n5/4k−3(1−α)/2 =

C

c1
δ5/4 ≤ 1.

Clearly it suffices to choose δ ≤ (c1/C)4/5. With this choice, for sufficiently large n we have shown
that A†(1n) � 0, completing the proof.

3.8 Discussion

In this chapter we have considered the problem of decomposing a positive semidefinite matrix
Σ made up of the sum of a positive semidefinite low-rank matrix and a diagonal matrix into
these constituents. In particular, we provided a new analysis of a semidefinite programming-based
heuristic for the decomposition problem. Our analysis showed that under a natural incoherence
condition on the column space of the low-rank matrix, the convex heuristic, known as minimum
trace factor analysis, correctly decomposes Σ. We also analyzed the decomposition problem under
the assumption that the column space of the low-rank matrix is random. We showed that minimum
trace factor analysis can decompose Σ correctly with high probability if the column space of the
low-rank matrix is random and has rank at most n− cn5/6−ε for some constant c and some small ε.

Future research directions based on the work in this chapter are considered in Chapter 5.
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3.9 Proofs for Chapter 3

We begin by collecting a number of standard estimates that we use for subsequent proofs. The first
result is closely related to Lemma 36 of [59].

Lemma 6. Let X be a real-valued random variable. Then for any a ∈ R

Pr[|X2 − a2| ≥ t] ≤ 2 Pr[|X − a| ≥ min{t/(3a),
√
t/3}].

Proof. For any a, b ∈ R, |b2 − a2| ≤ 3 max{|b− a|2, a|b− a|}. Hence

Pr[|X2 − a2| ≥ t] ≤ Pr[max{|X − a|2, a|X − a|} ≥ t/3]
(a)

≤ Pr[|X − a| ≥
√
t/3] + Pr[|X − a| ≥ t/(3a)]

≤ 2 Pr[|X − a| ≥ min{t/(3a),
√
t/3}]

where the inequality marked (a) is the result of taking a union bound.

The following is a standard tail-bound for chi-squared random variables can be easily deduced
from Proposition 16 of [59].

Lemma 7. If v ∼ N (0, Ik) is a k-dimensional standard Gaussian vector then

Pr
[|‖v‖2 − E[‖v‖2]| ≥ t] ≤ 2 exp

(
−1

8
min

{
t2

k
, t

})
Combining Lemma 6 and Lemma 7 yields the following tail bound that we use repeatedly.

Corollary 4. If v ∼ N (0, Ik) is a k dimensional standard Gaussian vector then

Pr[|‖v‖4 − k2| ≥ t] ≤ 4 exp
(
−1

8
min

{
(t/3)2

k3
,
√
t/3
})

.

3.9.1 Proof of Lemma 2

Proof. Since A∗(1) =
∑n
i=1 viv

T
i the first statement is a standard result about Gaussian matrices

(see Lemma 36 and Corollary 35 of [59]). For the second statement we observe that if x, y ∈ Rn and
x ≥ y then A∗(x) � A∗(y). Hence for any x ∈ Rn with ‖x‖∞ ≤ 1, A∗(−1n) � A∗(x) � A∗(1n).
Hence

λmin(A∗(−1n)) ≤ λmin(A∗(x)) ≤ λmax(A∗(x)) ≤ λmax(A∗(1n))
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and so if ‖A∗(1n)− nI‖ ≤ c1k,

‖A∗‖∞→sp = sup
‖x‖∞≤1

‖A∗(x)‖ ≤ max{−λmin(A∗(−1n)), λmax(A∗(1n))} ≤ n+ c1k.

3.9.2 Proof of Lemma 3

Lemma 3 follows from Proposition 5, a slightly more general tail bound, by putting p = 2 (and so
q = 2) and noting that c2 = 1.

Proposition 5. Let 1 ≤ p ≤ ∞ and let q be such that p−1 + q−1 = 1 (taking, as usual, ∞−1 = 0).
Then there is an absolute constant c > 0 and a constant cq > 0 depending only on q, such that

Pr[‖A∗‖p→sp ≥ 8(k + c2qn
1/q)] ≤ 2 exp

(
−1

2
(k + c2qn

1/q)
)
.

Proof. Let Sk−1 = {x ∈ Rk : ‖x‖ = 1} be the Euclidean unit sphere in Rk. We first observe that

‖A∗‖p→sp = sup
‖x‖p≤1

y∈Sk−1

|〈A∗(x), yyT 〉| = sup
‖x‖p≤1

y∈Sk−1

|〈x,A(yyT )〉| ≤ sup
y∈Sk−1

‖A(yyT )‖q (3.15)

by Hölder’s inequality. Since [A(yyT )]i = 〈vi, y〉2 it follows that

sup
y∈Sk−1

‖A(yyT )‖q = sup
y∈Sk−1

(
n∑
i=1

〈vi, y〉2q
)1/q

= sup
y∈Sk−1

‖V y‖22q = ‖V ‖22→2q (3.16)

where V is an n× k matrix with standard Gaussian entries. So to establish the stated tail bound
for ‖A∗‖p→sp it suffices to establish the corresponding tail bound for ‖V ‖22→2q.

Since q ≥ 1, the map V 7→ ‖V ‖2→2q is 1-Lipschitz with respect to the Euclidean norm on Rn×k.
If we let µ = E[‖V ‖2→2q] then by concentration of measure for Lipschitz functions of Gaussians
(Theorem 3),

Pr[‖V ‖2→2q ≥ µ+ t] ≤ e− t
2
2

and so by Lemma 6

Pr[‖V ‖22→2q ≥ µ2 + t] ≤ 2 exp
(
−1

2
min

{
t2/(3µ)2, t/3

})
. (3.17)

It remains to compute an upper bound on µ = E[‖V ‖2→2q]. By a straightforward modification of
Gordon’s application of the Fernique-Sudakov comparison inequality to bounding the expectation
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of the largest singular value of an n× k Gaussian matrix [28], it can be shown that

µ = E[‖V ‖2→2q] ≤ k1/2 + cqn
1/2q (3.18)

where the constant cq = E[X2q]1/2q for X ∼ N (0, 1). Putting t = 3µ2 in (3.17) and using the
inequality a2 + b2 ≤ (a+ b)2 ≤ 2(a2 + b2) for a, b ≥ 0, gives

Pr[‖V ‖22→2q ≥ 8(k + c2qn
1/q)] ≤ Pr[‖V ‖22→2q ≥ 4µ2] ≤ 2 exp

(
−µ

2

2

)
≤ 2 exp

(
−1

2
(k + c2qn

1/q)
)
.

3.9.3 Proof of Lemma 5

Lemma 8. If 0 < α < 1/6 there are positive constants c4, c̄4, c̃4 such that

Pr[‖(W −M)1n‖∞ ≥ c4nk1/2+3α/2] ≤ c̄4ne−c̃4k3α
.

for all t ≥ 0.

Proof. Fix 1 ≤ i ≤ n and write [M1n]i and [W1n]i for the ith component of M1n and W1n
respectively. Note that

|[M1n]i − [W1n]i| = |(‖vi‖4 − k2) +
∑
j 6=i

(〈vj , vi〉2 − k)| (3.19)

≤ |‖vi‖4 − k2|+
∣∣∣∣∣∣
∑
j 6=i

(〈vj , vi〉2 − ‖vi‖2)

∣∣∣∣∣∣+ (n− 1)|‖vi‖2 − k|. (3.20)

Hence

Pr [|[M1n]i − [W1n]i| ≥ t] ≤ Pr
[|‖vi‖4 − k2| ≥ t/3]+ Pr[

[
(n− 1)|‖vi‖2 − k| ≥ t/3

]
+

Pr

‖vi‖2
∣∣∣∣∣∣
∑
j 6=i

(〈vj , vi/‖vi‖〉2 − 1)

∣∣∣∣∣∣ ≥ t/3
 (3.21)

The first term and second terms can be controlled by Corollary 4 and the chi-squared tail bound
(Lemma 7) respectively, so we focus on the third term. Conditioned on vi, if j 6= i then 〈vj , vi/‖vi‖〉 ∼
N (0, 1) for j 6= i. Then let Z =

∑
j 6=i〈vj , vi/‖vi‖〉2 and note that conditioned on vi, Z is a chi-

squared random variable with n− 1 degrees of freedom. Let E be the event

E = {vi : (n− 1)|‖vi‖2 − k| ≤ t/3 and |‖vi‖4 − k2| ≤ t/3}.
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Then if I[v ∈ E ] denotes the function that takes value 1 if v ∈ E and 0 otherwise,

Pr
[
|Z − E[Z]| ≥ t

3‖vi‖2
]

= Evi
[
Pr
[
|Z − E[Z]| ≥ t

3‖vi‖2
∣∣∣∣ vi]]

≤ Evi

[
2e
− 1

8 min


(t/3)2

‖vi‖4(n−1)
, t
3‖vi‖2

ff]

≤ Evi

[
I[vi ∈ E ] · 2e−

1
8 min


(t/3)2

‖vi‖4(n−1)
, t
3‖vi‖2

ff]
+ Evi [I[vi /∈ E ]]

≤ 2e
− 1

8 min


(t/3)2

(k2+t/3)(n−1)
,

t(n−1)
3(k(n−1)+t/3)

ff
+

Pr[|‖vi‖4 − k2| ≥ t/3] + Pr[|(n− 1)‖vi‖2 − k| ≥ t/3] (3.22)

where the last inequality holds by the definition of E and a union bound. Combining (3.21) and
(3.22) we have that

Pr [|[M1n]i − [W1n]i| ≥ t] ≤ 2 Pr
[|‖vi‖4 − k2| ≥ t/3]+ 2 Pr

[
(n− 1)|‖vi‖2 − k| ≥ t/3

]
+

2 exp
(
−1

8
min

{
(t/3)2

(k2 + t/3)(n− 1)
,

t(n− 1)
3(k(n− 1) + t/3)

})
. (3.23)

Putting t = nk1/2+3α/2 and using Lemma 7 and Corollary 4 to bound the first two terms gives

Pr[|[M1n]i − [W1n]i| ≥ 3nk1/2+3α/2] ≤ 4 exp
(
−1

8
min

{
(n/3)2k3α,

√
n/3k1/4+3α/4

})
+

4 exp
(
−1

8
min

{
(n/(n− 1))2k3α, (n/(n− 1))k1/2+3α/2

})
+

2 exp
(
−1

8
min

{
(nk1/2+3α/2)2

(k2 + nk1/2+3α/2)(n− 1)
,

n(n− 1)k1/2+3α/2

3(k(n− 1) + nk1/2+3α/2)

})
.

Since 0 < α < 1/6 , the right hand side is bounded by c̄4e
−c̃4k3α

for suitable constants c̄4 and c̃4.
Then, taking a union bound we have that

Pr[‖∆1n‖∞ ≥ 3nk1/2+3α/2] ≤ nPr[|[M1n]i − [W1n]i| ≥ 3nk1/2+3α/2] ≤ nc̄4e−c̃4k3α
.

3.9.4 Proof of Lemma 4

We now bound the spectral norm of ∆ = M −AA∗ = ((k2− k)I − kJ)−V V T ◦V V T where V is a
n×k matrix with N (0, 1) entries. We show in Proposition 7 that the function f : Rn×k → R defined
by f(V ) = ‖M − V V T ◦ V V T ‖ concentrates around its mean. We then proceed to estimate the
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expected value of f(V ) by dealing with the diagonal and off-diagonal parts separately (in Lemmas
9 and 10).

Since f is not (globally) Lipschitz, we need a slight modification of the usual concentration of
measure for functions of Gaussians to show that f concentrates around its expected value. It turns
out that f is Lipschitz (with a small enough Lipschitz constant) on a set of large measure, so we
first establish a simple variation on the usual concentration of measure for Lipschitz functions to
this setting. Our result relies on a special case of Kirszbaum’s theorem.

Theorem 16 (Kirszbaum). Suppose f : Rm1 → Rm2 is a function and S ⊂ Rm1 is a subset such
that f |S : S → Rm2 is L-Lipschitz with respect to the Euclidean metric. Then there is a function
f̃ : Rm1 → Rm2 that is L-Lipschitz with respect to the Euclidean metric such that f̃(x) = f(x) for
all x ∈ S and f̃(Rm1) ⊂ conv(f(S)) (where conv(A) is the convex hull of A ⊂ Rm2).

Proposition 6. Consider a non-negative real-valued function f : Rm → R and a subset S ⊂ Rm

such that f |S : S → R is L-Lipschitz with respect to the Euclidean norm and bounded by R. Then
if X ∼ N (0, Im),

Pr [f(X) ≥ E[f(X)] +RPr[Sc] + t] ≤ e− 1
2 (t/L)2 + Pr[Sc].

Proof. Since f is L-Lipschitz on S it follows from Kirszbaum’s theorem (with m2 = 1) that there
is an L-Lipschitz function f̃ : Rm → R such that f̃(x) = f(x) for all x ∈ S and |f̃(x)| ≤
supy∈S |f(y)| ≤ R for all x ∈ Rm. Then by concentration of measure for Lipschitz functions of
Gaussians (Theorem 3)

Pr[f̃(X) ≥ E[f̃(X)] + t] ≤ e− 1
2 (t/L)2 . (3.24)

Note that

E[f̃(X)] = E[f(X)I[X ∈ S]] + E[f̃(X)I[X /∈ S]] ≤ E[f(X)] +RPr[X /∈ S]

where the inequality is valid because f is a non-negative function. Then

Pr[f(X) ≥ E[f(X)] +RPr[X /∈ S] + t] ≤ Pr[f(X) ≥ E[f̃(X)] + t and X ∈ S] + Pr[X /∈ S]

≤ Pr[f̃(X) ≥ E[f̃(X)] + t and X ∈ S] + Pr[X /∈ S]

≤ Pr[f̃(X) ≥ E[f̃(X)] + t] + Pr[X /∈ S]

which, when combined with (3.24), yields the result.

Proposition 7. There is a universal constant c > 0 such that if V ∈ Rn×k has i.i.d. standard
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Gaussian entries and M is any fixed n× n matrix with ‖M‖ ≤ 2nk

Pr[f(V ) ≥ E[f(V )] + 36kn2e−k/8 + t] ≤ e− t2

32nk2 + 2ne−k/8.

Proof. We first show that f is L-Lipschitz on a subset of Rn×k of large measure and use Proposition
6 to complete the argument. Let V,W be two elements of Rn×k with rows v1, . . . vn and w1, . . . , wn

respectively. Let S ⊂ Rn×k be given by

S = {V : ‖vi‖2 ≤ 2k for i = 1, 2, . . . , n and ‖V ‖ ≤ √n+ 2
√
k}.

Then if V,W ∈ S,

|f(V )− f(W )| ≤ ‖V V T ◦ V V T −WW ◦WWT ‖
= ‖(V V T −WWT ) ◦ (V V T +WWT )‖
(a)

≤ max
i

(‖vi‖2 + ‖wi‖2)‖V V T − VWT + VWT −WWT ‖

≤ max
i

(‖vi‖2 + ‖wi‖2)(‖V ‖+ ‖W‖)‖V −W‖

≤ 8k(
√
n+ 2

√
k)‖V −W‖F

where the inequality marked (a) follows from the fact that for positive semidefinite A and symmetric
B, ‖A ◦ B‖ ≤ (maxiAii)‖B‖ (see Theorem 5.3.4 of [30]), and the final inequality invokes the
definition of S. It then follows that since k ≤ n, f is 16k

√
n-Lipschitz when restricted to S.

Furthermore, restricted to S, f is bounded in the following way

f(V ) ≤ ‖M‖+ ‖V V T ◦ V V T ‖ ≤ ‖M‖+ 2k(
√
n+ 2

√
k)2 = 2nk + 4k(n+ 4k) ≤ 18nk

since we assume that ‖M‖ ≤ 2nk. Furthermore

Pr[Sc] ≤ Pr[max
i
‖vi‖2 ≤ 2k] + Pr[‖V ‖ ≥ √n+ 2

√
k] ≤ n exp

(
−k

8

)
+ exp

(
−
√
k

2

2

)
≤ 2ne−k/8

where the first term follows from Lemma 7 and a union bound, and the second follows from Theorem
4 in Section 2.3 on the spectral norm of matrices with i.i.d. Gaussian entries. Finally we apply
Proposition 6 with L = 16k

√
n and R = 17nk to conclude that

Pr[f(V ) ≥ E[f(V )]+36kn2e−k/8+t] ≤ Pr[f(V ) ≥ E[f(V )]+Pr[Sc]R+t] ≤ exp
(
−c t

2

nk2

)
+2ne−k/8

where c = 29, for example.
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Having established that f concentrates about its mean, we now need to bound E[f(V )]. We do
so by noting that

E[f(V )] ≤ E[‖diag(V V T ◦ V V T )− k21n‖∞] + E[‖∆̃‖] = E[max
i
|‖vi‖4 − k2‖] + E[‖∆̃‖]

where ∆̃ is the off-diagonal part of ∆. Explicitly, the entries of ∆̃ are given by ∆̃ii = 0 for
i = 1, 2, . . . , n and ∆̃ij = k− 〈vi, vj〉2 for i 6= j (where the vi are i.i.d. N (0, Ik) random vectors and
are the rows of V ).

Lemma 9. If k ≥ 8 log(n) then for some positive constant c′,

E[ max
1≤i≤n

|‖vi‖4 − k2|] ≤ c′k3/2
√

log(n).

Proof. The proof uses a standard technique, exemplified in [40] where it is used to bound the
expectation of the maximum of finitely many Gaussian random variables. Let δ = 6k3/2

√
2 log(n) ≤

3k2 and X be a scalar Gaussian random variable with zero mean and variance 36k3.

E[max
i
|‖vi‖4 − k2|] =

∫ ∞
0

Pr[max
i
|‖vi‖4 − k2| ≥ t] dt

(a)

≤
∫ δ

0

Pr[max
i
|‖vi‖4 − k2| ≥ t] dt+ n

∫ ∞
δ

Pr[|‖v1‖4 − k2| ≥ t] dt
(b)

≤ δ + n

∫ 3k2

δ

4e
− t2

2(6k3/2)2 dt+ n

∫ ∞
3k2

e−
1
8

√
t
3 dt

≤ δ + c̄nk3/2 Pr[X ≥ δ] + nc(k/8 + 1)e−k/8 (for some constants c, c̄ ≥ 0)

≤ δ + c̄nk3/2e
− 1

2

“
δ

6k3/2

”2

+ nc(k/8 + 1)e−k/8

≤ 6k3/2
√

2 log(n) + c̄k3/2 + c(k/8 + 1) (since k ≥ 8 log(n))

which gives the desired result for a suitable choice of constant c′. Note that the inequality marked
(a) holds by taking a union bound and the inequality marked (b) follows from the tail bound in
Corollary 4.

Lemma 10. If n ≤ k2, there is a constant c such that

E[‖∆̃‖] ≤ ckn3/4.

Proof. Our proof follows rather closely the general strategy of the proof of Theorem 1 of [23], which
deals in much more generality with the behaviour of random matrices of the form Xij = f(〈vi, vj〉)
for random vectors vi. Since our assumptions are much stronger than the assumptions in that
work, things will simplify considerably, and it will be fairly straightforward to perform explicit
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computations.
We proceed by using the moment method, that is by using the observation that for a symmetric

random matrix X, E[‖X‖] ≤ E[tr(X2p)]1/2p for any positive integer p. In particular, we bound
E[tr(∆̃4)]1/4. Computing higher moments gives slightly better estimates, but without a systematic
way to compute these moments, the computations soon become rather unwieldy.

We make repeated use of the elementary inequalities (a− b)2 ≤ a2 + b2 and (a+ b)2 ≤ 2(a2 + b2)
as well as the non-central moments of chi-squared random variables

E[‖vi‖2p] = k(k + 2) · · · (k + 2p− 2).

Note, also, that if we condition on vi, 〈vi, vj〉 ∼ N (0, ‖vi‖2). Hence if i 6= j,

E[〈vi, vj〉2p] = E[E[〈vi, vj〉2p|vi]]
= (2p− 1)(2p− 3) · · · (1)E[‖vi‖2p]
= (2p− 1)(2p− 3) · · · (1)(k)(k + 2) · · · (k + 2p− 2) (3.25)

where we have used the fact that if X ∼ N (0, 1) then E[X2p] = (2p− 1)(2p− 3) · · · (3)(1).
Note that ∆̃ii = 0 so the terms appearing in tr(∆̃4) correspond to cycles of length four in the

complete graph on n nodes. In particular, there are three different types of non-zero terms:

1. terms of the form ∆̃4
ij (where i 6= j) of which there are fewer than n2

2. terms of the form ∆̃2
ij∆̃

2
jk (where 6= j 6= k) of which there are fewer than n3 and

3. terms of the form ∆̃ij∆̃jk∆̃k`∆̃`i (where i 6= j 6= k 6= `) of which there are fewer than n4.

We analyze each of these terms separately, and then combine the results to give our estimate of
E[tr(∆̃4)].

The case i 6= j

E[∆̃4
ij ] = E[(k − 〈vi, vj〉2)4] ≤ k4 + E[〈vi, vj〉8] = O(k4) (3.26)
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The case i 6= j 6= k The basic strategy is to note that conditioned on vj , ∆̃ij and ∆̃jk are
independent.

E[∆̃2
ij∆̃

2
jk] = E[(k − 〈vi, vj〉2)2(k − 〈vj , vk〉2)2]

= E[E[(k − 〈vi, vj〉2)2|vj ]E[(k − 〈vj , vk〉2)2|vj ]]
= E[E[(k − 〈vi, vj〉2)2|vj ]2]

≤ E[E[k2 + 〈vi, vj〉4|vj ]2]

= E[(k2 + 3‖vj‖4)2] = O(k4).

The case i 6= j 6= k 6= ` If we condition on vi and vk, ∆̃ij∆̃jk and ∆̃k`∆̃`i are independent. Hence

E[∆̃ij∆̃jk∆̃k`∆̃`i] = E[E[∆̃ij∆̃jk|vi, vk]E[∆̃k`∆̃`i|vi, vk]] = E[(E[∆̃ij∆̃jk|vi, vk])2].

As such we first compute E[∆̃ij∆̃jk|vi, vk].

E[∆̃ij∆̃jk|vi, vk] = E[vTi vjv
T
j viv

T
k vjv

T
j vk − k(〈vi, vj〉2 + 〈vk, vj〉2) + k2|vi, vk]

= vTi E[(vjvTj )vivTk (vjvTj )|vi, vk]vk − k(‖vi‖2 + ‖vk‖2) + k2

(a)
= vTi (vkvTi + viv

T
k + 〈vi, vk〉Ik)vk − k(‖vi‖2 + ‖vk‖2) + k2

= 2〈vi, vk〉2 + (‖vi‖2 − k)(‖vk‖2 − k)

where the equality marked (a) follows from a straightforward computation that can be found in
Lemma A.1 of [23]. Then we see that

E[∆̃ij∆̃jk∆̃k`∆̃`i] = E[(2〈vi, vk〉2 + (‖vi‖2 − k)(‖vk‖2 − k))2]

≤ 8E[〈vi, vk〉4] + 2E[(‖vi‖2 − k)2]E[(‖vk‖2 − k)2]

= 8E[〈vi, vk〉4] + 2(E[‖vi‖4]− k2)2

= 8E[〈vi, vk〉4] + 2(2k)2 = O(k2).

The proof of the lemma follows from combining these results and observing that n ≤ k2 to conclude
that

E[tr(∆̃4)]1/4 = O
(

(n2k4 + n3k4 + n4k2)1/4
)

= O(kn3/4).

We now assemble these pieces to give our overall proof of Lemma 4. Combining Lemmas 9
and 10, and noting that k3/2

√
log(n) = O(kn3/4) and, since k ≥ √n, kn2e−k/8 = O(kn3/4), we

have that E[f(V )] = O(kn3/4). Hence putting t = O(kn3/4) in Proposition 7 we see that for some
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positive constants c3, c̃3

Pr[f(V ) ≥ c3kn3/4] ≤ e−
√
n/32 + 2ne−k/8 ≤ c̄3ne−c̃3

√
n

where we have again used the assumption that k ≥ √n.
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Chapter 4

Gaussian Latent Tree Modeling

4.1 Introduction

In this chapter we consider the problem of learning the parameters and state dimensions of a
Gaussian latent tree model given the tree structure and the covariance matrix among the leaf
variables. Our approach is based on the observation, described in Section 4.3, that the covariance
among the leaf variables of such a model admits a decomposition as a sum of block diagonal low-
rank positive semidefinite matrices with nested column spaces. In Section 4.4 we formulate an SDP
to decompose a given covariance matrix into these constituents and in Section 4.4.1 give conditions
on an underlying Gaussian latent tree model that ensures our SDP-based decomposition method
succeeds. Once we have performed this decomposition we provide a method to construct an explicit
parametrization of a Gaussian latent tree model.

In Section 4.5 we propose another convex program that approximately decomposes a covariance
matrix in the required way. This can then be used for modeling purposes, where we would like to
construct a parsimonious Gaussian latent tree model that fits a given covariance matrix well. We
evaluate this approximate covariance decomposition convex program using synthetic experiments
in Section 4.6, demonstrating that given only sufficiently many i.i.d. samples of the leaf variables
of certain Gaussian latent tree models, the method can correctly estimate the state dimensions of
the latent variables in the underlying model.

The problem of constructing a Gaussian latent tree model with a fixed index tree and covariance
among the leaf variables that (approximately) realizes a given covariance has been considered by a
number of authors. Irving et al. [31] developed a method for this problem based on the notion of
canonical correlations, an approach initially developed for the corresponding realization problem for
time-series by Akaike [1]. Frakt et al. [25] proposed a computationally efficient method for learning
internal Gaussian latent tree models, an important subclass of these models. Both of these methods

59



operate one vertex at a time, in a computationally greedy fashion, and require prior assumptions
(such as hard upper bounds) on the dimensions of the state spaces at each vertex.

A standard approach to choosing parameters for any statistical model with latent variables is
to use the expectation-maximization (EM) algorithm [20] which has been specialized to the case
of learning parameters of Gaussian latent tree models [33]. The EM algorithm, however, does not
offer any consistency guarantees, and does not (in its most basic form) learn the state dimensions
of the latent variables along with the parameters.

Both the problem and the proposed solution methods in this chapter are a non-trivial gener-
alization of the basic problem of factor analysis and the semidefinite programming-based method,
minimum trace factor analysis, considered in Chapter 3. One of the key points of this chapter
is that the analysis of our SDP-based method essentially reduces to the analysis of a number of
instances of a problem that is a slight generalization of minimum trace factor analysis. As such
some of the results of Chapter 3 play a role in the sequel.

Finally let us emphasize that we assume we are given a tree structure for the purpose of iden-
tifying model parameters and state dimensions. The problem of learning the tree structure from
data is an interesting and challenging one that has received attention in the phylogenetics [22] and
machine learning communities [45], for example. Many different techniques have been proposed
for the problem of learning the tree structure. For a recent review and new techniques see [17].
We could use any of these techniques to come up with a tree structure for our formulation of the
problem.

4.2 Preliminaries

We introduce notation and terminology related to trees and Gaussian tree models. In particular
we discuss some particular parametrizations of Gaussian tree models that are convenient later in
the chapter.

4.2.1 Trees

Let T = (V, E) be a tree with a distinguished vertex r ∈ V called the root. We divide the vertices
into scales depending on their distance from the root. Explicitly, Vi denotes the set of vertices at
distance i from the root.

When it is convenient we can think of T as a directed tree with edges oriented away from the
root. Given a vertex v ∈ V let P(v) be the parent of v, the (unique) vertex such that (P(v), v) is
a directed edge in T . Similarly the children of v, denoted C(v), are those vertices whose (common)
parent is v. The leaves of the tree are those vertices with no children. The descendants of a vertex
v are the vertices connected to v by a directed path. Generalizing the notation for children, if v is
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Figure 4-1: Summary of notation related to trees. Note that V2, for example, refers to all of the
vertices at distance 2 from the root r. Note that all of the leaves of this tree are at the same distance
from the root, and so this tree satisfies our standing assumption.

at scale s(v) then for n ≥ s(v) we denote the descendants of v that are at scale n by Cn(v) ⊂ Vn.
Finally we use the notation V\r instead of V \ {r} for the set of vertices excluding the root. We
summarize some of these notational conventions in Figure 4-1.

We restrict ourselves to a particular class of trees in this chapter. We assume that trees are
rooted and have all of their leaves at the same scale with respect to the root.

4.2.2 Model Parametrization

Throughout this chapter we always use ‘directed’ parametrizations of Gaussian latent tree models,
thinking of such models as linear state space models indexed by trees and driven by white noise. It
turns out that the exposition is cleaner and more intuitive from this point of view. As we deal only
with distributions that are Markov with respect to trees, there is no loss of generality in focusing on
directed parametrizations as for such distributions it is always possible to convert between directed
and undirected parametrizations [35]. When thought of as as state space models, Gaussian tree
models are often referred to as multiscale autoregressive models [5], although we will not use that
terminology here.

Given a tree T = (V, E) we define a zero-mean Gaussian process (xv)v∈V where each xv takes
values in Rnv for some nv. We call the space in which xv takes values the state space at v.
The generative process defining (xv)v∈V is the following. If r denotes the root of the tree then
xr ∼ N (0, R) and if v ∈ V\r,

xv = AvxP(v) + wv (4.1)

where Av is an nv × nP(v) matrix, wv ∼ N (0, Qv), wv and wu are independent if u 6= v, and for
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Figure 4-2: Three different abstractions of the tree that are present in our notation. On the left is
the edge-level view of the tree and corresponding notation, in the center is the parent-children-level
view of the tree and corresponding notation, and on the right is the scale-level abstraction of the
tree and corresponding notation.

each v ∈ V\r, wv is independent of xr. We always assume that the leaf variables are at scale n, and
that only the leaf variables are observed.

We writeMT (R,Qv, Av) for the Gaussian latent tree model parametrized by T , R, and Qv and
Av for v ∈ V\r. To avoid certain non-identifiability issues we assume, throughout, that R and each
Av and Qv have full rank.

Since we do not specify the dimensions nv of the state spaces a priori, almost all of our discussion
is at the level of block matrices, where each block is indexed by a pair of vertices (u, v) and has
dimension nu × nv as a matrix. If X is a block matrix indexed by subsets U and W of vertices, we
abuse notation and terminology slightly and call X a |U| × |W| matrix. For example we call Av, in
(4.1) a |P(v)| × |v| matrix. When we write such block matrices, we always assume that the vertices
are ordered in such a way that vertices with a common parent are consecutively ordered. This is
not an essential assumption, it just makes for more convenient notation.

Abstractions of the tree It will be useful to introduce notation that allows us to look at the
tree at three levels of abstraction: the edge-level, the parent-children-level, and the scale-level. This
notation is illustrated in Figure 4-2. We have already introduced the edge-level notation in (4.1).

Parent-Children Level At this level of abstraction (see Figure 4-2) we consider the influence
of a parent on all of its children simultaneously. We show in Section 4.4.1 that, in some sense, this
is the level at which the semidefinite program we formulate in Sec. 4.4 operates. Given a non-leaf
vertex v define

AC(v) =

Au1

· · ·
Aum
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where C(v) = {u1, . . . , um}. Then (4.1) can be reformulated as

xC(v) = AC(v)xv + wC(v). (4.2)

where if U ⊂ V we write xU and wU for the appropriate sub-processes indexed by U .

Scale-Level At this level of abstraction the tree is just a Markov chain (see Figure 4-2). This is
the level of abstraction at which the SDP we formulate in Section 4.4 is defined. Given i ≥ 1 define

Ai = diag(AC(v1), . . . , AC(vm)) (4.3)

where Vi−1 = {v1, . . . , vm} and diag(B1, . . . , Bm) is the block diagonal matrix with blocksB1, . . . , Bm.
Then (4.1) can be reformulated as

xi = Aixi−1 + wi (4.4)

where we write xi and wi instead of xVi and wVi respectively.

Equivalence Since we assume we only observe the leaf variables of the Gaussian tree model
defined by (4.1), we cannot distinguish models that realize the same covariance among the leaf
variables. This gives rise to the following notion of equivalence for Gaussian latent tree models.

Definition 4. We say that two Gaussian latent tree models (indexed by the same tree) are equiv-
alent if the covariance Σn of the leaf variables xn is the same for both models.

4.3 Covariance Decompositions

As for time-indexed linear state space models we can solve for the leaf variables in terms of the
(wv)v∈V as

xn = (An · · ·A1)x0 + (An · · ·A2)w1 + · · ·+Anwn−1 + wn. (4.5)

Let Σn be the covariance of xn and Qi be the covariance of wi, noting that Qi is diagonal as a
block matrix. Taking covariances of (4.5) yields a decomposition of Σn that will play an important
role in this chapter.

Σn = (An · · ·A1)R(An · · ·A1)T + (An · · ·A2)Q1(An · · ·A2)T + · · ·+AnQn−1A
T
n +Qn (4.6)

This decomposition is illustrated in Figure 4-3.

Block Diagonal Structures In a sense (4.6) abstracts away the tree structure, leaving only the
chain structure of the scale-level view of a tree shown in Figure 4-2. The tree structure can be
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Figure 4-3: An illustration of the leaf-covariance decomposition described by Proposition 8 for the
tree in Figure 4-1. The first equality represents the block diagonal structure of the terms, the
second equality represents the low-rank and nested column space structures of the terms.

Figure 4-4: An illustration of the block diagonal projections Bst defined in (4.7). For example, the
vertices V1 induce a partition of V2 given by {C2(v1), C2(v2)} shown by the dashed boxes. This
partition defines the block pattern of B1

2.
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captured by the block diagonal structure of the terms in the covariance decomposition.
Since each of the Ai and Qj are block diagonal, it follows that all of the terms in (4.6) are block

diagonal as illustrated in Figure 4-3. This structure arises statistically because if v ∈ Vi then the
only variables at scale n that depend on wv are those indexed by Cn(v), the descendants of v at
scale n. As such (An · · ·Ai+1)Qi(An · · ·Ai+1)T is block diagonal with blocks indexed by Cn(v) for
v ∈ Vi.

As is illustrated in Figure 4-3, the tree structure ensures that the block diagonal support patterns
of each of the terms in (4.6) are nested. Specifically

supp(Qn) ⊂ supp(AnQn−1A
T
n ) ⊂ · · · ⊂ supp((An · · ·A1)R(An · · ·A1)T ).

This is the case because if variable at scale n depends on wv for some vertex v, then that variable
necessarily depends on wu for all vertices u which have v as a descendant.

Since this block diagonal structure plays a prominent role in this chapter, we introduce the
notation Bin for the map that given a symmetric |Vn| × |Vn| matrix X is defined by

Bin(X) = diag(XCn(v1), . . . , XCn(vm)) (4.7)

where Vi = {v1, . . . , vm} and XCn(i) indexes the appropriate submatrix of X. Note that this is
precisely the orthogonal projection onto the set of |Vn|× |Vn| matrices that are block diagonal with
blocks indexed by Cn(v) for v ∈ Vi. This definition is illustrated in Figure 4-4. Using this notation
we can express the block diagonal structure of terms of the form (An · · ·Ai+1)Qi(An · · ·Ai+1)T in
a compact way by writing

Bin((An · · ·Ai+1)Qi(An · · ·Ai+1)T ) = (An · · ·Ai+1)Qi(An · · ·Ai+1)T .

Column Space and Low Rank Structures The nature of the factorized structure of each of
the terms in the covariance decomposition (4.6) implies that these terms have nested column spaces.
This structure arises because the tree is simply a Markov chain when viewed at the scale-level of
abstraction.

Although it is not explicit in our formulation so far, we are always interested in parsimonious
Gaussian latent tree models. As such, we are particularly interested in identifying models with low-
dimensional state spaces at each vertex v. Since each of the terms (An · · ·Ai+1)Qi(An · · ·Ai+1)T in
the covariance decomposition (4.6) has rank equal to the sum of the dimensions of the state spaces
corresponding to vertices in Vi, we expect the terms in the decomposition to have low rank, with
the exception of Qn. Furthermore, as there are fewer vertices at coarser scales, we expect terms in
the decomposition corresponding to coarser scales to have lower rank than those corresponding to
finer scales.
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A Covariance Decomposition Characterization of Gaussian Latent Trees We now for-
malize the salient features of the covariance decomposition (4.6). The following lemma shows that
the essential structure of (4.6) is that the covariance at scale n of a Gaussian latent tree model can
be expressed as the sum of n+ 1 block diagonal positive semidefinite matrices with nested column
spaces and nested support.

Proposition 8. Suppose Σn is the covariance at scale n of a Gaussian latent tree modelMT (R,Qv, Av).
Then there exist positive semidefinite matrices L0, L1, . . . , Ln such that

1. Σn = L0 + L1 + · · ·+ Ln−1 + Ln

2. the column spaces R(Li) of the Li satisfy R(L0) ⊂ R(L1) ⊂ · · · ⊂ R(Ln−1)

3. each Li is block diagonal with supp(Ln) ⊂ supp(Ln−1) ⊂ · · · ⊂ supp(L0)

Conversely, if L0, L1, . . . , Ln is a collection of positive semidefinite matrices satisfying properties
1–3 above, then there is a Gaussian latent tree model MT (R,Qv, Av) such that the covariance at
scale n is Σn.

The proof of Proposition 8 is in Section 4.8.1. One direction of the proof follows directly
from (4.6) and the subsequent discussion. Proving the converse requires showing how to map a
decomposition of a covariance matrix Σn as Σn = L0 + · · · + Ln with the properties stated in
Proposition 8 to a Gaussian latent tree model. The algorithmic content of the proof is summarized
in Algorithm 1.

Algorithm 1. Given a tuple (L0, . . . , Ln) of symmetric positive semidefinite matrices satisfying
properties 1–3 of Proposition 8, the following procedure produces a tree T and a Gaussian latent
tree model MT (R,Qv, Av) with covariance at scale n given by

∑n
i=0 Li.

1. Let T = (V, E) be defined as follows. Associate a single vertex r with L0. For each i ≥ 1
associate a vertex v with each block in the block diagonal structure of Li. There is an edge
(v, u) ∈ E if and only if there is some i such that v corresponds to a block of Li and u to a
block of Li+1 with support contained in the block of Li corresponding to v.

2. For v ∈ Vn let Qv = [Ln]v.

3. For v ∈ Vn−1 let AC(v) have columns given by an orthonormal set of eigenvectors of [Ln−1]C(v)
corresponding to non-zero eigenvalues. Let Qv be the corresponding diagonal matrix of eigen-
values and define An in terms of the AC(v) by (4.3).

4. For i = n − 1, n − 2, . . . , 0, and for each v ∈ Vi−1 choose AC(v) to have columns given by
an orthonormal set of eigenvectors of [(An · · ·Ai+1)TLi−1(An · · ·Ai+1)]C(v) corresponding to
non-zero eigenvalues. Let Qv be the corresponding diagonal matrix of eigenvalues and define
Ai in terms of the AC(v) according to (4.3).
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This algorithm also gives us a way to construct ‘nice’ parametrizations of Gaussian latent tree
models. Suppose we are given a Gaussian latent tree model MT (R,Qv, Av). We can set L0 =
(An · · ·A1)Q0(An · · ·A1)T , Ln = Qn, and Li = (An · · ·Ai+1)Qi(An · · ·Ai+1)T for i = 1, 2, . . . , n−1,
and use Algorithm 1 to construct a new parametrization of the Gaussian latent tree model from
the Li. When we do this we are just choosing a nice basis for the state space of each of the hidden
variables in our model. For future reference let us give a name to these ‘nice’ parametrizations.

Definition 5. A parametrization MT (R,Qv, Av) of a Gaussian latent tree model is normalized if
for all non-leaf vertices v, ATC(v)AC(v) = I and Qv is diagonal and has full rank .

Note that Algorithm 1 always produces normalized parametrizations and Proposition 8 implies
that every Gaussian latent tree model has a normalized parametrization. Normalized parametriza-
tions are not unique, but different normalized parametrizations for equivalent (in the sense of
Definition 4) Gaussian latent tree models have the same structural properties, such as state space
dimensions.

In light of Proposition 8 we can state our problem of interest more abstractly as follows.

Problem 2. Suppose L?0, L
?
1, . . . , L

?
n are block diagonal positive semidefinite matrices such that

R(L?0) ⊂ · · · ⊂ R(L?n) for 0 ≤ i ≤ n and supp(L?n) ⊂ · · · supp(L?0). Given supp(L?i ) for i =
0, 1, . . . , n and the sum

Σn = L?0 + L?1 + · · ·+ L?n

recover the L?i for 0 ≤ i ≤ n.

If we had a method to solve Problem 2 then, given the covariance at scale n of a Gaussian latent
tree model, we could use this method to find the L?i and then use Algorithm 1 to reconstruct from
them a normalized parametrization of a Gaussian latent tree model. In Section 4.4 we develop a
method to partially solve Problem 2 based on semidefinite programming.

4.4 Covariance Decomposition SDP

In this section we propose a semidefinite programming-based heuristic that attempts to solve Prob-
lem 2. The SDP we formulate is a generalization of minimum trace factor analysis, the focus of
our attention in Chapter 3. Our SDP explicitly addresses the assumptions that the terms of the
decomposition should be low rank, positive semidefinite matrices with nested block diagonal sup-
port. Our SDP, however, does not explicitly enforce the subspace inclusion constraint. While the
subspace inclusion constraint is semidefinite representable (see, for example, Lemma 2.1 of [46]), it
is difficult to impose in practice using interior point solvers for semidefinite programs.

The constraints that each Li is positive semidefinite and has a particular block diagonal structure
are straightforward to incorporate into a semidefinite programming framework. We now address
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the assumption that the Li (for 0 ≤ i < n) are low rank. As in Section 3.4 of Chapter 3, we again
employ the heuristic that minimizing the trace of positive semidefinite matrices is a good convex
surrogate for minimizing the rank. So we choose the objective of the SDP to be

∑n−1
i=0 λitr(Li)

where the λi are non-negative scalars. It turns out that our analysis will require that if i < j then
λi > λj . This is intuitively appealing because, following the discussion in Section 4.3, if i < j then
we expect rank(Li) < rank(Lj) so it makes sense to penalize the term in the objective corresponding
to tr(Li) more than that corresponding to tr(Lj).

The Primal SDP Putting these pieces together we can write down an SDP-based heuristic to
decompose Σn into its constituents.

(L̂0, L̂1, . . . , L̂n) ∈ arg min
n−1∑
i=0

〈λiI, Li〉

subject to Σn =
n∑
i=0

Bin(Li) (4.8)

Li � 0 for i = 0, 1, . . . , n

and the λi are non-negative parameters of the SDP satisfying 0 = λn < λn−1 < · · · < λ1. Without
loss of generality we can take λ1 = 1, as this serves to fix a normalization for the objective of (4.8).

The Dual SDP Observe that (4.8) is a conic program in standard form (see Section 2.2) so we
can write down its dual by inspection.

max
Y
〈Σn, Y 〉

s.t. λiI − Bin(Y ) � 0 for i = 0, 1, . . . , n. (4.9)

where we have used the fact that Bin is self adjoint for i = 0, 1, . . . , n.
We now establish that strong duality holds for this primal-dual pair of semidefinite programs

under the assumption that Σn � 0.

Lemma 11. If Σn � 0 then strong duality holds for the primal-dual pair (4.8) and (4.9).

Proof. We establish this by verifying Slater’s condition (see Section 2.2). If Σn � 0, let σmin
denote the smallest eigenvalue of Σn. Then take L0 = Σn − (σmin/2)I and Li = (σmin/(2n))I for
i = 1, 2, . . . , n. Then Li � 0 for i = 0, 1, . . . , n and

∑n
i=0 Li = Σn so the primal problem is strictly

feasible. To complete the proof we note that the primal objective function is bounded below by
zero.

From now on we will assume that Σn � 0, so that Lemma 11 ensures that strong duality holds.
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4.4.1 Analysis of the Covariance Decomposition SDP

In this section we analyze the SDP formulated in Section 4.4. In particular we give conditions on
the parameters of an underlying Gaussian latent tree model (or equivalently on the L?i arising from
that model) under which the SDP (4.8) successfully solves Problem 2.

Definition 6. Suppose Σn = L?0 +L?1 + · · ·+L?n where the L?i satisfy the assumptions of Problem
2. If the SDP (4.8) has a unique optimal point (L̂0, . . . , L̂n) and L̂i = L?i for i = 0, 1, . . . , n then we
say that the SDP (4.8) correctly decomposes Σn.

The following result establishes conditions under which the covariance decomposition SDP cor-
rectly decomposes Σn. The conditions are a specialization of the usual optimality conditions for
semidefinite programming (see Section 2.2) to this context.

Proposition 9. If there exists a dual certificate Y such that

1. λiI − Bin(Y ) � 0 for i = 0, 1, . . . , n

2. L?i (λiI − Bin(Y )) = 0 for i = 0, 1, . . . , n

then the SDP (4.8) correctly decomposes Σn.

The proof is in Section 4.8.2. The part of the proof that is somewhat involved is proving that
the SDP has a unique solution.

It is not particularly obvious how to construct a Y with the properties stated in Proposition
9 as these properties are rather global in nature. It turns out that we can simplify the task of
constructing Y by combining dual certificates that are defined locally—certificates that concern
only the interactions between a parent and all of its children. This is the main technical lemma of
this chapter.

Lemma 12. Let Σn be the covariance at scale n of a Gaussian latent tree model MT (R,Qv, Av).
Suppose that for each non-leaf vertex v there is a |C(v)| × |C(v)| symmetric positive semidefinite
matrix Mv such that

1. [Mv]uu = I for all u ∈ C(v)

2. MvAC(v) = 0.

Then there exists Y with the properties stated in Proposition 9 and so the SDP (4.8) correctly
decomposes Σn.

The proof of Lemma 12 is in Section 4.8.3. Lemma 12 allows us to consider only the apparently
more simple situation of finding local dual certificates. In particular, any results about constructing
matrices Mv satisfying the conditions of Lemma 12 translate into results about the success of the
covariance decomposition SDP (4.8).
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Figure 4-5: The tree T shown, and in particular the subtree consisting of v and its children C(v) =
{u1, u2, u3} is used to illustrate the notation in Lemma 12. We assume that there is some Gaussian
latent tree model MT (R,Qv, Av) defined with respect to T with state space dimensions given by
the numbers inside the vertices of the tree.

Example 1. Let us clarify our notation here with an example. Consider the tree in Figure 4-5
and, specifically, the vertex v and its children C(v). Note that the dimension of the state space
at v is 2 and the dimensions of the state spaces at u1, u2, and u3, the children of v, are 1, 2, and
1 respectively. Then AC(v) is a 4 × 2 matrix, and also a 3 × 1 block matrix with the block rows
indexed by u1, u2, u3 and the block column indexed by v. So AC(v) has the form

AC(v) =

 Au1

Au2

Au3

 =


∗ ∗
∗ ∗
∗ ∗
∗ ∗

 .

Hence if there were an Mv satisfying the assumptions of Lemma 12, Mv would be a symmetric
positive semidefinite 4× 4 matrix, (and 3× 3 as a block matrix) of the form

Mv =


1 ∗ ∗ ∗
∗ 1 0 ∗
∗ 0 1 ∗
∗ ∗ ∗ 1


satisfying MvAC(v) = 0.
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4.4.2 Success of the Covariance Decomposition SDP

Scalar variables In the case where the underlying Gaussian latent tree model has all scalar vari-
ables (that is, the state space at each vertex has dimension one) then we can combine Theorem 11,
due to Delorme and Poljak [19], with Lemma 12 to characterize when the covariance decomposition
SDP succeeds. The result essentially says that as long as no vertex is much more strongly influenced
by its parent than all of its ‘siblings’, the covariance decomposition SDP succeeds.

Theorem 17. SupposeMT (R,Qv, Av) is a Gaussian latent tree model with nv = 1 for each vertex
v and leaf covariance Σn. If for all non-leaf vertices v

|Au| ≤
∑

w∈C(v)\{u}

|Aw| for all u ∈ C(v) (4.10)

then the covariance decomposition SDP (4.8) correctly decomposes Σn.

Remark. The condition in (4.10) imposes an interesting structural restriction on the trees T with
respect to which a Gaussian latent tree model is defined if we hope to identify the model using the
SDP (4.8). Suppose v ∈ V has just two children, u1 and u2. Then the balance condition says that
we must have

|Au1 | = |Au2 |

a condition that does not hold generically. As such, in order for the parameters of a Gaussian latent
tree model to be generically balanced, we need every vertex in the tree T to have at least three
children. Even at this qualitative level, Theorem 17 gives us insight about how we ought not to go
about choosing our tree T when trying to solve a modeling problem as our procedure will clearly
not be effective on trees having vertices with only two children.

Non-scalar variables In the case where the underlying Gaussian latent tree model has non-
scalar variables, we cannot directly apply results from Chapter 3. Nevertheless, it is possible to
generalize the main deterministic result, Theorem 5, from Chapter 3 so that it does apply in this
setting.

Theorem 18. Suppose MT (R,Qv, Av) is a Gaussian latent tree model with leaf covariance Σn.
If, for all non-leaf vertices v,

[PR(Av)]uu ≺ (1/3)I for all u ∈ C(v)

then the covariance decomposition SDP (4.8) correctly decomposes Σn.

Theorem 18 essentially says that as long as the column space R(Av) of each of the matrices Av
is not too closely aligned with any of the coordinate subspaces indexed by u ∈ C(v), the covariance
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decomposition SDP will succeed. We defer the proof of this result to Section 4.8.4, as it is a direct
generalization of the proof of Theorem 5 in Chapter 3. We note that unlike Theorem 17, Theorem
18 only provides a sufficient condition for the success of the covariance decomposition SDP.

While it would be possible to generalize the randomized results of Chapter 3 to apply in this
case, these results do not make a great deal of sense in the present setting. This is because they
would require the degree of the vertices in the tree to be growing to apply, which is quite an
unnatural assumption.

4.4.3 Producing valid approximate decompositions

Recall from Problem 2 that we aim to decompose Σn into a sum of block diagonal positive semidef-
inite matrices Li with nested column spaces. We did not, however, impose the constraint that the
column spaces of the Li be nested in our covariance decomposition SDP (4.8). If the conditions in
Theorem 17 or Theorem 18 hold, then this is not a problem, as the covariance decomposition SDP
correctly decomposes Σn and so the matrices L̂i do satisfy the column space nesting constraints.

In the case when the covariance decomposition SDP fails to correctly decompose Σn, we have no
guarantee that the column spaces of the L̂i are nested, and in general they are not. This problem
will also occur when we consider the ‘noisy’ version of the decomposition problem in Section 4.5.
We now describe a method that takes a solution (L̂0, . . . , L̂n) of the covariance decomposition SDP
and produces from it a new tuple of positive semidefinite matrices (L̃0, . . . , L̃n) that have the same
support as (L̂0, . . . , L̂n) and also satisfy the subspace nesting constraint. The price we pay for this
is that it is no longer the case that

∑n
i=0 L̃i = Σn.

Algorithm 2. Given a tuple of symmetric matrices (L̂0, . . . , L̂n) the procedure produces a tuple
of symmetric matrices (L̃0, . . . , L̃n) satisfying R(L̃0) ⊂ · · · ⊂ R(L̃n).

1. Initialize by setting L̃n ← L̂n

2. For j = n− 1, n− 2, . . . , 0

V ← R(L̃j+1)

L̃j ← PV L̂jPV (where PV is the orthogonal projection onto the subspace V ).

For convenience we refer to this procedure as a ‘rounding’ scheme, as it enforces a constraint
that we omit from our convex program.

While we could modify this procedure to ensure that the resulting tuple of matrices also satisfies∑
i L̃i = Σn, such a modification would most likely cause an increase in the rank of the L̃i. Given

that we never, in practice, aim to exactly realize a given covariance matrix, from a modeling
perspective it makes more sense to produce a valid parsimonious model that approximately realizes
the given covariance, than to go to pains to produce an exact decomposition that is no longer
parsimonious.
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4.5 An Approximate Covariance Decomposition SDP

In practice we do not have access to the covariance among the leaf variables, only to some covariance
matrix Σ̂n that may be an approximation of the covariance among the leaf variables of a Gaussian
latent tree model. A natural variation on the SDP (4.8) proposed in Section 4.4 to deal with this
case is to replace the equality constraint Σn =

∑n
i=0 Bin(Li) with the minimization of a convex

loss function f(Σ̂n,B0
n(L0),B1

n(L1), . . . ,Bnn(Ln)). An example of such a function might be ‖Σ̂n −∑n
i=0 Bin(Li)‖F where ‖X‖F =

(∑
i,j X

2
ij

)1/2

is the Frobenius norm of a matrix. This is the
example we use for our experiments in Section 4.6, but it is by no means a canonical choice.

We formulate the approximate covariance decomposition SDP as follows.

min f(Σ̂n,B0
n(L0),B1

n(L1), . . . ,Bnn(Ln)) + γ

(
n−1∑
i=0

〈λiI, Li〉
)

(4.11)

s.t. Li � 0 for i = 0, 1, . . . , n

where γ > 0 is a regularization parameter that balances the competing objectives of building a
model that matches the observations (i.e. Σ̂n) and has low complexity in the sense of low total state
dimension.

If we are given some covariance matrix Σ̂n and want to approximate it by the scale-n covariance
of a Gaussian latent tree model, we again have the problem that the estimates L̂i produced by
solving the convex program (4.11) do not satisfy the subspace containment constraints R(L̂0) ⊂
· · · ⊂ R(L̂n). If we apply Algorithm 2 to the L̂i, the output L̃i is a sum of positive semidefinite
block diagonal matrices with nested column spaces and so corresponds to a valid Gaussian latent
tree model.

4.6 Experiments

In this section we focus on demonstrating the consistency of the approximate covariance decompo-
sition convex program (4.11) (followed by Algorithm 2) using synthetic experiments. We focus on
the case where the loss function is f(Σ̂n,B0

n(L0), . . . ,Bnn(Ln)) = ‖Σ̂n − (B0
n(L0) + B1

n(L1) + . . . +
Bnn(Ln))‖F .

In particular we assume we are given i.i.d. samples of the leaf-variables of the two Gaussian
latent tree models shown in Figure 4-6 with state space dimensions given by the numbers next to
the vertices in that figure. In each of the two models the matrices AC(v) are chosen as follows. If

AC(v) has only one column then we take AC(v) =
[
1 · · · 1

]T
+N where N ∼ N (0, 1

100I). If AC(v)
has two columns, the first is chosen as in the previous sentence and the second is chosen to be[
1 · · · 1 −1 · · · −1

]T
+N ′ where N ′ ∼ N (0, 1

100I) and is independent of N . These choices
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Figure 4-6: The trees with respect to which the Gaussian latent tree models in our experiments are
defined. The numbers next to the unobserved vertices are the state dimensions at those vertices.
All the leaves have state dimension one.

ensure that the columns of AC(v) satisfy the deterministic conditions of Theorems 17 and 18. We
investigate the number of samples required for the output of the convex program (4.11) followed
by Algorithm 2 to correspond to a model with the correct state dimensions at each vertex.

Explicitly for each of the two models and each value of N in a range (shown in Figure 4-7 we
perform the following steps fifty times

1. Construct N i.i.d. samples from the leaf variables of the model and form the associated sample
covariance matrix Σ̂N2 .

2. Solve the approximate covariance decomposition convex program with γ = 0.6 and λ0 =
1, λ1 = 0.5, λ2 = 0 (using a combination of YALMIP [41] and SDPT3 [56]) with input Σ̂N2
and the appropriate tree T shown in Figure 4-6.

3. Round the solution of the convex program by applying Algorithm 2.

4. Use Algorithm 1 to explicitly construct a normalized parametrization MT (R̂, Q̂v, Âv) of a
Gaussian latent tree model from the rounded solution of the convex program.

5. Check if the dimensions of R̂ and the Q̂v match the state dimensions of the underlying models
shown in Figure 4-6.

We note that the recovered structures were typically the same for a range of γ around the chosen
value. In practice the regularization parameters γ and λ1 could be chosen by cross-validation.

Figure 4-7 shows the results indicating that with sufficiently many samples, the method is
successful in both cases in recovering the state dimensions of the model, demonstrating that this
procedure is likely to be consistent under appropriate assumptions on the underlying model and on
the choices of regularization parameter.

Computational Complexity It is not straightforward to give an accurate estimate of the com-
putational complexity of interior point methods for solving SDPs as the complexity depends a great

74



0 100 200 300 400 500
0

0.2

0.4

0.6

0.8

1

number of samples N

em
pi

ric
al

 p
ro

ba
bi

lit
y 

of
 s

uc
ce

ss

Figure 4-7: For each of the two trees shown in Figure 4-6 and each N we repeat the following
procedure 50 times. We form a sample covariance matrix fromN i.i.d. samples of the leaf variables of
a Gaussian latent tree model defined with respect to the given tree with the given state dimensions.
We use our method to learn the parameters and state dimensions of a Gaussian latent tree model,
and check whether the state dimensions match those of the underlying model. On the vertical axis
we plot the proportion of trials in which all state dimensions were identified correctly. The solid
blue curve corresponds to the tree on the left in Figure 4-6 and the dashed black curve corresponds
to the tree on the right in Figure 4-6.

75



deal on the extent to which problem structure is exploited in the solver. In particular, when using
a high-level modeling language like YALMIP to interface with a lower-level solver like SDPT3, it is
not always clear what transformations have been applied to exploit problem structure. Neverthe-
less, to give a sense of how our method scales with problem size, we give a conservative estimate
of the complexity of solving the exact covariance decomposition SDP for a tree where each vertex
has q children and the leaves of the tree are at scale d.

Let n = qd be the number of leaf variables. Then the covariance decomposition SDP (4.8) in
has

d∑
i=0

qd−i
(
qi + 1

2

)
=
qd

2
(
1 + q + · · ·+ qd + d+ 1

)
= O(n(n+ d))

variables and O(n2) linear equality constraints, making the complexity per iteration of an interior
point solver in the worst case O(n6) [11]. This analysis is very conservative, ignoring a good deal of
the block diagonal structure in the problem. Since the problem we are solving is very structured, it
is likely that emerging first-order methods for solving structured convex programs could be applied
to this problem [6]. Such methods have lower the computational complexity, and, perhaps more
importantly in practice, require much less memory than generic logarithmic barrier-based interior-
point methods.

Another possible approach to reducing the complexity of semidefinite-programming-based meth-
ods for the problem considered in this chapter is to develop related methods that are less global,
but more computationally tractable, than those considered in this chapter. We briefly discuss this
point of view in Chapter 5.

4.7 Discussion

In this chapter we have considered the problem of learning the parameters and state dimensions
of a Gaussian latent tree model given the tree and the covariance among the leaf variables. We
formulated an SDP that, together with a ‘rounding’ scheme, approximately decomposes the covari-
ance matrix among the leaf variables as a sum of block diagonal positive semidefinite matrices with
nested column spaces. Given any such decomposition we can recover (by Algorithm 1) an explicit
parametrization of a Gaussian latent tree model that approximately realizes the given covariance.
We give conditions on the underlying latent tree model that ensure the decomposition procedure
identifies the correct model (up to equivalence). Finally we formulate a variation on the covariance
decomposition SDP that, together with a ‘rounding’ scheme, approximately decomposes a given co-
variance matrix as a sum of block diagonal positive semidefinite matrices with nested column spaces.
We demonstrate the stability properties of this approximate decomposition method by simulation,
showing that given sufficiently many i.i.d. samples of the leaf variables of an underlying Gaussian
latent tree model, our method can correctly identify the state dimensions of the underlying model.
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We discuss avenues of further research stemming from this work in Chapter 5.

4.8 Proofs for Chapter 4

In this appendix we provide proofs for main technical results in this chapter.

4.8.1 Proof of Proposition 8

Proof of Proposition 8. To prove the first part of Proposition 8 we take L0 = (An · · ·A1)R(An · · ·A1)T ,
Ln = Qn and for 1 ≤ i ≤ n−1, Li = (An · · ·Ai+1)Qi(An · · ·Ai+1)T . From the discussion prior to the
statement of Proposition 8 it is clear that the Li satisfy properties 1 and 2. Since Bin(Li) = Li the
Li are block diagonal. If j < i then for every v ∈ Vi there is some u ∈ Vj such that Cn(v) ⊂ Cn(u).
Indeed u is the ancestor of v at scale j. Hence the support of Lj contains the support of Li whenever
j < i, verifying property 3.

Conversely, suppose we are given L0, L1, . . . , Ln satisfying properties 1–3. We argue by induction
on n that there is a Gaussian latent tree model that has Σn as the covariance at scale n.

If n = 0 we choose the tree T = T0 to have a single vertex and no edges, and take R = L0.
Suppose that if n = k and L̄0, . . . , L̄k satisfy properties 1–3, then there is some Gaussian latent tree
model MTk(R,Qv, Av) that has

∑k
i=0 L̄k as the covariance among its leaf variables. Now consider

the case n = k + 1. Since R(Li) ⊂ R(Lk) for i ≤ k we can write

Σk+1 = Lk+1 +Ak+1(L̄k + · · ·+ L̄0)ATk+1

for some L̄i, i = 0, 1, . . . , k where Ak+1 is a matrix the columns of which are an orthonormal basis
for the space spanned by the eigenvectors corresponding to the non-zero eigenvalues of Lk. Since
each of the Li are block diagonal with nested support, the same is true of the L̄i. Since Lk is block
diagonal, we can take Ak+1 to be block diagonal (with corresponding block-diagonal structure).
Similarly since R(Lj) ⊂ R(Li) for j ≤ i the same holds for the L̄i.

Applying the induction hypothesis there is a Gaussian latent tree model MTk(R,Qv, Av) such
that the covariance Σk at scale k of the model is

∑k
i=0 L̄k. Let Tk+1 be a tree constructed as follows.

Take Tk and add a new vertex for each block in the block diagonal structure of Lk+1. Then if v
is any of these new vertices, add an edge between v and the leaf of Tk that corresponds to a block
of Ak+1L̄kA

T
k+1 that contains the block of Lk+1 corresponding to v. Finally, for v ∈ Vk we take

AC(v) to be the relevant block of Ak+1, and for v ∈ Vk+1 we take Qv = [Lk+1]v, the block of Lk+1

corresponding to v. This specifies a Gaussian latent tree modelMTk+1(R,Qv, Av) with the desired
properties.
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4.8.2 Proof of Proposition 9

Recall that Proposition 9 provides conditions under which we can certify that L?0, . . . , L
?
n is the

unique solution of the covariance decomposition SDP.

Proof of Proposition 9. By assumption the (L?0, . . . , L
?
n) is a feasible point for (4.8). The first

property in the statement of Proposition 9 simply states that Y is dual feasible. The second
property is the complementary slackness condition for semidefinite programming. Since we have
constructed primal and dual feasible points that satisfy the complementary slackness conditions it
follows that (L?0, . . . , L

?
n) is an optimal point of the primal SDP (4.8).

It remains to show that under these conditions (L?0, . . . , L
?
n) is the unique optimal point of the

primal SDP (4.8). Arguing by contradiction, assume this is not the case. Then there is some
other optimal point (L̃0, . . . , L̃n) of the primal SDP. Since (L?0, . . . , L

?
n) 6= (L̃0, . . . , L̃n) and yet∑n

i=0 L
?
i =

∑n
i=0 L̃i it follows that L?i 6= L̃i for at least two indices i. Let j1 < j2 be the smallest

two indices such that L?j1 6= L̃j1 and L?j2 6= L̃j2 .
By convexity ((L?0 + L̃0)/2, . . . , (L?n + L̃n)/2) is also an optimal point for the primal SDP.

Hence there exists Y such that λiI − Bin(Y ) � 0 for i = 0, 1, . . . , n and Bin(Y )(L?i + L̃i) = 0 for
i = 0, 1, . . . , n. Since L?j1 � 0 and L̃j1 � 0 and (λj1I − Bj1n (Y ))(L?j1 + L̃j1) = 0 it follows that
(λj1I − Bj1n (Y ))L?j1 = 0 and (λj1I − Bj1n (Y ))L̃j1 = 0. Hence

(λj1I − Bj1n (Y ))(L?j1 − L̃j1) = 0. (4.12)

Note that by our choice of j1 and j2, L?j1 − L̃j1 satisfies Bj2n (L?j1 − L̃j1) = L?j1 − L̃j1 . It then follows
from (4.12), the fact that j1 < j2 so Bj2n Bj1n = Bj2n , and properties of block diagonal matrices that

Bj2n
[
(λj1I − Bj1n (Y ))(L?j1 − L̃j1)

]
= Bj2n (λj1I − Y )Bj2n (L?j1 − L̃j1) = 0. (4.13)

To reach a contradiction, it suffices to show that L?j1 − L̃j1 = 0. To achieve this, we need only show
that λj1I − Bj1n (Y ) is invertible as then we can solve (4.12) to obtain L?j1 − L̃j1 = 0. Since j1 < j2

it follows from our choice of the λi that λj1 > λj2 . Hence

λj1I − Bj2n (Y ) � λj2I − Bj2n (Y ) � 0

since Y is dual feasible. This establishes that λj1I − Bj2n (Y ) is invertible, showing that L?j1 = L̃j1 ,
yielding a contradiction.
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4.8.3 Proof of Lemma 12

Lemma 12 shows that to construct a global dual certificate that proves that the covariance de-
composition SDP correctly decomposes the scale-n covariance of a Gaussian latent tree model, it
suffices to construct and combine local dual certificates corresponding to the subtrees consisting of
just a parent and all of its children.

Before providing a proof of Lemma 12 we record a straightforward result that holds simply
because any principal submatrix of a positive semidefinite matrix is itself positive semidefinite.

Lemma 13. If 0 ≤ i ≤ n and X � 0 is a |Vi| × |Vi| matrix then Bin(X) � 0.

Furthermore, it will be useful to have notation for the state transition matrix [48] corresponding
to the scale-level abstraction of a Gaussian latent tree model. For i, j ≥ 0 define

Φij =


I if i = j

Aj · · ·Ai+1 if i < j

Φji
T

if i ≥ j.

Note that the state transition matrix depends on the parametrization of the Gaussian latent tree
model. In the case where the model has a normalized parametrization, the state transition matrix
has some nice properties that will be used a number of times in the sequel.

Lemma 14. If MT (R,Qv, Av) is a normalized parametrization then if k ≥ j ≥ i
1. Φji Φij = I

2. Φij Φji � I

3. Φkj Φik = Φij .

Proof. Since the parametrization is normalized AC(v)TAC(v) = I for all non-leaf variables v. Hence
for all i = 1, 2, . . . , n, ATi Ai = I and so the first statement holds by the definition of Φji . The
second statement holds simply because if X is a matrix that satisfies XTX = I then its non-zero
singular values are all one, hence the eigenvalues of XXT are all bounded above by one. Finally
the third statement follows from the definition of Φ•• and the first statement.

Proof of Lemma 12. First, note that the assumptions in Lemma 12 are independent of the choice of
basis for the state spaces at each non-leaf vertex v. Hence we can assume, without loss of generality,
that the parametrization is normalized. As such we liberally make use of the results in Lemma 14.

We first take each of the certificates Mv and combine them to give a certificate for each scale.
Indeed we define for each 1 ≤ i ≤ n the |Vi| × |Vi| matrix

Mi = I − diag(Mv1 , . . . ,Mvm)

79



where Vi−1 = {v1, . . . , vm}.
Claim 1. The matrices Mi have the following properties.

1. Mi � I

2. If k < i then Mi Φki = Φki .

3. If k ≥ j ≥ i then Bjk(Φik Mi Φki ) = 0.

Proof. Since each Mv � 0, it follows that diag(Mv1 , . . . ,Mvm) � 0 and so Mi � I.
If k < i then

Mi Φki = (I − diag(Mv1 , . . . ,Mvm))× diag(AC(v1), . . . , AC(vm)) Φki−1 = Φki (4.14)

since Mv1AC(v1) = · · · = MvmAC(vm) = 0 where Vi−1 = {v1, . . . , vm}.
If k ≥ j ≥ i then since [Mi]vv = 0 for all v it follows from the definition of Φik as a product of

block diagonal matrices that Bik(Φik Mi Φki ) = 0. Since j ≥ i implies that Bjk = BjkBik it is the case
that

Bjk(Φik Mi Φki ) = BjkBit(Φik Mi Φki ) = 0,

completing the proof of the claim.

With the claim established we now construct a ‘global’ dual certificate by taking

Y =
n∑
i=1

(λi−1 − λi) Φin Mi Φni .

We now show that Y satisfies the conditions of Proposition 9 with L?0 = Φ0
n R Φn0 and L?i =

Φin Qi Φni for i = 1, 2, . . . , n.
First we show that Y is feasible for the dual semidefinite program (4.9) by showing that property
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1 in Proposition 9 holds.

Bin(Y ) =
n∑
j=1

(λj−1 − λj)Bin(Φjn Mj Φnj )

=
n∑

j=i+1

(λj−1 − λj)Bin(Φjn Mj Φnj ) by Claim 1

(a)

�
n∑

j=i+1

(λj−1 − λj)Bin(Φjn I Φnj )

(b)

�
n∑

j=i+1

(λj−1 − λj)I

= λiI as the sum telescopes and λn = 0.

The inequality marked (a) holds because Φjn (·) Φnj and Bin both preserve the positive semidefinite
cone and Mi � I. The inequality marked (b) holds because Φjn Φnj � I, and so by Lemma 14,
Bin(Φjn Φnj ) � Bin(I) = I. Note that we used the fact that i ≤ j implies that λi ≥ λj in this
argument to ensure all of the terms in the sum

∑n
j=i+1(λj−1 − λj) are non-negative.

We use a very similar argument to establish the complementary slackness conditions (property
2 of Prop. 9) We first consider the case i = 0. Then

Y L?0 =
n∑
j=1

(λj−1 − λj) Φjn Mj Φnj Φ0
n R Φn0

(a)
=

n∑
j=1

(λj−1 − λj) Φjn Mj Φ0
j R Φn0

(b)
=

n∑
j=1

(λj−1 − λj) Φjn Φ0
j R Φn0

(c)
= L?0

n∑
j=1

(λj−1 − λj)

= λnL
?
0 = 0 as the sum telescopes and λn = 0

where equalities (a) and (c) are applications of property 3 of Lemma 14 and (b) follows from Claim
1. In the cases where i = 1, 2, . . . , n we use the additional fact that since Bin(Li) = Li it follows
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that Bin(X)Li = Bin(XLi) for all symmetric |Vn| × |Vn| matrices X. Then

Bin(Y )L?i =
i∑

j=1

(λj−1 − λj)Bin(Φjn Mj Φnj )L?i +
n∑

j=i+1

(λj−1 − λj)Bin(Φjn Mj Φnj L
?
i )

(a)
=

n∑
j=i+1

(λj−1 − λj)Bin(Φjn Mj Φnj Φin Qi Φni )

= λiL
?
i

where the equality marked (a) follows from Claim 1, and the rest of the argument is exactly the
same as that used in the case where i = 0.

4.8.4 Proof of Theorem 18

In this section we prove the following result from which Theorem 18 directly follows by taking
n = |C(v)|, U = R(Av), Mv = πTU⊥Y πU⊥ , and the partition of |C(v)| to be that induced by the
children of v.

Proposition 10. Suppose P is a partition of {1, 2, . . . , n}. Given a subspace U of Rn of dimension
n− k, there is a k × k positive semidefinite matrix Y such that

[πTU⊥Y πU⊥ ]I = I for all I ∈ P

as long as [PU ]I ≺ 1/3I for all I ∈ P.

Our proof of Proposition 10 follows closely the proof of Theorem 5 in Chapter 3. Before
proceeding, we introduce some convenient notation. Let us fix a partition P of {1, 2, . . . , n}
throughout this section and label its elements I1, . . . , Im. For the purposes of this proof we let
diag : Sn → S |I1| × · · · × S |Im| be defined by

diag(X) = (XI1 , . . . , XIm).

Let diag∗ denote its adjoint, so that diag∗diag is the orthogonal projector onto the set of block
diagonal matrices with support corresponding to the partition P.

Define the cone K = S |I1|+ × · · · × S |Im|+ and write ≺K to indicate the order induced by the
(interior of the) cone K. We also use the norm ‖(X1, . . . , Xm)‖K = max1≤i≤m ‖Xi‖ throughout
this section. Note that it follows from the Russo-Dye theorem [8] that if B preserves K then
‖B‖K→K = ‖B(I, . . . , I)‖K.

Proof of Proposition 10. Suppose U has dimension n−k. Define a map A : Sk → S |I1|×· · ·×S |Im|
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by
A(X) = diag(πTU⊥XπU⊥).

Then to show that there is a matrix Y such that diag(πTU⊥Y πU⊥) = I and Y � 0, it suffices to
show that A†(I, . . . , I) � 0 and take Y = A†(I, . . . , I). Furthermore, since A∗ maps K into Sn+, it
suffices to show that (AA∗)−1(I, . . . , I) ∈ K.

Using the fact that diag(Adiag∗(B1, . . . , Bm)) = ([A]I1B1, . . . , [A]ImBm), we can write

(AA∗)(X1, . . . , Xm) = diag(PU⊥diag∗(X1, . . . , Xm)PU⊥)

= diag((I − PU )diag∗(X1, . . . , Xm)(I − PU ))

= (X1 − [PU ]I1X1 −X1[PU ]I1 , . . . , Xm − [PU ]ImXm −Xm[PU ]Im) +

diag(PUdiag∗(X1, . . . , Xm)PU )

= (L1(X1), . . . , Lm(Xm)) + diag(PUdiag∗(X1, . . . , Xm)PU )

where Li(Xi) = ((1/2)I − [PU ]Ii)Xi + Xi((1/2)I − [PU ]Ii). Define the maps L(X1, . . . , Xm) =
(L1(X1), . . . , Lm(Xm)) and B(X1, . . . , Xm) = diag(PUdiag∗(X1, . . . , Xm)PU ) so that AA∗ = L+B.
Since [PU ]Ii ≺ (1/3)I for all i = 1, 2, . . . ,m, the matrices (1/2)I − [PU ]Ii are positive definite, and
so the inverses of the Lyapunov operators L−1

i are positive maps, in the sense that they map
positive semidefinite matrices to positive semidefinite matrices [8]. Furthermore, we have that
Li(I) = I − 2[PU ]Ii � (1/3)I so that L−1

i (I) ≺ L−1
i (3Li(I)) = 3I.

Recall that our aim is to show that (AA∗)−1(I, . . . , I) ∈ K. Since each L−1
i is a positive map it

follows that L−1(X1, . . . , Xm) = (L−1
1 (X1), . . . , L−1

m (Xm)) preserves the cone K. It is easily checked
that B also preserves K. Furthermore, B(I, . . . , I) = ([PU ]I1 , . . . , [PU ]Im) ≺K (1/3)(I, . . . , I) and
L−1(I, . . . , I) = (L−1

1 (I), . . . , L−1
m (I)) ≺K 3(I, . . . , I).

We now expand (AA∗)−1 = (L+ B)−1 as a Neumann series. This is valid as

L−1B(I, . . . , I) = L−1([PU ]I1 , . . . , [PU ]Im) ≺K (1/3)L−1(I, . . . , I) ≺K (I, . . . , I)

and so ‖L−1B‖K→K = ‖L−1B(I, . . . , I)‖K < 1. The expansion yields

(AA∗)−1(I, . . . , I) = L−1[(I, . . . , I)− BL−1(I, . . . , I)] + L−1BL−1B[(AA∗)−1(I, . . . , I)]

so that

(AA∗)−1(I, . . . , I) =
∞∑
i=0

(L−1BL−1B)i{L−1[(I, . . . , I)− BL−1(I, . . . , I)]}.

As such, to show that (AA∗)−1(I, . . . , I) ∈ K it suffices to show that L−1BL−1B preserves K and
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L−1[(I, . . . , I)− BL−1(I, . . . , I)] ∈ K. Since B and L−1 preserve K it follows that L−1BL−1B also
has this property. Furthermore, L−1[(I, . . . , I)− BL−1(I, . . . , I)] ∈ K because

BL−1(I, . . . , I) ≺K 3B(I, . . . , I) = 3([PU ]I1 , . . . , [PU ]Im) ≺K (I, . . . , I)

and L−1 preserves K. This completes the proof.
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Chapter 5

Conclusion

5.1 Contributions

In this thesis we examined two subspace identification problems—factor analysis and its refinement,
learning Gaussian latent tree models given the tree and the covariance among the leaves. Both of
these problems are intractable to solve exactly in high dimensions. We provided a new analysis of
a semidefinite programming-based heuristic, minimum trace factor analysis, for the factor analysis
problem, and extended this convex optimization based method and its analysis to the Gaussian
latent tree setting.

In our analysis of minimum trace factor analysis, we show that under simple incoherence con-
ditions on the subspace we are trying to identify, minimum trace factor analysis can successfully
identify that subspace. These conditions are sufficiently simple that they can easily be translated
into problem-specific conditions when the subspaces that arise in a given problem have particular
structure. As an example of this, we show how to convert our incoherence conditions into more
problem-specific conditions when we use a factor analysis model in a subspace-based method for
direction of arrival estimation. We also consider when minimum trace factor analysis succeeds on
random problem instances, when the subspace to be identified is chosen uniformly from the set of r
dimensional subspaces of Rn. We show that for large n, with high probability minimum trace factor
analysis succeeds for such problem instances as long as r ≤ n − cn5/6 for some constant c. This
gives a precise sense in which minimum trace factor analysis is a good heuristic for factor analysis.

We then extend minimum trace factor analysis to the problem of learning the parameters and
state dimensions of a Gaussian latent tree model given the index tree and the covariance among
the leaves. We show that if the underlying tree model has all scalar states and the parameters
satisfy certain ‘balance’ conditions then our semidefinite programming-based heuristic correctly
identifies the model. In the case where the underlying tree model has non-scalar states, we develop
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incoherence-based conditions on the model parameters (closely related to our conditions for the
success of minimum trace factor analysis) that ensure our semidefinite program successfully identifies
the model parameters and state dimensions. We propose a modification of our method to deal with
the case where the covariance matrix we are given does not arise as the covariance of some Gaussian
latent tree model, and demonstrate by simulation that this method can identify the state dimensions
of a true underlying model given only sample covariance information.

5.2 Further Work

In this final section we discuss some of the many research directions that arise from the work
presented in this thesis.

5.2.1 Diagonal and Low-Rank Decompositions

The work in this thesis does not give a complete understanding of the largest rank of a low-rank
matrix with random row/column space that can be recovered by minimum trace factor analysis.
Simulations suggest that our result that matrices of rank n − O(n5/6) can be recovered is clearly
not optimal. Indeed numerical evidence suggests that the correct bound is of the form n−O(

√
n).

This has the interesting interpretation in terms of ellipsoid fitting that we can fit an ellipsoid to
∼ k2 i.i.d. Gaussian points in Rk.

All of our results only apply to the exact decomposition problem. In particular we always
assume that the ‘input’ to our methods, Σ, admits an exact decomposition into a diagonal and a
low-rank matrix. In practice we would not expect this assumption to hold. As such it is important
to analyze a modification of minimum trace factor analysis (along the lines of the approximate
covariance decomposition SDP in Chapter 4). Ideally we would seek structural stability results
from such an analysis. By this we mean that if the input Σ is close (in some sense) to admitting a
decomposition into a diagonal and a rank r matrix then the convex program decomposes Σ as the
sum of a diagonal matrix, a rank r matrix, and a small error term. Such results have been derived
for related problems [15] and we expect them also to hold in this case under appropriate tightenings
of the conditions on the model required for exact diagonal and low-rank decomposition.

Recall that we can think of the diagonal and low-rank decomposition problem as an instance
of low-rank matrix completion with a fixed pattern of unknown entries in the matrix. It would be
interesting to extend our deterministic conditions for decomposition to other deterministic patterns
(beyond diagonal and block diagonal) of unknown entries, such as banded matrices, or trees. We
expect that such an analysis would also involve some of the combinatorial properties of the graph
corresponding to the unknown entries.
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5.2.2 Gaussian Latent Tree Models

As for diagonal and low-rank decompositions, our analysis only applies to the case where we are
given a covariance matrix that arises as the covariance among the leaves of a Gaussian latent
tree model. Extending our analysis to the case where we are only given a covariance matrix that
approximates the covariance matrix among the leaves of the tree is a natural next step. A natural
extension of this would be to assume we are only given certain projections of the covariance matrix
among the leaves, or projections of the sample covariance among the leaves. Data of this type arises
in problems in oceanography, for example, where the data available for some parts of the area being
observed are at a much lower resolution than in other parts of the observed area.

In Chapter 4 we always assume that we are given the index tree with respect to which the
Gaussian latent tree model is defined. While there are a number of methods in the phylogenetics
and machine learning literature ( [17,22,45] for example) for learning such a tree from leaf covariance
information, it would be interesting if we could extend the convex optimization-based framework
introduced in this thesis to also learn the tree structure.

It would also interesting to develop alternative convex optimization-based approaches to the
problem of learning parameters and state dimensions of Gaussian latent tree models that are less
global in nature but computationally very efficient. Methods that operate on a single parent-
children cluster of nodes at a time would be much more computationally efficient and may offer
similar performance in cases where the given tree matches the conditional independence structure in
the data very well. Such approaches may, however, be quite sensitive to the choice of tree structure.
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