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Abstract: A new technique for modelling the
dynamic spectral characteristics of DFB semicon-
ductor lasers above threshold, which is based on
the transmission-line laser model, is described.
This includes the effects of index carrier depen-
dence and longitudinal index variations. The time-
domain responses and spectra of quarter-wave
shifted grating devices are compared with
unshifted devices under transient conditions.

1 Introduction

Distributed feedback (DFB) semiconductor lasers offer
improved spectral characteristics over Fabry-Perot
devices because of the use of a frequency selective grating
over their length (Fig. 1). Their ability to remain in a
single-longitudinal-mode  while under modulation
(dynamic single-mode: DSM) reduces pulse dispersion in
long-haul fibre-optic communications systems. This
allows higher data rates than with Fabry-Perot sources.
However, dynamic single-mode operation is difficult to
achieve [1]. Even when single-mode operation is
achieved, by careful design of the laser’s structure, the
spectrum is broadened by chirping [2-4], causing disper-
sion [5].

Although models are available to predict the steady-
state spectra of DFB lasers [6-8], few have been
extended to dynamic operation. Hemni et al. have
studied the effects of multimode oscillation in optical
systems including modulated DFB lasers [9]. However,
laser chirp was not considered. Bickers and Westbrook
have modelled chirp using a simple, single-mode rate-
equation approach [10]. However, longitudinal inhomo-
geneities were not considered. Kinoshita and Matsumoto
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Fig.1  Typical DFB structure, bisected along the active region to
show grating structure
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modelled transient chirping and included longitudinal
hole burning [11]. However, their model assumed that
the device oscillated in a single longitudinal mode.

Ideally, any dynamic model should include both chirp-
ing and multiple modes. This would allow the dispersion
penalities caused by both spectral broadening mecha-
nisms to be assessed. This paper presents such a model,
which is based on a previously described scattering
matrix approach [12] and is one of a family of laser
models called transmission-line laser models (TLLMs)
[13-17].

Transmission-line laser models split the laser cavity
longitudinally into a number of sections. Each section
contains a centrally placed scattering matrix which modi-
fies forward and backward travelling waves on transmis-
sion lines which connect the matrices. Iteration in the
time-domain gives the output wave from which spectra
are found using Fourier transforms.

Unlike transfer-matrix models, which are solved in the
frequency domain [18, 19, 6], TLLMs are suitable for
dynamic simulations. Also, because the time evolutions of
both the optical field and the carrier density are solved
together, the models easily cope with gain saturation
caused by carrier depletion [6].

The model may be applied to multicontact lasers, such
as phase-tunable lasers [20], tunable lasers [21, 22], and
lasers designed to compensate for spatial hole burning
[23]. The model may also be applicable to tunable DFB
laser amplifiers [24], the noise properties of DFB laser
amplifiers [19] and to bistable DFB switches [25].

2 Model theory

Much of the model’s theory exists already. This is
because the TLLM already has been applied to DFB
lasers without chirp [12] in a model derived from a
Fabry-Perot laser model [13]. As with all TLLMs, the
model is based on the transmission-line modelling (TLM)
method, which uses transmission lines as an intermediate
model between reality and a computer algorithm [26].

A simple TLM consists of two repeated operations;
scattering and connecting. These modify voltage pulses
travelling between scattering nodes on transmission lines.
The scattering operation takes voltage pulses incident on
the nodes V', and scatters them to give voltage pulses
reflected from the nodes, ,V". It can be written as a scat-
tering matrix, S, operating on vectors V, i.e.

V=S kVi (1)
where k is the iteration number.
The scattering operation can be derived from a know-

ledge of the impedances of the transmission lines and
associated components, such as resistors, at the nodes. It
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may also include source terms, ¥* so that

WFr=8 Vi, 2
The connection operation describes how the reflected
pulses propagate between scattering nodes to become

new incident pulses for the next scattering operation.
Again, it can be written as a matrix operation,

k+lVl=C'er 3
The connection matrix can be derived from the topology
of the network and is usually very sparse as only adjacent
nodes are connected. Note that the transmission lines
must have equal delays, equal to the iteration timestep
AT so that all pulses arrive at the nodes in synchronism.

The numerical computation consists of initialising the
value of vector ¥ and then repeating eqns. 2 and 3 to
find the time evolution of the vector V' or the vector ¥".
In most cases, however, the required output quantity is a
function of one of these vectors.

In transmission-line laser models, the voltage pulses
represent the optical fields along the cavity. A chain of
transmission lines form a one-dimensional model of the
optical cavity, from facet to facet. The scattering matrices
represent the optical process of stimulated emission,
spontaneous emission and attenuation. A rate equation
model of the local carrier density sets the magnitudes of
these processes at a particular matrix.

Such a model has been used to simulate Fabry-Perot
lasers [13-15], external-cavity lasers [16] and mode-
locked lasers [17]. The addition of external interfaces has
allowed laser amplifiers to be studied [27-29].

The DFB model, presented in Reference 12, used
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Fig. 2  Two methods of adding phase delays to T LM models

a Using a stub directly connected to the lines
b Using circulators and separate stubs for the forward and backward waves
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Fig. 3  Complete DF B laser model
p is a phase-shift stub, [ and c are gain-filter stubs, i = injection current
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modified connection matrices to represent cross-coupling
between the forwards and backwards travelling waves.
However, because the delays of the transmission line
have to be constant, index changes, causing chirping,
could not be modelled.

The problem of chirping in Fabry-Perot TLLMs was
solved by placing variable impedance stub extensions at
the ends of the laser cavity [15]. These served to alter the
phase-length of the cavity over a limited bandwidth. The
stubs were placed at the cavity ends, rather than along
the entire cavity length, to prevent midcavity coupling
between the forward and backward travelling waves. This
intracavity coupling would be a result of the impedance
discontinuities caused by the stubs. Such coupling was
found to make the Fabry-Perot laser model behave like a
DFB laser model [30].

A new approach is introduced in this paper. Instead of
connecting the stubs in series with the transmission lines
modelling the cavity (Fig. 2a), circulators are used (Fig.
2b). These send the waves, out of the stubs, in the correct
direction. For example, a forward wave will enter the
first, left-hand, circulator (port 1) and be directed to the
stub port (port 2). Because the stub presents an imped-
ance mismatch, part off the wave will be reflected back
into port 2. The circulator then directs this reflected wave
to port 3, where it continues on as a forward wave. The
remainder of the wave enters the stub to be delayed
before returning to port 2 to be directed to port 3.

Backward waves simply pass from port 3 to port 1 of
this first circulator. A second set of three-port circulators
is used to delay the backward waves. This offers the
possibility of having a direction-dependent index, as used
in optical isolators.

The phase delay caused by the stubs is varied by alter-
ing their impedance. For example, an infinite stub imped-
ance gives a reflection with zero phase shift; a matched
capacitive stub gives a phase shift of (2n - AT - f)
radians; a zero impedance stub gives n radians; a
matched inductive (shorted) stub gives (—27 - AT - f)
radians, where f is the optical frequency. Other phase
shifts are available, over a limited bandwidth, by using
other reflection coefficients.

A complete DFB model is shown in Fig. 3. Here,
scattering matrices have been inserted between the circu-
lators of each section. Also, alternate sections’
transmission-lines have different impedances. This creates
impedance mismatches at the section boundaries, which
couple the forward and backward waves [12]. Each
section has an associated carrier rate equation model to
enable the local gain, refractive index and spontaneous
noise to be calculated from the injection current and the
carrier recombination rates [13].

If two sections of the model were to be used to rep-
resent each period of the DFB grating on the real device,
the number of sections and hence the computational task
would be excessive. However, it is possible to represent
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an odd number of grating periods with a single pair of
model sections without compromising the model’s accu-
racy [12]. This technique relies on the model having a
‘square’ grating modulation. This can be decomposed
into a number of sinusoidal gratings at harmonics of the
grating period by Fourier techniques. One of these har-
monics models the real device’s grating period.

Note that the amplitude of each harmonic decreases
with the harmonic number, e.g. the fifth harmonic pro-
duces a coupling of one-fifth of the amplitude of the fun-
damental. For this example, the coupling of each period
of the square grating has to be increased by a factor of
five over the coupling of the real laser’s grating to com-
pensate. A simpler and much neater rule is that the coup-
ling x per unit length must be equal for model and real
devices [12].

If a small number of sections is used, the optical field
will be sampled less than once per wave period. This
undersampling is essential for realistic computer times.
Undersampling has been used in all TLLMs and does
not compromise accuracy if the sampling rate (section
length/group velocity) is more than twice the bandwidth
of the optical wave [13]. The use of two sections per
grating period ensures that the DFB’s spectrum always
lies near the centre of the modelled spectrum.

3 Derivation of the algorithm from the
transmission-line model

Once the transmission line representation of the device
has been derived, an algorithm can be produced. One of
the advantages of TLM is that the algorithm is always an
exact representation of the transmission-line model; no
inaccuracies are introduced once the transmission-line
representation has been formulated. This means that all
approximations have physical meaning because they are
associated with the parameters of the transmission lines.

The terms in eqns. ! to 3 will now be derived for the
DFB laser model. Note that the travelling optical fields
(electric fields) are represented by voltage pulses A4
(forwards) and B (backwards) in the model. Thus, a unity
constant m, with dimensions of metres, is used to convert
between electric field and voltage to maintain dimension-
al correctness.

3.1 Scattering matrices, S

The scattering matrix can be split into two scattering
matrices; one for each wave direction. This is possible as
there is no cross-coupling between the wave directions in
the scattering operation. Scattering matrices for a cavity
without phase shifting elements were derived in Reference
32. These have been extended to include the circulators
and stubs by consideration of the reflections at the stub-
cavity interfaces. The scattering process for the forward
wave, with incident pulses from the previous section
Ai(n), the gain filter’s capacitive stub Ai(n), the gain
filter’s inductive stub Ai(n) and the phase shifting stub
Al(n), is

An) [ g+ Z,—1)  2uY(Z,—1)
Adm) 1 9Z,+ 1) QY —»Z,+ 1)
Ar(n) W+ Z) 9Z; + 1) 2YdZ, + 1)
| Apn) g + y)2Z, AtY, Z,
@Z,— 1) L,Z,2]
0
* 0
. Z,0,Z,t
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The scattering process for the backward wave is simply
the above formula with all wave amplitudes A replaced
by wave amplitudes B.

The terms within this matrix have been derived pre-
viously [32], but will be repeated here for clarity. Note
that all the terms may vary from section to section and,
therefore, should technically have subscripts n. Also,
some terms are time-dependent and vary with the iter-
ation number k.

The spectral dependence of the gain is modelled using
transmission-line stub filters [13]. The sum of the gain-
curve filter’s stub admittances y, is

y=1+Y+YX ©)

The stubs’ admittances Y, (capacitive) and Y, (inductive)
are given in Reference 13.

The field gain, resulting from stimulated emission,
across a section of length AL is

g = exp [a ALT(N(n) — No)/2] — 1 ©)

where a is the gain cross-section, I' is the confinement
factor, N(n) is the carrier concentration within section n
and N, is the carrier density for transparency.

The attenuation, caused by free-carrier absorption and
scattering, across a section is

t =exp (—a, AL/2) 7

where «,, is the attenuation per unit length.

Spontaneous emission is modelled with a filtered
Gaussian (normal) distribution noise current I with a
mean-square value of [ 14]

3> = 2BLhf BINM))*m?/Z, ®

where f is the spontaneous emission coupling coefficient,
L is the laser’s cavity length, hf is the photon energy, B is
the bimolecular (radiative) recombination coefficient, m is
a unit constant with dimensions of metres and Z, is the
cavity wave impedance [13].

The phase-adjusting stub’s impedances Z; are nor-
malised to the cavity wave impedance and are given by

Z = |cot (nfln,/c)| ©)

and [ is the change in phase length across a section such
that

I=T % [N(n) — Np] dn/dN
e
where N, is an arbitrary carrier concentration for zero
phase shift and is usually set to the threshold carrier
density [15], 7, is the guide’s group effective index (equal
to the effective index in this dispersionless model) and ¢ is
the velocity of light in a vacuum.
The active region’s carrier index dependence dn/dN
can be related to Henry’s a factor by

(10)

dn_ x4 i
dN = 4nf an
2uY(Z, — 1) 2y An) |
2Y,(Z, + 1) 0 Adn)
@Y, —yZ,+ 1) 0 Ag(n)
4tY, Z, W1 —2Z) | [ Apn) ],
)
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3.2 Connection equations (C for the link-lines
between sections)

The connection equations in TLLM DFB models

describe the cross-coupling between the two wave direc-

tions occurring at the section interfaces. They were

derived in Reference 12 and are used alternately along

the laser model. They are

An+ D] [1+xAL —xAL
weil B | | kAL 1—-xAL
A(n) :I'
12
X kI:B(n +1) (12)
for a low-high impedance boundary and
An+2)| [1—-xAL K AL
el B+ 1| | —x AL 1+ AL
An+ 1) [
1
" k[zxn * 2)] 49

for a high-low impedance boundary «, AL is the grating
coupling per unit length for the device multiplied by the
length of one modelling section.

For a standard DFB device (e.g. Reference 2), eqns. 2
and 3 are applied alternately along the device length, i.e.
n=(, 3, 5, 7, ...). For quarter-wave shifted grating
devices (e.g. Reference 31), a zero reflection interface
(identity matrix) is inserted half way along the cavity.

There may also be coupling at the facets. For facets
placed at a low-high impedance boundary a simple
resistive termination can be used giving

x+1B(s) = \/ (R) - ,A(s)

v+ 141) = J(R) - B(1) at the rear facet (14)
where R is the power reflectivity of the facets [13], and s
is the number of sections.

A more complex model, including phase-shifting stubs

between the facets and the cavity, could be used to model
the effects of facet phase on mode-stability [33].

at the front facet

3.3 Connection equations C for the stubs within a
section)

There are also equations governing the reflections at the
ends of the transmission line stubs. These are half a time-
step long to ensure that pulses arrive back at the origin-
ating scattering matrix after a delay of one timestep.

For the inductive stubs in each section the reflection
coeflicient is negative, giving

k1 ALn) = — (AL

x+1Bi(n) = — ,Bi(n) (15)
For the capacitive stubs in each section the reflection
coefficient is positive, giving

K+ 14cn) = (ALn)

x+1BUn) = (Ben) (16)
For the phase-adjusting stubs, which may be inductive or
capacitive,

w1 Ap(n) = —Ax(n)

k+ 1 Bi(n) = —Bx(n)

when the cotangent in eqn. 9 is negative

or

x+1A45(n) = (A%(n)

x+1Bp(n) =  Bp(n)

when the cotangent in eqn. 9 is positive (17)
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3.4 Carrier density rate equation

If we assume that diffusion along the cavity is negligible,
then independent carrier density rate equations may be
used for each section of the model. This is a refinement
over most laser models, which use a single carrier density
rate equation to describe the density averaged over all
the cavity. These may not be accurate for lasers with low-
reflectivity facets, including laser amplifiers.

The rate equation for carrier density can be written

L) ANGs) — BING?  CINGT?
T I
S5 (N0 - NSt + g (19

where 4, B and C are the monomolecular, bimolecular
and Auger recombination coefficients [34], respectively,
wd is the cross-sectional area of the active region, g is the
electronic charge and I(n) is the component of injection
current injected into section n. The photon density, S(n),
within a section is related to the incident waves from
either side by

S(n) = ([A'm]* + [B )] /(hfeZ,m?) (19)

3.5 Output power

The power exiting the front facet P, is related to the wave
incident on the facet from the cavity, A"(s) and the facet’s
power reflectivity R, by [13]

P = [A"(91*(1 — Rwd/(Z,m?) (20)

This power is usually averaged over a number of iter-
ations to remove high frequency components.

4 Simulations of DFB devices

The following numerical results serve to test the validity
of the model and then to illustrate its value. A 1550 nm
device was modelled [2]. Its parameters are given in
Table 1 and were obtained from References 2, 34 and 35.
Note that the combination of bandnumber and number
of sections gives a central wavelength of 1632.65 nm.
However, this restriction could be eased by modification
of the algorithm.

Table 1: Laser parameters

Symbol Parameter name Value Unit
Ao Gain-peak wavelength 1630.65 nm
L Laser cavity length 200 gm
w Active region width 2 um
d Active region depth 0.15 um
r Optical confinement factor 0.3
a, Laser group effective index 4.2
N, Transparency carrier density 9.0x10"7 cm-3
a Laser gain constant 27x10-'% cm?
Oe Cavity attenuation factor 0.0 cm-!
R Laser facet reflectivities 0.0
A Monomolecular recombination

coefficient 1.0x10% !
B Bimolecular recombination

coefficient 86x10-"" cm3®s-!
c Auger recombination coeffficient 4.0 x10-2° c¢mSs-"'
B Spontaneous coupling factor 1x10-%
c Vacuum velocity of light 3x10'° cms™!
s Number of model sections 98
b Model bandnumber [13] 5
K Grating coupling per unit length 160 cm-'
/ Laser drive current 100 mA
N; Initial carrier density 1.5x10'® cm-3
AA Gain peak offset from bandcentre —-2.0 nm
Q Gain filters” Q-factor 12
a Henry's alpha factor 5.2
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4.1 Effect of number of model sections: devices
without chirp

The validity of using a small number of sections for a
large number of grating periods was tested by comparing
the transmission responses of models with an increasing
number of sections. The carrier concentration was fixed
and an impulse injected into the rear facet. The impulse
response, out of the front facet, was Fourier transformed
to obtain the transmission spectrum.

Fig. 4 shows the transmission spectra for unshifted-
DFB models with 23-, 96- and 392-sections and no
phase-adjusting stubs operated just below threshold.
Only a proportion of the bandwidths of the 98- and 392-
section models were plotted to allow comparison with
the response of the 23-section model. The responses of
the 98- and 392-section models were in good agreement
over the entire bandwidth of the 23-section model. The
23-section model’s response was only a good fit over the
stop-band. Thus, the 98 section model was thought to be
a good compromise between accuracy and computational
effort.
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Fig. 4 Transmission responses of 23- (solid-line), 98- and 960-

(broken-line) section models with no stub phase shift, just below threshold

4.2 Effect of number of model sections: devices with
chirp

The validity of the phase-shifting stubs was checked by

plotting the transmission response of a 23-section cavity

with different amounts of static shift (Fig. Sa). The test

was then repeated with a 98-section model (Fig. 5b).
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Fig. 5  Transmission responses 23- and 98-section model

a 23-section model just below threshold
A no phase shift A no phase shift
B 24 x 107 cm ™ shift in carrier density B
C —4.8 x 107 cm ™ shift in carrier density C
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Examination of Fig. Sa shows that the transmission
peaks are indeed shifted by altering the impedance of the
phase stubs. Two unwanted effects occurred, however.
The spacing between the two modes decreased with
increasing shifts from the centre of the band. Secondly,
when the modes were shifted down in frequency, other
transmission peaks appeared at the top-end of the model-
led bandwidth.

These effects were reduced in the 98-section model,
with the disadvantage that the computation time was
increased by a factor of about sixteen. Fig. 6 plots the
error in the mode positions against the change in carrier
concentration. Note that the error was symmetrical
about the zero-shift position. This Figure can be used as
a guide to the complexity of model required. It is not
expected that the secondary modes appearing at the band
edges will be a problem. This is because the gain-
spectrum model will filter these out [13].
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Fig. 8  Error in mode positions against the carrier density deviation
from N for the 23- and 98-section models
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4.3 Nonshifted DFB laser transient response

Many DFB models assume that the refractive index is
constant along the cavity. However, if there is gain satu-
ration along the cavity’s length, the index will also be
position dependent. Two simulations were used to inves-
tigate the effects of inhomogeneous index. The first
assumed a homogeneous index, governed by the average
carrier concentration within the cavity. In the second, the
index in each section was fixed by the carrier concentra-
tion within that section.

In both simulations, the laser was subject to a step
increase in injection current to 100 mA. This large value
was used to induce length-dependent saturation and also
to give short pulses and hence large spectral widths.

Fig. 7a shows the transient responses of a laser with a
homogeneous index. This shows a classic damped relax-
ation oscillation, common to all lasers. Fig. 7b shows the
spectra of the first and second pulses in Fig. 7a. The first
pulse’s spectrum (solid line) had an average width of
170 GHz for each mode.

The first pulse’s width was 12.5 ps. This gives a time-
bandwidth product of 2.12, less than the value of 2.33
given by the formula for Gaussian pulses, which has been
shown to be a good approximation for Fabry-Perot
lasers [15]. However, because of the asymmetry of the
DFB spectra, it is difficult to define their FWHM width
accurately. Note that this asymmetry, in particular the
prominence of the red ‘rabbit-ear’, is common to experi-
mental observations [2, 3, §, 9].
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Fig. 7  Transient response of DF B laser and spectra of first and second

pulses

a Transient response assuming homogeneous refractive index
b Spectra of first (solid) and second pulses (broken) (multiply PSD scale by 2 for
second spectrum)
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The model was re-run without including index varia-
tions to see whether homogeneous index variations had
any effect on the temporal responses of lasers. Only small
differences in the responses were observed. These could
be explained by phase shifts between the power envelope
and the averaging routine.

Fig. 8a shows the response of a laser allowing an inho-
mogeneous refractive index. Although the first pulses are
similar, there are noticeable differences between this and
the response using the homogeneous approximation. The
differences included a lower threshold carrier density, a
greater damping and a smoother response. The first
pulses were expected to be similar because of the absence
of gain saturation in these early times.
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Fig. 8  Transient response of DF B laser and spectra of first and second
pulses

a Transient response allowing inhomogeneous index
b Spectra of first and second pulses (multiply PSD scale by 2.5 for second
spectrum)

Fig. 8b shows the spectra of the first and second pulses
in Fig. 8a. The first pulse’s spectrum had an average
mode-width of 210 GHz. The first pulse’s width was
11.4 ps, giving a time-bandwidth product of 2.4, closer to
that of Fabry-Perot lasers. Note that the laser has settled
to a single mode for the second pulse. This explains the
smooth profile of the time-response.

The second pulse’s spectrum is not centred on the first
pulse’s spectrum, but is shifted to the red. This is in
agreement with the lower value of average carrier con-
centration than in the homogeneous simulations. This
effect was observed in Reference 3, but was explained by
junction heating. This effect would have important
system consequences [ 36, 37].
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4.5 Quarter-wave shifted laser transient response
Quarter-wave shifted DFB structures have a single,
dominant oscillating mode. In contrast, unshifted devices
usually support two modes, unless the facet reflectivities
and phases are carefully chosen [31]. Thus, shifted DFB
lasers are favoured in communications systems.

It is easy to modify the TLLM for quarter-wave
shifted DFB lasers. The order of the low and high imped-
ance sections is reversed in the middle of the model to
give two adjacent sections of the same impedance.

Fig. 9a shows the transient response of a quarter-wave
shifted device subject to the same drive conditions as
before. As observed in Reference 12, the damping of the
transient is better than for the unshifted device. Also, the
carrier density settles to a lower level than for the
unshifted devices.
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Fig. 9  Transient response of DFB laser and spectra of first and second
pulses

a Transient response for quarter-wave shifted DFB laser
b Spectra of first and second pulses (multiply PSD scale by 4 for second
spectrum)

The spectra of the two pulses in Fig. 9a are shown in
Fig. 9b. As expected, a single mode dominates. The width
of the first pulse’s spectrum was 205 GHz with a corre-
sponding temporal width of 15.6 ps. Thus, the time-
bandwidth product was 3.2. The spectrum again shows a
predominance of the red rabbit-ear, more so than in the
unshifted device. Because this ear dominates the spec-
trum, the spectrum appears to shift to the blue as the
relaxation oscillations settle. This is in agreement with
Reference 11.

The oscillation in the power-spectral density is prob-
ably a result of interference between the main body of the
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pulse (carrier concentration falling) and the tail of the
pulse (carrier concentration rising). This interference is
enhanced by the increased damping giving more power in
the pulse’s tail. The second transform gives a very narrow
spectrum, corresponding to the wide second pulse.
Again, this lies to the red side of the centre of the first
spectrum.

Further simulations, using a different amount of static
phase shift (by altering Njp) showed that the model was
still valid, even though the centre wavelength had been
shifted. This means that the form of the spectra are nearly
independent of the central wavelength in relation to the
model’s centre wavelength, as expected. If the number of
sections were to be reduced, then some differences might
be seen.

5 Conclusions

A new numerical modelling method for DFB lasers has
been developed. This is based on a transmission-line laser
model with cross-coupling between the forward and
backward travelling waves and phase-shifting stubs
coupled to the cavity using circulators.

Results from the model show that it is important to
consider longitudinal variations in refractive index as
these affect both the temporal and the spectral behaviour
of DFBs. The modelled transient spectra were in good
agreement with experimental results and show the highly
asymmetric nature of DFB spectra.

One of the important qualities of numerical models is
that they should allow results to be gained faster than
from experimental work. Certainly this model allows
parameters to be adjusted more quickly than in real
devices. The simulation times were of the order of
40 min on a 32016-based machine (approx. 3x an
8 MHz IBM-AT). However, these can be reduced by
compromising accuracy. This is simply achieved by
reducing the number of model sections; halving the
number of sections cuts the computational task by 75%.
Also, current work aims to implement the algorithm on a
multiprocessor machine with one section per processor.

The modelling method is extremely flexible as it is
based on a building-block approach; each scattering
matrix being a block. The model has been demonstrated
on unshifted and quarter-wave DFB lasers. However,
simple modifications to the injection-current profile
would allow multicontact DFB lasers and a distributed
Bragg reflector (DBR) to be simulated. Interesting experi-
ments include the effect of drive pulse-shape on dynamic
linewidth, the tuning speed of multicontact devices, a
comparison between DFB and DBR lasers and the opti-
misation of the grating coupling coefficient.

The building blocks can be extended beyond the laser
to allow more complex lasers and even optical systems to
be modelled. For example, the DFB laser could be
included within an external cavity to form a tuning
clement in a mode-locked laser. Alternatively, the model
could be combined with a time-domain fibre model to
calculate the dispersion penalty in long-haul systems.
Also, the model can accept external inputs. This would
allow DFB laser amplifiers, useful as wavelength selec-
tors, to be optimised.
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