

Creativity in Electrical and Electronic Engineering:

My Inspirations from the Physical World

Prof Arthur Lowery, Fellow IEEE

Director, Monash Electro-Photonics Group
Director, Monash Vision Group
Science Leader, CUDOS
Chief Investigator, Centre for Integrative Brain Function
Department of Electrical and Electronic Engineering
Monash University, Clayton, Australia

Everyday Electronics, February 1975

Summary

- Hypothesis: Inspiration comes from many places
 - Semiconductor laser models: a guitar and a 100-W stack (and a bucket of water)
 - VPIphotonics.com (my first company) and frustrating guitar stomp boxes
 - Cool Jazz and Orthogonal Division Multiplexing
 - Enhancing optical communications by analysing garage bands
 - Bionic vision & steam engines: both are boiler-making and energy inefficient (Monash Vision Group)
- Conclusion
- Questions and Discussion

Semiconductor Laser Modes & Guitars

Monash Electro-Photonics Laboratory

1) The modes in a Fabry-Perot Laser mimic the vibrational modes of a guitar string

http://hyperphysics.phy-astr.gsu.edu/hbase/waves/string.html

2) The gain within a laser cavity keeps the vibrations going. The E-bow kept guitar notes going by adding local gain.

The E-bow has a pick up to monitor the string, and amplifier, and a transducer to stimulate the string

Transmission-Line Laser Model (TLLM)

- Laser is divided into sections: samples of the optical field pass between them on "transmission lines". Very numerically efficient
- Reflections create a resonant cavity supporting only certain modes
- (Frequency Selective) Gain amplifies some modes more than others
- The output powers of the amplifiers are limited by the injected current

VPIphotonics & Stomp Boxes

OPALS allowed models of photonic components to be strung together

Monash Electro-Photonics Laboratory

- ptoelectronic
- Photonic, and
- Advanced
- **L**aser
- **Simulator**

the first Photonic 'systems' simulator

- Detailed laser models in the time domain
- Bidirectional interfaces communicate every picosecond
- easy Graphical User Interface (based on LabVIEW)
- First released February 1996
- Sold to Fujitsu as first customer (IBM second)

VPIphotonics incorporated OPALS's and systems models

VPIphotonics' customers in 2000

Cool Jazz and OFDM

Cool Jazz and OFDM

OFDM

Enhancing OFDM with clipping

Monash Electro-Photonics Laboratory

A. J. Lowery and J. Armstrong, "10 Gbit/s multimode fiber link using power-efficient orthogonal-frequency division multiplexing," Opt. Express 13(25), 10003–10009 (2005).

J. Armstrong and A. J. Lowery, "Power efficient optical OFDM," Electron. Lett. 42(6), 370–371 (2006).

Enhancing OFDM & Garage Bands

Monash Electro-Photonics Laboratory

A poor band – one amplifier (well, they had a car!):

All instruments through one amplifier: This gives serious and unpleasant intermodulation distortion when amplifier clips, even if they are playing the same chords (but at octaves).

http://home.unet.nl/kesteloo/vipers.html

Enhancing OFDM & Garage Bands

Monash Electro-Photonics Laboratory

A richer band:

Separate amplifiers for each instrument:

The clipping within each amplifier only causes pleasant distortion.

The sound is combined in the air.

Enhancing OFDM with separate clipping for each chord

Monash Electro-Photonics Laboratory

This trick* can be used to enhance the spectral efficiency of optical OFDM signals

*clipping the instruments separately, then adding the results

Arthur James Lowery,
"Comparisons of spectrallyenhanced asymmetricallyclipped optical OFDM systems,"
Optics Express 24(4) pp. 39503966, (2016) and papers
referenced therein.

- (a) Chord 0 (regular ACO-OFDM) f = h
- (b) Chords 1 4 subcarriers f = 2.h
- (c) Chord 2 2 subcarriers f = 4.h
- (d) Transmitted Spectrum LACO-OFDM

Enhancing OFDM & Garage Bands

Monash Electro-Photonics Laboratory

Successive interference cancelation at the receiver reveals the chords. The error vector magnitude (EVM) is less than any other (unlayered) modulation format, for the same optical power.

Enhancing OFDM & Garage Bands

Implementing OFDM All-Optically (Optical Fourier transforms)

The AWGR as an Inverse FT (with a Cyclic Prefix)

OFDM Photonic Integrated Circuit: Monash I

Conclusions

- Many of my ideas have come from:
 - Musical instruments
 - Sound
 - Analog electronics/ effects boxes
 - Railway track layouts (photonic circuits)
- I then usually simulate the ideas using software
- I have needed mathematics to create models to optimise and communicate these ideas, and physics to ensure that they are grounded
- "Engineering-Inspired-Engineering"
- Questions and Discussion

