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Abstract 
 
The mean shift (MS) algorithm is sensitive to local peaks. 
In this paper, we show both empirically and analytically 
that when using sample data, the reconstructed PDF may 
have false peaks. We show how the occurrence of the 
false peaks is related to the bandwidth h of the kernel 
density estimator, using a one-dimensional example 
motivated by gray-level image segmentation. It is well 
known that in MS-based approaches, the choice of h is 
important. However, we provide a quantitative 
relationship between the appearance of false peaks and 
the value of h. For the gray-level image segmentation 
problem, we not only show how to avoid the false peak 
problem, but also we provide a complete unsupervised 
peak-valley sliding algorithm for gray-level image 
segmentation. However, the main contribution of the 
paper remains the characterization of the false peak 
problem and the questions it raises regarding this issue in 
more general settings (e.g. higher dimensional problems). 
 
1. Introduction 
The mean shift method has become a popular method for 
a wide variety of applications: video tracking [7], image 
filtering [6], clustering [5] and image segmentation [4][8] 
for example.  In essence, it is a local (and thereby 
somewhat robust) form of mode seeking. It is local 
because it operates on a window and it also achieves a 
degree of scale selectivity since it works with a smoothed 
estimate of the underlying density function. In the most 
commonly used form [9][8], the window size and the 
smoothing are directly related to a quantity h that is the 
“bandwidth” choice for the kernel density estimator 
employed.  
Although many authors of papers that employ the mean 
shift method have remarked that the value h needs to be 
chosen with care (and, likewise in the general literature on 
the underlying kernel density estimator literature), the 
general impression given is that the results are not that 
sensitive to the choice of h and that one generally takes a 
pragmatic “hit and miss” affair. In this paper we illustrate 
that there are two issues affected by the setting of h: the 
rather disastrous appearance of false peaks (where the 
application of the mean shift process will simply fail) and 
the choice of scale (affecting the significance of actual 
peaks in the underlying density – at large scales the 

density is very smoothed and local peaks are disregarded 
or merged). The latter behavior is much more benign and, 
indeed, as it performs a type of controlled scale-space 
analysis, can be used to advantage. The former is to be 
avoided at all costs as it will result in completely arbitrary 
results. 
In this paper, we choose for simplicity the problem of 
histogram based gray level image segmentation. We show 
that one can rather simply predict values of h that will be 
problematic and thereby, in this setting, we provide a 
means for a completely automated approach, negating the 
need for the setting of any of the value of all parameters, 
including h (except that one may repeat the solution with 
a range of h to perform a type of scale space analysis). 
Our novel “peak-valley sliding method” for identifying 
modes and anti-modes, is of interest in its own right. 
Moreover, the application of this method to automatically 
threshold multi-modal gray-level images may also be of 
independent interest as the method does not require the 
priori knowledge of the number of the peaks and valley 
and it is computationally effective. However, the 
shortcomings of gray-level image segmentation are well 
known and somewhat limit the direct application to 
situations with controlled or fortuitous lighting and 
reflectance content. 
The challenge remaining is to analyze higher dimensional 
settings of the mean-shift approach to determine the false-
peak behavior in such settings. 
 
2. Density Gradient Estimation and the Mean 
Shift Method 
There are several nonparametric methods available for 
probability density estimation: histogram, naive method, 
the nearest neighbor method, and kernel estimation [11]. 
The kernel estimation method is one of the most popular 
techniques used in estimating density. Given a set of n 
data points {xi}i=1,…,n in a d-dimensional  Euclidian space 
Rd, the multivariate kernel density estimator with kernel K 
and window radius (band-width) h is defined as follows 
[11, p.76] 
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The kernel function K(x) should satisfy some conditions 
[13, p.95]. There are several different kinds of kernels. 
The Epanechnikov kernel [11, p.76] is one optimum 
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kernel which yields minimum mean integrated square 
error (MISE): 

 
        (2) 
 
where cd is the volume of the unit d-dimensional sphere, 
e.g., c1=2, c2=π, c3=4π/3. 
The estimate of the density gradient can be defined as the 
gradient of the kernel density estimate (1). 
 
        (3) 
 
According to (3), the density gradient estimate of the 
Epanechnikov kernel can be written as: 
 
        (4) 
 
where the region Sh(x) is a hypersphere of the radius h, 
having the volume d

d ch , centered at x, and containing nx 
data points. 
The mean shift vector Mh(x) is defined as:  
 
                      (5)  
Noting that 

d
d

x

ch
n can be thought of as an estimate of 

)(xf , albeit using a constant valued weight over a 
spherical region, equation (4) can be rewritten as: 
      
                      (6)
    
Equation (6) firstly appeared in [10]. The equations  (5) 
and (6) show that the mean shift vector is the difference 
between the local mean and the center of the window, and 
also that it is an estimate of the normalized density 
gradient: the mean shift is an unsupervised nonparametric 
estimator of density gradient. Applying the mean shift 
leads to the steepest ascent with a varying step size that is 
the magnitude of the gradient [3].  Since its introduction 
by Fukunaga and Hostetler, the mean shift method has 
been extensively exploited and applied in low level 
computer vision tasks [3][4][6][8][10][12] for its ease and 
efficiency.   
The converged centers (or windows) correspond to modes 
(or centers of the regions of high concentration) of data. 
The proof of the convergence of the mean shift algorithm 
can be found in [5][8].  
Almost all published methods, which employ mean shift, 
use its hill climbing property to find the peaks in feature 
spaces. However, sometimes it is very important to find 
the valleys in the feature spaces. For example, in 
histogram analysis, when modes have been recognized, 
valleys between modes need to be found to set thresholds 
to partition images [2]. 
 

2.1. Mean Shift Valley Algorithm 
One characteristic of the mean shift vector is that it 
always points towards the direction of the maximum 
increase in the density. Thus the opposite direction of the 
mean shift vector will always points toward to a local 
minimum density. 
In order to find valley in density space, we define the 
mean shift valley vector: 
 
        (7)  
 
Replace )(M h x in (6) by )(MVh x , we can obtain: 
      
        (8) 
 

)(MVh x always points towards the direction of the 
maximum decrease in the density. 
In practice, the step-size given by the above analysis may 
lead to oscillation. We have observed this particularly 
when finding valleys (although the potential exists when 
seeking peaks as well). Thus we derive a recipe for 
avoiding the oscillations in valley seeking . 
Let {yk}k=1,2… be the sequence of successive locations of 
the mean shift valley procedure, then we have for each 
k=1,2… 

yk+1=yk+ )( kh yMVp ⋅                   (9) 
p is a correction factor, and 10 ≤< p . If the shift step at 
yk is large, it causes yk+1 to jump over the local valley and 
thus oscillate over the valley. This problem can be 
avoided when we adjust the correction factor p so that 
MVh(yk)T MVh(yk+1)>0. 
The mean shift valley algorithm can be described as:  
1. Choose the radius of the search window, set p =1, and 

initialize the location of the window  
2. Compute the shift step vector MVh(yk). 
3. Compute 1+ky  by equation (9) and )(MV 1h +ky . 
4. If MVh(yk)T MVh(yk+1)>0, go to step 5; Otherwise, we 

let p=p/2. Repeat step 3 and 4 until MVh(yk)T 
MVh(yk+1)>0;  

5. Translate the search window by )( kh yMVp ⋅ . 
6. Repeat step 3 to step 5 until convergence. 
 
 
 
 
 
 
 
 
 
Figure 1. An example of application of the mean shift valley 
method to find local minimum density. 
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To illustrate the mean shift valley method, three normal 
modes (mode 1 includes 600 data points, mode 2 includes 
500 data points, and mode 3 includes 600 data points) 
with total 1700 data points were generated in figure 1. We 
selected two initial points: V0 (0.3) and V1 (7.8). The 
search window radius was chosen as 2.0. The mean shift 
valley method automatically found the local minimum 
densities (converged points). Precisely, V0’ was located at 
2.1831, and V1’ was at 5.8898. The centers (V0’ and V1’) 
of the converged windows correspond to the local 
minimum probability densities. If we use V0’ and V1’ as 
two density thresholds, the whole data can be decomposed 
into three modes (mode 1 corresponds to the data points 
whose x values are smaller than V0’; mode 2 corresponds 
to the data points whose x values are larger or equal than 
V0’, but smaller than V1’; mode 3 corresponds to the data 
points whose x values are larger or equal than V1’). Table 
1 gives the obtained parameters. 

 
Table 1. Applying the mean shift valley to decompose   
              data. 
 
There is one exceptional case: when there are no local 
valleys (e.g., uni-modal), the mean shift valley method is 
divergent. This can easily be avoided by terminating when 
no samples fall within the window. 
 
3. The Relationship between the Gray-Level 
Histogram of Image and the Mean Shift. 
If we are segmenting a gray-level image, the mean-shift 
equations can be rewritten as functions on the image 
intensity histogram: 
 
      (10) 
 
where H(ti) be the histogram of image pixels at gray level 
ti (ti is an integer and 2550 ≤≤ it ). 
The kernel density function in equation (10) is related to 
some discrete gray levels )}(|{ xStt hii ∈  and the 
corresponding histogram{ }(x)St|)H(t hii ∈ .  
Likewise: 
 
 
 
 
                    (11) 
 

The last term in (11) is called the sample mean shift Mh(x) 
in discrete gray level space: 
 
       

(12) 
 
 
Equation (12) is derived from the Epanechnikov kernel. 
(Note: reference [14] used a Gaussian kernel - see 
equation 15 and 17 in that paper). 

We notice also that the  quantity 
)(

)(
)(

d
d

xSt
i

chn

tH
hi

∑
∈  is the kernel 

density estimate )(ˆ xf  obtained with a uniform weighting 
in the hypersphere )(xSh

; thus equation (6) is consistent 
with equation (11) and (12). 
 
4. The False Peak Noise. 
In implementing the mean shift approach in this setting, 
we found, to our surprise, in some cases there are a lot of 
peaks appearing between two consecutive gray levels near 
a local maximum density (see figure 2(a) and (b)). We 
call these peaks the false peaks. These false peaks will 
seriously affect the performance of the mean shift method, 
i.e. the mean shift is very sensitive to these peak noises 
and the mean shift loop will stop at these false peaks 
instead of real local maximum density.  
Here we analytically determine the conditions leading to 
this problem.  
For simplicity, we have chosen a one dimensional setting. 
Thus d=1; cd=2. Let )(ˆ

ktf be the kernel density estimate 
at gray level tk; and let 10 << xδ . Using equation (10) 
we have 
 
                    (13)
    
If h is an integer (h>0) and tk+h<255, and considering ti 
has to be a series of consecutive unsigned integer, we 
have         . 
The equation (13) can be rewritten as: 
 
 
 
 
 
 
 
      (14) 
 
We let:                
 
                  (15a) 
 

Mode 1 Mode 2 Mode 3  
 Mean Number Mean Number Mean Number

Generated 
Data 0 600 4 500 8 600 

Estimated 
Parameters -0.0736 603 4.0419 488 7.9592 609 
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                        (a)                                     (b) 
 
 
 
 
 
 
 
 
 
 

            (c)                    (d)               (e) 
Figure 2. False peak noise. (a) Original probability density distribution with h equal to 5; (b) Zoom in a part of (a). Many 
false peaks introduced by A1+A2 in Eq. (15);  (c)-(e) A1, A2, and A1+A2 in Eq. (15) with tk=95;   
 
When h>> xδ , A2 can be approximated as a linear 
equation (see figure 2(d)). 
Equation (14) can be rewritten as:  
                  21)(ˆ)(ˆ AAtfxtf kk ++=+δ                  (15b) 

Now we calculate the differential of )(ˆ xtf k δ+ : 
 
 
 
      
                  
                                                                        (16)    
       
Let (16) equal zero, we obtain: 
 
      (17) 
 
 
Substituting equation (12) into equation (17), and if 

10 << xδ , i.e. if: 
 
 
      (18) 
there will be a false peak appearing between two 
consecutive gray level, tk and tk+1. 
In figure 2, when we apply the mean shift to find the local 
maximum density with initial location at 95, we find it 
stopped at 95.7244, instead of the real local maximum 

density at 101. From (17), we obtained xδ =0.7244, i.e. 
there is a false peak between 95 and 96.  
We let L be the left item in the in equation (18) and R be 
the right item of (18); let xMS(tk) be the convergent point, 
obtained by the mean shift method with initial point at tk, 
corresponding to the local peak. Thus if the condition: 
L<h<R is satisfied, we can predict that there will be a 
false peak between tk and tk+1 (see table 2).  
 

                    Table 2. False peaks prediction 
 
The above analysis suggests that one could devise an 
approach that adaptively adjusts h depending upon 
whether false peaks are predicted. However, for this 
simple example, we have used a heuristic approach:  
(1) for the mean shift method, we adjust the shift step as: 

            yk+1= yk+ ceil(Mh(yk))               (19a) 
(2) for the mean shift valley method, we adjust the shift 
step as: 
                   yk+1= yk+ floor(MVh(yk))              (19b)

h L R xδ  tk xMS(tk) 
False peak 
between tk 
and tk+1 

5 -1.45 7.45 0.72 95 95.72 yes 
6 -2.84 6.99 0.89 95 95.89 yes 
7 -5.76 6.06 1.08 95 96.96 no 
7 -5.10 7.45 0.96 96 96.96 yes 
8 -9.68 3.95 1.30 95 97.94 no 
8 -7.99 6.19 1.13 96 97.94 no 
8 -7.42 8.96 0.94 97 97.94 yes 
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5 An Unsupervised Peak-Valley Sliding 
Algorithm for Image Segmentation. 
Consider the peaks {P(i)} and valleys{V(i)}. V(0)=0 
and V(n)=255. )()(....)1()1()0( nVnPVPV ≤<<<≤ . 
The algorithm is described as follows: 
(1) Initialise the radius h and the location of search 
window. 
(2) Apply the mean shift method to obtain the peak Pk 
with the initial window location Vk-1+1.  
(3) Apply the mean shift valley method to obtain valley 
Vk with initial window location Pk+1. 
(4) Repeat step (2) and (3) until Pk or Vk is equal to or 
larger than 255. The questions remains as to how many 
of these peaks are significant. Rather than some form of 
scale space analysis, we post-process by: 
(5) Validate peaks and valleys   
(5a) Remove peaks too small compared with the largest.  

(5b) Remove the smaller of two consecutive peaks if too 
close. 
(5c) Calculate the normalized contrast [1] for a valley 
and two neighbouring peaks: 
 
      (20) 
where the contrast is the difference between the smaller 
peak and the valley. Remove the smaller one of the two 
peaks if this is small.  
After step 5(a)-5(c), we obtain several significant peaks 
{PS(1),…PS(k)}. The valleys then are chosen as the 
minimum of the valleys between two consecutive 
significant peaks. Thus we have k-1 valleys 
{VS(1),…VS(k-1)}. 
(6) Using the obtained valleys finally obtain k 
segmented images by {[0, VS(1)], [VS(1), VS(2)], … 
[VS(k), 255]}.  

 
 
 
 
 
 
 
 
 
 
 
           (a)         (b)              (c) 
 
 
 
 
 
 
 
 
 
            (d)         (e)              (f) 
 
 
 
 
 
 
 
 
 
 
 

     (g)           (h)              (i) 
 
Fig. 3. The segmentation results of the proposed method (h=7). (a) original image of the cameraman; (b) gray-level 
histogram; (c) peaks and valleys of )(ˆ xf  (calculated by eq.10) before merging; (d) final peaks and valleys; (e)-(h) the 
resulting segmented images; (i) the final segmented image. 

Height
Contrast

=Contrast Normalized
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6. Experimental Results. 
In this section, we will use several examples to show the 
performance of the proposed method in segmenting 
images. Figure 3 demonstrates the segmentation 
procedures of the proposed method. The original image is 
shown in figure 3(a) and its gray-level histogram is shown 
in figure 3(b). Figure 3(c) shows the obtained peaks and 
valleys before validation. The peaks and valleys after 
validation are shown in figure 3(d). The segmented 
images according to the validated valleys are shown in 
figure (e)-(i).  

Before we merged the peaks and valleys, there are ten 
peaks and ten valleys obtained (figure 3(c)). Near local 
plateau, there will be some insignificant peaks and 
valleys.  After applying step 5 in the proposed algorithm 
to validate peaks and valleys, we finally obtained three 
validated valleys and thus we have four segmented 
images (figure 3. e-h): (e) corresponds to the cameraman; 
(g) corresponds to the grassland; and (h) corresponds to 
the background i.e. the sky. The final segmented image is 
shown in (i). 

 
 
 
 
 
 
 
 
 
 
 
 
 
             (a1)            (b1)                   (c1) 
 
 
 
 
 
 
 
 
 
 
 
 
 
             (a2)              (b2)                   (c2) 
 
 
 
 
 
 
 
 
 
 
 
 
 
               (a3)              (b3)                  (c3) 
Figure 4. The more segmentation results by the proposed method. (a1-a3) the original images; (b1-b3) the final peaks and 
valleys after validation; (c1-c3) the segmented images. 
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Figure 4 shows other experimental results. From figure 4, 
we can see that all the significant peaks and valleys are 
found, without a priori knowledge about the number of 
the peaks and valleys. 
For lack of space, more experimental results are included 
in the supplementary material. 
The computational speed is efficient. The average time to 
deal the above images is 0.27 second using MATLAB 
code on an AMD 800MHz personal computer.   
 
7. Conclusion. 
In this paper, the influence of false peak noise on the 
mean shift method and mean shift valley method is 
observed. In a 1-D setting, we have given both theoretical 
analysis and experimental illustration. In this setting, we 
provide a solution to avoid the influence of false peak 
noise.  The analysis of false peaks in higher dimensional 
space remains to be addressed. 
A novel unsupervised peak-valley sliding algorithm for 
image segmentation is also presented in this paper. We 
use the mean shift method to find peaks and the extended 
mean shift method--mean shift valley to find valleys. The 
peaks and valleys are alternatively found one by one. 
After validating the obtained peaks and valleys, we use 
the validated valleys as density thresholds to segment the 
image. Several practical problems concerning such a basic 
scheme were also solved: e.g., oscillations were avoided 
by adjusting the step size.  
It is important to realise that the above analysis shows 
how to choose h dynamically (dependent upon the data) to 
avoid false-peak noise. It does not address the issue of 
choosing h in relation to the smoothing properties in terms 
of scale-space analysis (determining dominant peaks). 
Generally speaking, if h is large, the details will be 
smoothed and the image will be under-segmented; on the 
other hand, if h is chosen too small, there will be a lot of 
noise (including peak noise and valley noise) and the 
image will be over-segmented. One could repeat the 
analysis with different values of h (still checking for false 
peaks) to perform a scale-space type analysis. Comaniciu 
and Meer [5] empirically investigated the influence of the 
search window radius on the segmentation results. Further 
suggestions on the choice of the search window radius h 
can be found in [8]. Rather than implementing a scale 
space type analysis to remove minor peaks, we used a 
more heuristic approach. However, these are relatively 
minor issues compared with the false peak problem. 
Our future work is to analyse false peaks in high 
dimension: including the application of the ideas 
presented here to segment color images. We believe our 
work can also be applied in other applications such as MR 
image analysis, document image analysis, video signal 
analysis, etc. 
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