
Department of Electrical
and

Computer Systems Engineering

Technical Report
MECSE-17-2003

Radius of Convergence for Volterra Series Transfer Function
in Modeling \Single-Mode Fiber

L.N. Binh and K-F. Chang



OPTICAL POWER LIMIT FOR LINEAR OPERATION IN OPTICAL FIBER 

TRANSMISSION SYSTEM VIA VOLTERRA SERIES TRANSFER FUNCTION 

APPROACH 

Ken Kai-fu CHANG, Le Nguyen BINH and Gregory K. Cambrell 

Department of Electrical and Computer Systems Engineering, Monash University, P.O. Box  

35, Clayton, Victoria 3800 Australia 

 

Abstract  

An optical transfer function of optical fibers in an explicit frequency domain facilitates the 

modelling and design of optical communications systems. Due to the nonlinearity of the 

optical fibres operating under high average total optical power, the Volterra series technique 

is essential. 

 A convergence criterion for Volterra Series Transfer Function (VSTF) approach for solving 

the nonlinear Schrodinger (NLS) wave equation representing the propagation of an optical 

pulse over a dispersive and nonlinear optical fibre is presented.  The VSTF method is used to 

solve the NLS wave equation for single-mode fiber by approximating the solution with a 

generalized Taylor’s series in its frequency domain representation form by taking the 

multi-dimensional Fourier transform. It is shown that the radius of convergence of VSTF is 

closely corresponding to the maximum power limit that can be supported by silica fibre so that 

it is still operating in the linear regime.  

Index terms – Volterra series, optic fiber transmission systems 
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I. INTRODUCTION 

Fiber-optic communication is the fastest growing areas in modern communication systems in 

order to satisfy the intensive demand on bandwidth by the Internet.  Systems of higher 

bandwidth and longer transmission distance and multiplexed optical carriers have been 

installed at a tremendous pace.  With the advent of erbium-doped fiber amplifiers (EDFAs) 

since 1989, the major limitation of fiber-optic communication systems has changed from 

loss-limited to dispersion-limited. The increase in bandwidth and bit rates by high speed 

modulation and multiplexing of optical carriers in the S-, C- and L-bands and transmission 

distance further complicates the design of optical communications systems. It is thus essential 

to develop a more efficient model to represent the communications channel using optical 

fibers.   

Further due to the increase of the total number of optical channels, ie. the multiplexed optical 

information-modulated carriers, the fibre channel reaches its nonlinear regime and hence a 

frequency domain approach in modelling fibres is normally avoided by employing the 

well-known split-step Fourier (SSF) procedures. Therefore the principal difficulty in 

modelling a single-mode optical fiber as a transmission channel lies in an effective 

representation of the self-induced nonlinear effects. Nonlinearities existing in fibers, optical 

amplifiers and other devices have long been recognized as one of the major limitations for 

optical communication systems.  Various nonlinear effects such as self-phase modulation 

(SPM), cross-phase modulation (CPM), stimulated Raman scattering (SRS), stimulated 

Brillouin scattering (SRS) and four-wave mixing (FWM) have been known to cause serious 

problems in long-haul-high-speed optical networks.  The widely used Split-step Fourier (SSF) 

method incorporates the fiber nonlinear effects in the time domain into the calculation of linear 
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effects in the frequency domain via an intermediate step where the optical fields have been 

Fourier transformed into the frequency domain[7].  Despite the high efficiency of SSF method, 

it is a recursive method and hence can be unwieldy in designing optical communication 

systems. 

The Volterra series transfer function (VSTF) is a mathematically tool that is used to 

approximate the nonlinear effects in a system [1].  It has been used to overcome the 

nonlinearity effects in several engineering nonlinear problems for its intuitive representation 

of the nonlinear elements.  Unlike other numerical methods, the VSTF method is 

non-recursive.  An application of the Volterra series for optical communication system first 

appeared in literature in 1997 [2], and since then a number of papers have been published on 

this topic [3] [4]. These works have, however, focused on how to apply the VSTF method to 

solve the nonlinear Schrondinger (NLS) equation for the optical communication systems, and 

have compared the accuracy of the VSTF method with the more traditionally used methods 

such as the SSF approach. However, none of the papers have discussed the issue of the validity 

of the VSTF method in representing the nonlinearity of the optical fibre channel, that is the 

limits of the convergence of VSTF.  Besides, it is also important to estimate accurately the 

upper limit of the input optical power to be applicable in VSTF model. Indeed the radius of 

convergence of the VSTF model dictates the convergence of the series and correlates to this 

limit.  In this paper, we present the effects of the convergence of VSTF and its applications in 

the modelling of optical communication systems and most importantly the upper limit for 

convergence and its physical relationship with the possible maximum power that can be 

transmitted through via fibre for linear operation. The paper is organised as follows. A brief 

representation of the NLS equation is given in the next section followed by its representation 
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by the Volterra series in section 3. Numerical results and its corrresponding physical 

interpretation are given in Section 4. The impacts of such findings of the convergence of the 

Volterra series on optical communications systems are also described. 

II. FIBER NONLINEARITIES – NONLINEAR SCHRODINGER (NLS) EQUATION 

As in most nonlinear systems, nonlinear effects in optical communication systems increase 

with an increase in the input power level, as well as with increase in the fiber length.  The 

generalized nonlinear Schrodinger equation is used to model all the known linear and 

nonlinear effects in optical fibers 

3

3
3

2

2
2

1
0

622 t
A

t
Aj

t
AA

z
A

∂ 
∂β

+
∂ 
∂β

+
∂ 
∂

β+
α

+
∂ 
∂  ( )

A
t

A
aA

t
Aa

t
AA

aAAj
∂ 

∂
+

∂ 
∂

+
∂ 

∂
−γ=

2

3
2

2

2

1
2  

( ) ( )∫
∞

∞−
−+ 1

2
11 , dtztAttsAjQ rR         (1) 

where  represents the slowly-varying complex envelope of the input pulse, α is the 

linear attenuation coefficient of the optical fiber; 
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here that the frequency component ωo is assigned as the central optical frequency of the carrier 

under consideration, while all other frequency components ωn (as described later) are 

generalised including all other adjacent carriers or components affecting the transmission 

channel. The NLS equation is in fact evaluated all the signal frequency components over the 

signal base-band, ie. the optical spectrum including an optical carrier and its base-band 

information spectrum has been shifted to the origin. 

The NLS equation cannot be solved analytically due to its nonlinear nature.  Normally, a 

complete numerical method such as split-step Fourier (SSF) method or Runga-Kutta method 

are used to reach the final the solution, the output pulses at the end of the transmission fibre. 

Under these numerical methods, the fibre is divided into small segments and the waveform at 

each segment is computed sequentially.  The length of each segment has to be kept small to 

ensure accuracy of these numerical methods, and this could become very computationally 

extensive when the length of the transmission fibre increases.  Further more numerical 

methods are difficult in designing a complete system by interconnection of different transfer 

fnction since it does not provide sufficient information of the system’s characteristic. An 

important aspect and advantage of representing the optical transmission channel in the 

frequency domain is that any optical component can be inserted into the optical transmission 

system can be modelled and analysed by inspection and hence reducing the analysis cycle 

time. 

III. FIBRE TRANSMISSION MODEL BY VOLTERRA SERIES TRANSFER FUNCTION 

The weakness of most of the recursive methods in solving the NLS is that they do not provide 

much useful information to help the engineers to characterise the nonlinear effects.  The 
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Volterra series model provides an elegant way of describing a system’s nonlinearities, and 

enables the designers to see clearly where and how the non-linearity affects the system 

performance. Although Refs.[2-4] have given an outline of the kernels of the transfer function 

using the Volterra series, we believe that it is necessary for clarity and physical representation 

of these functions, brief derivations of the nonlinear transfer functions of an optical fibre 

operating under nonlinear conditions, ie. significant optical pulse energy.   

The Volterra series transfer function of a particular optical channel can be obtained in the 

frequency-domain as a relationship between the input spectrum X  and the output 

spectrumY , as 
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where  is the nth-order frequency domain Volterra kernel including all signal 

frequencies of orders 1 to n. The wave propagation inside a single-mode fibre can be governed 

by a simplified version of the NLS wave equation [1] with only the self phase modulation 
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where . The proposed solution of the NLS equation can be written with respect to the 

VSTF model of up to 5
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where , that is the amplitude envelop of the optical pulses at the input of the fibre. 
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This is in fact the linear transfer function of an optical fibre with the dispersion factors β2 and  

β3.  Similarly for the 3rd order terms we have 
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Higher order terms can be derived with ease if higher accuracy is required. However in 

practice such higher order would not exceed the 5th rank. We can understand that for a length 

of a uniform optical fibre the 1st to nth order frequency spectrum transfer can be evaluated 

indicating the linear to nonlinear effects of the optical signals transmitting through it.  Indeed 

the 3rd and 5th order kernel transfer functions based on the Volterra series indicate the optical 

filed amplitude of the frequency components which contribute to the distortion of the 

propagated pulses. An inverse of these higher order functions would give the signal distortion 

in the time domain. Thus the VSTFs allow us to conduct distortion analysis of optical pulses 

and hence an evaluation of the bit-error-rate of optical fibre communications systems. We will 

present these studies in future works. 

The superiority of such Volterra transfer function expressions allow us to evaluate each effects 

individually, especially the nonlinear effects so that we can design and manage the optical 

communications systems under linear or nonlinear operations. Currently this linear-nonlinear 

boundary of operations is critical for system implementation, especially for optical systems 

operating at 40 Gbps where linear operation and carrier suppressed return-to-zero format is 

employed. As a norm in series expansion the series need to be converged to a final solution. It 

is this convergence that would allow us to evaluate the limit of non-linearity in a system. The 

issues involved the convergence and its relation ship with linearity and non-linearity are 

therefore presented in the next section. 
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IV. CONVERGENCE PROPERTY OF VSTF 

As we can see from previous section that the Volterra series transfer function takes the form of 

a power series, whose convergence can be examined with a number of well-established tests.  

The ratio test is chosen in this paper to test the convergence of the VSTF as it would lead to the 

best estimation of the convergence of the series. An infinite Volterra series can be represented 

by a function of all frequency components as 
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where ( ){ }ω= UmaxmaxU ;  is the output from n-th order kernel which form a Hilbert 

space.  Each of the output terms Y , Y , … and Y  take on different dimensions, which consist 

of different number of dependent variables.  The higher order terms can be converted into their 

one-dimensional equivalents using dimensional contraction technique by taking a 

multi-dimensional convolution across all variables. Thus (13) can be rewritten as 
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Utilising the triangular inequality property of the Hilbert space, the upper bound for the output 

can be obtained as 
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The convergence for the Volterra series can be guaranteed if and only if the infinite 

power-series on the right hand side of the inequality is convergent.  Accordingly (15) leads to  
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Since the even order kernels are null in a single-mode fibre, the convergence criteria (16) can 

be written as 
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where n is an odd positive integer. Hence the upper-bounds for the inputs to each kernel of 

different orders can be expressed in terms of the integration of lower-order kernels. This 

expression can be simplified to, under the case of 1=n  or the convergence of the third order 

kernel with respect to the linear kernel as 

( )
( ) 1

,,
2

max
1

2121213
<×

ω

ωωω−ω−ωωω∫ ∫
∞

∞−

∞

∞− U
H

ddH
       (18)  

that is    ( ) ( ) 2
max21212131 ,, UddHH ×ωωω−ω−ωωω>ω ∫ ∫

∞

∞−

∞

∞−
      (19)  

Indeed (19) indicates the relationship between the linear transfer function or the effective 

bandwidth of an optical fibre operating in the linear dispersion region and the dispersion effect 
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due to the self phase modulation due to the intense optical pulse power contributing via the 

third order kernel.  

Therefore for the case of n , the expression for upper-bounds can now be obtained as a 

relationship between the 5

3=

th order nonlinear coefficients of the fibre such as the four wave 

mixing effects and that of the self-phase modulation, the 3rd order kernel function of the VSTF. 

The upper-bounds for inputs to higher order kernels can be derived in the same way. 
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can be replaced by 
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Here we denote the norm of the nth order kernel by  
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In general, the radius of convergence as a function of the total input optical field amplitude can 

therefore be expressed as 
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Accordingly, the peak power of the input pulse so that the VSTF is convergent and hence 
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computable is given by 
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This is the most important result and can be used in the determination of the linear and 

nonlinear operation of an optical fibre communications under high and intense optical input 

pulses, especially when there exists numerous optical channels in a single fibre. Furthermore 

the radius of convergence of the higher order of the VSTF indicate the level of manageable of 

the input optical pulse power so that the linear dispersion effect can be compensated by the 

nonlinear effects in the fibre. Otherwise the series would be divergent and hence the radiation 

or complete depletion of the optical pulses due to dispersion. 

V. ESTIMATION OF OPTICAL INPUT POWER  FOR GUIDING  OVER A FIBRE LENGTH 

In this section, numerical results of the kernels of the transfer functions expressed via the 

Volterra series are presented for a fibre with a linear attenuation coefficient of dB/km 

at the operating wavelength of 1.55 µm, β  corresponding to a group velocity 

dispersion = 2.0 ps/km-nm, and 

2.00 =α

27
2 102746.1 −×−=

03 =β ie. zero dispersion slope; the nonlinear refractive index 

assumes the normal value for silica fibre n  m2010−×2 31.2= 2/W with an effective 

cross-sectional core area of 80=effA  µm2. 

As described in previous section, the radius of convergence (ROC) of the nth order kernels of 

the VSTF governs the upper bounds for the maximum input power, and is correspondent to 

their norm .  The norm δ  for 3δ n
rd, 5th, and 7th order kernels are thus calculated with the fibre 
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length as a parameter.  The radius of convergence could then be computed under these 

conditions leading to a relationship between the optical peak power and the fibre length.  The 

limits of integration of the kernels in computation of respective norms are restricted to the 

frequency range of the spectrum that can be severely affected by the two adjacent optical 

carrier channels in standard ITU grid of 100GHz spacing for 10 Gbps channels. 
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Figure 1. Input pulse peak power as a function of fibre length of the 3rd order transfer function. 
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Figure 2: Input pulse peak power as a function of the fibre length of the 5th order transfer 

function. 
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Figure 3: Input pulse peak power as a function of fiber length of the 7th order transfer function. 
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Figures 1, 2 and 3 show the dependence of the input pulse optical peak power evaluated using 

the radii of convergence of the 3rd, 5th and 7th order kernels respectively of the Volterra series 

as a function of the total transmission length of the fibre. A similar pattern for relationship 

between the fibre length and the radius of convergence for the input power has been observed.  

The ROC varies inverse-proportionally with the fibre length over a significant distance as 

displayed in the log-log scale.  An interesting phenomenon is that the decrease of ROC begins 

to slow down when the fibre length approaches 50 km, and remains roughly constant after the 

fiber length is beyond 100 km.  This result agrees with [1] in that with input power of 10 nW 

and 1 mW, the errors are small; while with input power of 30 mW, which is close to the upper 

bound, the error is of several magnitude larger. 

A. Comparison between VSTF and SSF methods 

The proposal of the computation of radius of convergence can be further supported by the 

comparison between results obtained with VSTF and SSF method.  In this simulation, input 

pulses of Gaussian shape with different peak power are propagated through a fiber length of 

100 km.  The difference is calculated by setting a criterion 

 
( ) ( )

( ) ωω

ωω−ω
=  

∫
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∞
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∞

∞−

dU

dUU
inDeviation

2
2

2
12

%       (25) 

where U1(ω) is the output spectrum from the VSTF method while U2(ω) is the output spectrum 

obtained from the SSF method. 
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Figure 4.  Deviation factor as a function of input optical power for a fibre length of 50 km 
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Figure 5.  Deviation factor as a function of input power for a fibre length of 100 km 

Figures 4 and 5 show the relationship between the deviation and the input peak optical power 

of pules after transmission over a fibre length of 50 km and 100 km respectively.  As the peak 

 18

MECSE-17-2003: "Radius of Convergence for Volterra Series Transfer ...", L.N. Binh and K-F. Chang



power increases and approaches the upper-bound (ROC), the deviation between results 

obtained VSTF and SSF increases quickly. 

B. Application of the VSTF to solitonic optical transmission  

Historically, optical communication development can be classified into different generations[7] 

according to the operating regions of the transmission channel in the linear or nonlinear regime 

with the total power is the effective power as seen by the fibre with the superposition of all 

individual optical channels.  The current state-of-art systems operate at over a very wide 

wavelength regions from 1480 nm to 1620 nm, utilizing wavelength-division-multiplexing 

(WDM), with dispersion compensated or managed composite transmission fibres. Optical 

fibre communication systems concern with the balancing of the fibre linear dispersion (GVD) 

and the self phase variation due to nonlinear effect.  Indeed optical solitons preserve their 

shape during propagation in a lossless fiber by counteracting the effect of dispersion via the 

shaping of the fibre nonlinearity. We demonstrate the effectiveness of the Volterra series 

approach to the transmission of a soliton of fundamental order through a 50 km long fiber.  

Further both VSTF and SSF methods are compared for the evolution of the propagated pulses. 
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Figure 6 Solitonic pulses propagation via the simulation by SSF method 
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Figure 7 Solitonic pulses propagation via the simulation by VSTF method 
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Figure 8. Deviation factor between VSTF and SSF methods 

It is well known that the power requirement for nonlinear optical pulses under complete 

compensation between the linear dispersion and the self phase modualtion, usually known as 

solitons, is governed by the soliton order, its pulse width, the pulse peak power and the 

dispersion factor of the transmission fibre.  In this simulation, the following parameters are 

used: soliton order = 1, pulse width = 10 ps (T ), GVD = 1 ps/(km-nm).  Accordingly, a 

power  of 16.923 mW is required for soliton formation.   Generally, the power required by 

soliton systems are much higher than conventional ones since the power required to generate 

nonlinearity to counter the dispersion effect is substantial. Figures 6 and 7 show the 

transmission of such first order solitonic pulses of fundamental order by using the SSF method 

and the VSTF method under the convergence condition for the 3

fwhm

0P

rd kernel transfer function as 

described in previous section, equation (24).  

 21

MECSE-17-2003: "Radius of Convergence for Volterra Series Transfer ...", L.N. Binh and K-F. Chang



VI. CONCLUDING REMARKS 

The Volterra series transfer function has been effectively employed to model the wave 

propagation inside single-mode fibers.  Both linear and nonlinear effects can practically be 

approximated up to 7th order depending on the accuracy required.  This paper provides a 

conservative criterion for calculating the upper bounds of the input power under which the 

VSTF model remains convergent.  The relationship between radius of convergence for input 

power and the fiber length is studied.  It is shown that the ROC varies inverse-proportionally 

with the fiber length logarithmically.  However, as the fiber length increases beyond 100 km, 

the ROC for input power approximately remains roughly unchanged.  Therefore the VSTF 

model remains valid even for fiber of very long length, provided the input power is below the 

upper bound of the ROC.  Since the launched power in optical communication systems is 

typically below 10 mW, and the distances between amplifiers are less than 100 km, the VSTF 

model is quite adequate under normal operating condition. 

Practically, the VSTF method is more suitable for investigating the frequency response of an 

optical communication system, and hence appropriate for system design.  However, it is not as 

efficient as the SSF method in simulating pulse evolution inside fibers unless the propagation 

distance is relatively long. 
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