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Abstract 

In computer vision tasks, it frequently happens that 
gross noise and pseudo outliers occupy the absolute 
majority of the data. During the past several decades, a 
lot of robust estimators were developed to find 
parameters of a model from heavily contaminated data. 
However, correctly estimating the parameters of a 
model is not enough to differentiate inliers from 
outliers. Robust scale estimation is often needed as the 
postprocessing of most robust estimators followed by a 
weighted least squares method on the inliers. This 
paper shows that the scale estimation for most robust 
estimators is a very weak field and more work is 
needed. A more robust two-step scale estimator is 
presented and comparative experiments show its 
advantages over other available scale estimators. 

1. Introduction 

One major task of pattern recognition, machine 
learning, and related areas: is to fit a model to noisy 
data (with outliers). It is common to employ “regression 
analysis” to undertake such tasks. The most common 
form of regression analysis is the least squares (LS) 
method, which can achieve optimum results under 
Gaussian distributed noise. But this method is 
extremely sensitive to outliers (gross errors or samples 
belonging to another structure and distribution). The 
breakdown point of an estimator may be roughly 
defined as the smallest percentage of outlier 
contamination that can cause the estimator to produce 
arbitrarily large values. Because one single outlier is 
sufficient to force the LS estimator to produce an 
arbitrarily large value, the LS estimator has a 
breakdown point of 0%. 
Since data contamination is usually unavoidable (due to 
faulty feature extraction, sensor noise and failure, 
segmentation errors, etc.), there has recently been a 
general recognition that algorithms should be robust 
[1]. Robust regression methods are a class of techniques 
that can tolerate gross errors (outliers). Some robust 
methods also have a high breakdown point.  
Most past work mainly aimed at presenting robust 
estimators with high breakdown point [2-6], i.e. the 
estimator can correctly find the parameters of a model 
from the data which are heavily contaminated. 

However, correctly estimating the parameters of a 
model is not enough to differentiate inliers from 
outliers. One frequently needs an initial or auxiliary 
estimate of scale, for example, Hough transform needs 
an auxiliary estimate of scale after finding the 
parameters of the model, so that the inliers can be 
differentiated from outliers. Robust scale estimation is 
often carried out as a postprocessing of most robust 
estimators to tell the inliers from outliers. A weighted 
least squares method is then employed on the inliers. 
Whether or not the inliers can be successfully 
differentiated from the outliers depends on (1) whether 
the parameters of a model are correctly found; (2) 
whether the scale of inliers is correctly estimated.  
In this paper, we assume we have found the true 
parameters of the model to fit. We investigate the 
behavior of several robust scale estimators that are 
widely used in computer vision community and show 
the internal problems of these scale estimation 
techniques. More work in this field is needed.   
This paper is organized as follows: in section 2, we 
review previous robust scale techniques, and proposed 
a novel robust scale estimator. Comparative 
experiments are contained in section 3. We conclude in 
section 4. 

2. Robust scale estimators 

2.1. The Median and Median absolute deviation 
(MAD) scale estimator  

Among many robust estimators, the sample median is 
one of the most famous estimators. The sample median 
is bounded when the data include more than 50% 
inliers. A robust median scale estimator is then given by 
[7]: 

           1.4826medixi  (1) 
The inliers are the points that satisfy the following 
condition: 
                           xj/1.4826medixi < T        (2) 
 
where T is a threshold. T is usually set to 2.5. 
MAD is often used to estimate the scale of inliers. It has 
a simple explicit formula and is computationally 
efficient [8]: 

 
         MAD=1.4826medi{|xi-medjxj|} (3) 
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The MAD estimator is very robust to outliers and has a 
50% breakdown point. The outliers can be recognized 
by computing: 

n

jji

MAD

xmedx −
    (4) 

When equation (4) for a point xi dranw from a sample 
{xj} exceeds a threshold, say 2.5, an outlier is 
recognized.  
The median and the MAD are often used as initial 
values for more robust estimators. The two estimators 
can also serve as ancillary scale estimators for other 
more robust estimators.  
Because the median and the MAD have 50% 
breakdown points, it means they will break down when 
data including more than 50% outliers. Another 
problem we found is that both the median and the MAD 
scale estimators are biased even when data contains less 
than 50% outliers (see section 3).  

2.2. Adaptive Least K-th Squares (ALKS) 
Estimator 

The authors of ALKS [5] consider robust scale 
estimation and they search for a model by randomly 
choosing p-subsets and minimizing the k-th order 
statistics of the squared residuals. The robust scale 
estimate, assuming inliers have a Gaussian distribution, 
is given:  
 

]2/)/1[(
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    (5) 

 
where kd̂ is the half-width of the shortest window 
including at least k residuals; ][1 ⋅Φ− is the argument of 
the normal cumulative density function.  
The optimal value of the k is that correspond to the 
minimum of the variance of the normalized error 2
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They assumed that when k is increased so that first 
outlier is included, the increase of kŝ is much less than 
that of 

kσ̂ . 
ALKS is limited in its ability to handle extreme outliers. 
Another problem we found in ALKS is its lack of 
stability under a small percentage of outliers (which 
will be illustrated in section 3). 
 

2.3. Modified Selective Statistical Estimator 
(MSSE) 

Bab-Hadiashar and Suter [9]  have used least k-th order 
(rather than median) methods and a heuristic way of 
estimating scale to perform range segmentation. After 
finding a fit, they tried to recognize the first outlier, by 
detecting the k-th residual jumps, which can indicate 
the unbiased scale estimate using the first k-th residuals 
in an ascending order: 
 
 

             (7) 
   
 
where p is the dimension of the model.  
They assume that when k is increased, the value of the 
k-th residual will jump when it comes from a different 
distribution. Thus, the scale can be estimated by 
checking the validity of the following inequality: 
 
 
     (8) 
     
       
Because this method does not rely on the k-th order 
statistics (it uses only the first k data points that has 
been classified as inliers), it is unbiased when data 
include multiple-structural distribution. 
However, though their method can handle large 
percentages of outliers and pseudo-outliers, it does not 
seem as successful in tolerating extreme cases 

2.4.  Residual Consensus (RESC) Method. 

RESC is another successful example of a recent robust 
method [3]. The RESC method uses a compressed 
histogram method to infer residual consensus. Instead 
of using the size of the residuals as its criteria, the 
RESC method uses the histogram power as its criteria. 
The RESC method finds the parameters by choosing the 
p-subset corresponding to the maximum histogram 
power. After finding a fit, they estimate the scale of the 
fit by directly calculating the follows: 
 
     (9) 
      
where ch is the mean of all residuals included in the 
compressed histogram; α is a correct factor for the 
approximation introduced by rounding residuals in a 
bin of histogram to δi  (δ is the bin size of the 
compressed histogram); v is the number of bins of the 
compressed histogram.  
However, we found the estimated scale is still 
overestimated for the reason that, instead of summing 
up squared differences between all individual residuals 
and the mean residual in the compressed histogram, 
equation (8) sums up the squared differences between 
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residuals in each bin of compressed histogram and the 
mean residual in the compressed histogram. 
We revise it as follows: 
 
        (10) 
 
 
where nc is the number of data points in the compressed 
histogram. 

2.5. Two-step scale estimator (TSSE) 

We have observed that the median and the MAD is 
biased when the data include multiple modes. This is 
because both estimators are provided assuming the 
whole data have a Gaussian distribution. We base our 
method on the assumption that the inliers occupy 
relative majority, and are Gaussian distributed, but the 
whole data can include multiple-structural distribution.  
Thus, we propose a robust two-step method to estimate 
the scale of the inliers.  
 
(1) Because the inliers have Gaussian distribution, we 

use mean shift, with initial center zero, to find the 
local peak, and then we use the mean shift valley 
[10] to find the valley near to the peak. All these are 
performed in signed ascending ordered residual 
space. Thus we obtain the half-bandwidth of 
window centered at the local peak. Other modes 
other than the inliers will be disregarded outside the 
obtained window. 

(2) Then we estimate the scale of the fit by the median 
scale estimator on the points within the obtained 
window centered at the local peak. 

In next section, we will compare the achievements of 
our method and other methods. The experiments will 
show the advantages of the proposed method over other 
methods.  

3. Experiments 

In the following experiments, the signals were 
generated as follows: The i-th structure has γi data 
points, corrupted by Gaussian noise with zero mean and 
standard variance σi. α data points were randomly 
distributed in the range of (0, 100).  

3.1. Normal distribution 

In this subsection, we generate a simple line signal:  
One line: x:(0-55), y=30, γ1=10000, σ1=3; α=0; 
We use the median (1), the MAD (2), the ALKS (3) , 
the MSSE (4), the revised RESC (5), and the TSSE (6) 
to estimate the scale of the line signal.  
As results, we obtained the median (3.0258); the MAD 
(3.0237); the ALKS (2.0061); the MSSE (2.8036); the 
revised RESC (2.8696); and the TSSE (3.0258). 
Among these six comparative methods, the median, the 
MAD, and the TSSE gave the most accurate results. 

The ALKS gave the worst result. This is because the 
robust estimate kŝ is an underestimate of σ  for all 
values of k (17, p.202) and because the criterion (6) 
wrongly estimates the optimal k. It used only about 
15% data as inliers. The MSSE used 98% data points as 
inliers, which is reasonable good.   

3.2 Two-mode distribution with random noise 

In this subsection, we will use relatively complicated 
data. We generated a step signal so that the data include 
two modes.  
A step signal: line1: x:(0-55), y=30, γ1=3000, σ1=3; 
line2: x:(55-100), y=40, γ2=2000, σ2=3; α=0. 
We obtained: the median (6.0432); the MAD (8.6817); 
the ALKS (3.1823); the MSSE (2.7792); the revised 
RESC (2.8251); and the TSSE (2.8765). Among these 
six comparative methods, the median and the MAD 
gave the worst results. This is because the median and 
the MAD scale estimators assume the residuals of the 
whole data are at Gaussian distribution. The other four 
scale estimators yield good results. 

3.3 Two-mode distribution with more outliers 

In this subsection, we still use the above one-step 
signal. However, we increased the number of outliers so 
that the data include 80% of outliers, i.e. γ1=750; 
γ2=500; α=3250. 
After applying the six methods to estimate the scale of 
the signal, we obtained: the median (37.7385); the 
MAD (30.6652); the ALKS (23.6490); the MSSE 
(31.8886); the revised RESC (25.4960); and the TSSE 
(4.7843). 
From the obtained results, we can see that only our 
proposed method gave a good result (reasonably good), 
while all other five methods failed to estimate the scale 
of the inliers when the data involve a high percentage 
of outliers.  

3.4 Breakdown plot 

3.4.1 A roof signal 
 
We generate a roof signal containing 500 data points in 
total.  
A roof: x:(0-55), y=x+30, γ1, σ=2; x:(55-100), y=140-x, 
γ2=50; σ=2.  
At the beginning, we assign 450 data point to γ1 and the 
number of the uniform outliers α =0; Thus, the data 
include 10% outliers. Then, we decrease γ1, and at the 
same time, we increase α so that the total number of 
data points is 500. Finally, γ1=50, and α=400, i.e. the 
data include 90% outliers. The results are repeated 20 
times. 
Figure 1 shows that TSSE yielded the best results 
among the six comparative methods. The revised RESC 
begin to breakdown when the outliers have more than 
about 70%. The MSSE gave reasonable results when 
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the percentage of outliers is less than 75%, but it broke 
down when the data include more outliers. Although 
the breakdown points of the median and the MAD scale 
estimators are as high as 50%, their results deviated 
from the true scale even when outliers are less than 
50% of the data. They are biased more and more from 
the true scale with the increase in the percentage of 
outliers. The ALKS gave less accurate results than 
TSSE.  
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 1. Breakdown plot of six methods in estimating the 
scale of a roof signal. 
 
3.4.2 A step signal  
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 2. Breakdown plot of six methods in estimating the 
scale of a step signal. 
 
We generated another signal: one-step which contains 
1000 data points in total.  
One-step signal: x:(0-55), y=30, γ1, σ=3; x:(55-100), 
y=40, γ2=100; σ=3.  
At the beginning, we assign γ1 900 data points and the 
number of the uniform outliers α =0; Thus, the data 
include 10% outliers. Then, we decrease γ1, and at the 
same time, we increase α so that the number of the 
whole data points is 1000. Finally, γ1=100, and α=800, 
i.e. the data include 90% outliers. 
From figure 1, we can see TSSE gave the most accurate 
estimation of the scale of the signal. The revised RESC 
begin to breakdown when the outliers have more than 
about 50%.  The MSSE gave reasonable results when 

the percentage of outliers is less than 70%, but it broke 
down when the data include more outliers. The median 
and the MAD scale estimators are more biased with the 
increase in the percentage of outliers. The ALKS has 
less accurate results than TSSE and, when the 
percentage of outliers is less than 50%, it has less 
accurate results than the revised RESC, and the MSSE. 
Compared with figure 1, we can see increasing the true 
scale of inliers will lead to less accurate results of the 
revised RESC, MSSE, and ALKS, but it has less 
influence on the results of the proposed TSSE. Even 
when the data include 90% outliers, the TSSE 
recovered the scale of inliers: 4.32 for the roof and 4.57 
for the step signal, which is reasonably good.   
 
3.4.3 Breakdown plot for robust scale estimator 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.3 Breakdown plot of different robust scale estimator 
 
If the data have a Gaussian distribution, the median 
scale estimator (1) is only one case of the robust scale 
estimator (5). Although theory has proved that the least 
kth squares method has only min(k/n, 1-k/n) breakdown 
point, it would be interesting to investigate the 
achievements of the robust scale estimator after the 
correct parameters of a model have been found. We let   
 
 
     (11) 
 
where q is set from 0 to 1. Thus S(0.5) is the median 
scale estimator. 
We generated a one-step signal containing 500 data 
points in total.  
One-step signal: x:(0-55), y=30, γ1, σ=1; x:(55-100), 
y=40, γ2=50; σ=1.  
At the beginning, γ1 = 450 and α =0; Then, we decrease 
γ1, and at the same time, we increase α. Finally, γ1=50, 
and α=400, i.e. the data include 90% outliers. 
As figure 3 shows, after finding the correct parameters 
of a model, the accuracy of S(q) is increased with the 
decrease of q.  When the outliers are less than 50% of 
the whole data, the difference for different values of q 
is small. However, when the data include more than 
50% outliers, the difference for various values of q is 

]2/)1[(

ˆ
)( 1 q

d
qS qn

+Φ
= −
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large. This provide a useful cue for robust estimators, 
which use the median scale method to recovery the 
scale of inliers. 
 

4. Conclusions 

In this paper, we investigate the achievements of 
several robust scale estimators. We find that they are 
vulnerable when the data included a high percentage of 
outliers and the scale of the true fit is large. This 
provides an important warning to the computer vision 
community: to carefully choose a proper scale estimator 
is necessary.  
We also propose a promising novel scale estimator 
(TSSE). The experiments show the advantages of the 
proposed method over other existing methods, 
especially, when the data involve a high percentage of 
outliers and the noise level of inliers is large. The TSSE 
can also be used as an auxiliary estimate of scale by 
other robust fitting methods such as Hough Transform 
[11], MDPE [12], etc.  
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