
Department of Electrical
and

Computer Systems Engineering

Technical Report
MECSE-20-2003

Routing and Wavelength Assignment in GMPLS-baased DWDM
Optical Networks:An OMNeT++ modelling Platform

LC. Cieutat and L.N. Binh

MONASH UIVERSITY

DEPARTMENT OF ELECTRICAL AND COMPUTER SYSTEMS ENGINEERING

MONASH UNIVERSITY

TECHNICAL REPORT

Routing and Wavelength Assignment
in GMPLS-based Optical Networks:

An OMNeT++ modelling platform

By

 L.N. Binh and Charles CIEUTAT

Groupe de Communications Fibre Optique et photonics Applique’

Department of Electrical and Computer Systems Engineering

Monash University

October 2003

MECSE-20-2003: "Routing and Wavelength Assignment in GMPLS-baased DWDM ...", LC. Cieutat and L.N. Binh

II

SUMMARY

Given a set of connection requests in an all-optical Dense Wavelength Division Multiplexing
network, this work aimed to investigate how to set up lightpaths and assign wavelengths in a
manner which minimizes on average the blocking for the current and the future requests.

First, a thorough analysis of the research studies and different approaches in the literature to solve
the routing and wavelength assignment problem in all-optical networks was conducted. This survey
allowed to identify pertinent research studies and determinate the use of the Generalized Multi
Protocol Label Switching framework for lightpath set-up in all-optical networks.

Based on this literature survey, a Routing and Wavelength Assignment scheme including a routing,
a wavelength assignment and a reservation scheme was proposed. This scheme is composed of
three parts: routing, wavelength assignment and reservation. First, the routing scheme was based
on the implementation of OSPF and different associated drafts that extend OSPF capabilities for
routing in all-optical networks. A proposal for an extension of the ISCD field in type 10 opaque LSA
was given, allowing to consider two different metrics for the shortest path calculation based on
Dijkstra algorithm. Secondly, two different wavelength assignment schemes, that is first-fit and
random ,were implemented. Finally, a parallel reservation scheme was developed in order to
examine the performance of the routing and wavelength assignment schemes previously
mentioned.

The proposed routing and wavelength assignment scheme was developed using an object-
oriented framework in order to facilitate further simulations and software reuse. The model was
developed in C++ according to the object-oriented framework using the free simulation software
OMNeT++.

Once the model developed, it was tested under different parameters, including total number of
wavelengths per fibre and different routing and wavelength assignment schemes. The model was
tested on the Abilene network, the research network linking U.S. universities that is composed of
12 gigaPoPs with an average degree of 3. The main test was to examine how the blocking of
lightpath requests varies with the average link utilisation in the network. The main finding were:

 The probability of a request to be blocked is very low for link utilisation between 0 % and up to
a threshold link utilisation varying between 33 % and 47 % depending on which scheme and
parameters are used. At higher link utilisations, blocking increases very fastly when link
utilisation increases.

 The enhanced TAW metric implemented performs better at link utilisations higher than the
simple TAW metric particularly when the number of wavelengths per fibre is low. Conversely,
at low link utilisation, both metrics have very similar results whatever the number of
wavelengths are used.

 The wavelengths assignment schemes implemented, that is first-fit and random, yield
extremely similar performance when associated with any routing and reservation schemes
implemented in this work.

As a conclusion, the survey, the simulation and its key findings definitively open the way for further
work on simulation of optical networking, such as taking into account wavelength conversion and
more advanced reservation schemes and modelling of restorations capabilities of an optical
network. Furthermore the transmission impairments of different paths will be taken into account in
the routing assignment in our near future works.

MECSE-20-2003: "Routing and Wavelength Assignment in GMPLS-baased DWDM ...", LC. Cieutat and L.N. Binh

III

NOMENCLATURE

ASE Amplified Spontaneous Emission
CR-LDP Constraint Routing Label Distribution Protocol
DWDM Dense Wavelength Division Multiplexing
GMPLS Generalized Multiprotocol Label Switching
IGP Interior Gateway Protocol
ION Intelligent Optical Network
ISCD Interface Switching Capability Descriptor
IS-IS Intermediate System to Intermediate System
LDP Label Distribution Protocol
LSA Link State advertisement
LSP Label Switched Path
MPLS Multiprotocol Label Switching
OSPF Open Shortest Path First
OXC Optical Cross Connect
PMD Polarization Mode Dispersion
RSVP Resource Reservation Protocol
RWA Routing and Wavelength Assignment
TAW Total and Available Wavelength
TE Traffic Engineering
TED Traffic Engineering Database
TLV Type Length Value
WA Wavelength Assignment
WCC Wavelength Continuity Constraint
WDM Wavelength Division Multiplexing

MECSE-20-2003: "Routing and Wavelength Assignment in GMPLS-baased DWDM ...", LC. Cieutat and L.N. Binh

IV

CONTENTS

1. INTRODUCTION...2
1.1. MOTIVATION ...2
1.2. AIMS..2
1.3. SUMMARY OF CONTRIBUTIONS ..2
1.4. DOCUMENT ORGANIZATION...3

2. PROJECT OVERVIEW...4
2.1. DEFINITION OF THE RWA PROBLEM..4
2.2. TYPES OF RWA PROBLEMS ...5
2.3. DIFFERENT APPROACHES FOR SOLVING THE PROBLEM...5

3. BACKGROUND THEORY ...6
3.1.1. Introduction to the graph theory..6

3.1.1.1. Dijkstra’s algorithm...6
4. LITERATURE REVIEW...7

4.1. BACKGROUND INFORMATION ..7
4.1.1. MPLS and Intelligent Optical Networks ..7

4.1.1.1. A high level view of MPLS...7
4.1.1.2. Routing and label distribution protocols in the MPLS framework......................................8
4.1.1.3. Towards a simpler protocol stack: IP/MPLS over DWDM...8
4.1.1.4. The analogy between MPLS and Optical Networks..8
4.1.1.5. Interworking and managing the three control planes...9

4.2. RESEARCH STUDIES ON THE RWA PROBLEM...9
4.2.1. RWA for Static Lightpath Establishment (SLE) ...9

4.2.1.1. Dissociating the routing problem from the WA problem ..9
4.2.1.2. Solving the routing problem and the WA problem simultaneously10

4.2.2. RWA for Dynamic Lightpath Establishment (DLE) ...10
4.2.2.1. Fixed routing ...11
4.2.2.2. Adaptive Routing Based on Global Information ...11
4.2.2.3. Adaptive Routing Based on Local Information...14
4.2.2.4. Summary..18

4.2.3. Wavelength Assignment ...20
4.2.3.1. First-fit WA heuristic...20
4.2.3.2. Random WA heuristic ...20
4.2.3.3. Most-used and least-used WA heuristic ..20
4.2.3.4. More advanced WA heuristics ..20
4.2.3.5. Summary..21

4.2.4. Signalling and resource reservation ..22
4.2.4.1. Parallel Reservation...22
4.2.4.2. Hop-by-Hop Reservation...22
4.2.4.3. Aggressive with wavelength group reservation scheme..24
4.2.4.4. Holding Policies ..25
4.2.4.5. Summary..26

4.3. A FRAMEWORK FOR OPTICAL NETWORKING: GMPLS...28
4.3.1. The RWA problem in the GMPLS framework..28

4.3.1.1. Overview of GMPLS...28
4.3.1.2. Lightpath set-up and restoration ..28

4.3.2. Optical routing issues ..29
4.3.2.1. Physical layer constraints ..29
4.3.2.2. Wavelength constraints..29

4.3.3. The GMPLS architecture ...29
4.3.3.1. A practical implementation of GMPLS: the Hikari router ..30

4.3.4. Overview of IETF current drafts and RFCs...31

MECSE-20-2003: "Routing and Wavelength Assignment in GMPLS-baased DWDM ...", LC. Cieutat and L.N. Binh

V

4.3.4.1. Link state routing protocol extensions of OSPF..31
4.4. CONCLUSION ...37

5. INVESTIGATION: A SIMULATION MODEL OF THE RWA PROBLEM38
5.1. EXPERIMENTAL METHODOLOGY ..38

5.1.1. Hypotheses ...38
5.1.1.1. Definition of the problem ..38
5.1.1.2. Requests’ set-up time considerations...38
5.1.1.3. Requests’ arrivals ..38
5.1.1.4. Architecture of the ION considered in this work...39
5.1.1.5. Physical constraints ...40

5.1.2. Objectives in this work...41
5.1.3. Description of the RWA scheme...41

5.1.3.1. Routing algorithm..42
5.1.3.2. Description of the routing scheme...43

5.2. MODEL IMPLEMENTATION ...46
5.2.1. Implementation guidelines ...46

5.2.1.1. Network model ..46
5.2.1.2. System parameters ...47
5.2.1.3. Object-oriented framework..48
5.2.1.4. OMNeT++ Modules description ...50

5.2.2. Simulation results process ...50
6. RESULTS AND DISCUSSION..52

6.1. WAVELENGTH ASSIGNMENT SCHEMES COMPARISONS...52
6.2. BLOCKING AND AVERAGE LINK UTILISATION...52

6.2.1. General observed behaviours for the blocking in an ION ...56
6.2.2. Comparison between simple and enhanced TAW metrics ...56

7. CONCLUSIONS..60

8. RECOMMENDATIONS FOR FURTHER WORK ..61
8.1. IMPROVEMENTS OF THE RWA ALGORITHM ...61

8.1.1. Wavelength conversion capability ...61
8.1.2. Physical constraints ...61

8.2. STUDY OF A RESERVATION PROTOCOL IN A GMPLS-BASED NETWORK ...61
8.3. RESTORATION CAPABILITIES..62

9. REFERENCES ..63

10. APPENDIX..66
10.1. SIMULATION PROGRAM..66

10.1.1. includes.h ...66
10.1.2. gen.cc ...67
10.1.3. sink.cc ..68
10.1.4. gmplsRouter.cc...68
10.1.5. gmplsRouter.h ..78
10.1.6. abilene.ned...83
10.1.7. omnetpp.ini ..88

10.2. RESULTS PROCESSING..89
10.2.1. Processing C++ program..89

MECSE-20-2003: "Routing and Wavelength Assignment in GMPLS-baased DWDM ...", LC. Cieutat and L.N. Binh

VI

FIGURES

FIGURE 1 A WAVELENGTH-ROUTED DWDM NETWORK ...4
FIGURE 2: ALTERNATE ROUTING. AVAILABLE WAVELENGTHS ARE SHOWN ON EACH LINK...............................14
FIGURE 3: SHORTEST PATH DEFLECTION ROUTING SCHEME ..15
FIGURE 4: LEAST-CONGESTED DEFLECTION ROUTING SCHEME..16
FIGURE 5: FORWARD RESERVATION..24
FIGURE 6: BACKWARD RESERVATION ...25
FIGURE 7: STRUCTURE OF HIKARI ROUTER WITH MULTI-LAYER TE BASED ON IP TRAFFIC MONITORING..........30
FIGURE 8 THE ABILENE NETWORK IN FEBRUARY 2002 ...39
FIGURE 9 BLOCKING DUE TO THE WAVELENGTH CONTINUITY CONSTRAINT..40
FIGURE 10: AN EXAMPLE OF A FIBRE’S TRUNK ...41
FIGURE 11 LINK METRICS FOR A 32 WAVELENGTHS FIBRE..44
FIGURE 12 PARALLEL RESERVATION MECHANISM – REQUEST, RESERVE, RESPONSE MESSAGES............45
FIGURE 13 ILLUSTRATION OF THE USE OF TAKEDOWN MESSAGES ..46
FIGURE 14: ENDSYSTEM, GENERATOR, SINK AND GMPLSROUTER MODULES...47
FIGURE 15 RWA SIMULATION CLASS DIAGRAM ...49
FIGURE 16 SCRIPT TO PERFORM 20 INDEPENDANT RUNS...50
FIGURE 17: EXTRACT OF ONE SIMULATION RUN..51
FIGURE 18. BLOCKING VERSUS LINK UTILISATION FOR DIFFERENT

T
i, jλ ..55

TABLES

TABLE 1: PROTOCOLS AND MECHANISMS IN IP, MPLS, OTN...9
TABLE 2: ROUTING ALGORITHMS IN THE RWA PROBLEM...19
TABLE 3 WA ALGORITHMS IN THE RWA PROBLEM..21
TABLEAU 4: RESERVATION MECHANISMS IN THE RWA PROBLEM ..27
TABLE 5 PROCESSED DATA FOR 8 WAVELENGTHS PER FIBRE ...53
TABLE 6 PROCESSED DATA FOR 16 WAVELENGTHS PER FIBRE ..53
TABLE 7 PROCESSED DATA FOR 24 WAVELENGTHS PER FIBRE ..53
TABLE 8 COMPARISON DATA BETWEEN SIMPLE AND ENHANCED TAW METRICS FOR 8 WAVELENGTHS PER

FIBRE...57
TABLE 9 COMPARISON DATA BETWEEN SIMPLE AND ENHANCED TAW METRICS FOR 16 WAVELENGTHS PER

FIBRE...57
TABLE 10 COMPARISON DATA BETWEEN SIMPLE AND ENHANCE TAW METRICS FOR 24 WAVELENGTHS PER

FIBRE...58
TABLEAU 11 RECAPITULATION TABLE FOR METRICS COMPARISON...58

MECSE-20-2003: "Routing and Wavelength Assignment in GMPLS-baased DWDM ...", LC. Cieutat and L.N. Binh

2

1. INTRODUCTION

1.1. MOTIVATION

The Internet is growing extremely fast and demands always much more bandwidth capacity. In
order to respond to the current and future demand with services such as, for instance, video on
demand and voice over IP, operators have used the numerous advantages of DWDM in their
optical long-haul transport backbone networks, bringing hundreds of Megabits of capacity on a
single fibre between the main GigaPops of their network.

Nevertheless, operators are currently facing the problems of “thin” dumb optics. Dumb optics, such
as DWDM point to point links, do not provide any channel networking. That means that up to now,
configuration, management, protection and restoration of connections are still done mostly
manually, adding a non negligible cost to the exploitation of an optical transport network and
making the management of it a real burden.

Several concepts such as GMPLS and ION have emerged. Such approaches try to bring full
transport functionalities with “smart” optics to an all-optical transport network. Especially, one key
aspect of ION is its capability to manage end-to-end channels between two nodes.

Over the time, this complex issue was referred to as the RWA problem. The RWA problem is
actually one of the major and more complex problem that researchers are faced within an ION, and
its resolution is critical in order to respond to performance and quality of service issues.

1.2. AIMS

Up to now, there is no practical and efficient routing and wavelength assignment scheme that has
been defined as a reference in order to find an optimal lightpath in multi-wavelengths DWDM
network. On the other hand, to the author’s knowledge, there has not been any real simulation
developed yet that allowed to test several schemes together, those schemes performing different
functions, such as routing, wavelength assignment and reservation. Usually, each scheme is
tested separately.

After a survey of the literature on RWA, the aim of this project was to simulate and model different
RWA schemes that allow to efficiently establish end-to-end connections in an all-optical network.
Especially, this project is expected to build the roots for a simulation platform of a GMPLS optical
network. Such a platform would allow to study the influence of different parameters and different
schemes onto the performance of connection set-up and further.

1.3. SUMMARY OF CONTRIBUTIONS

The most important contributions of this project are:

 An extensive literature survey on the RWA problem in all-optical networks and its implications
and latest trends in the GMPLS framework

MECSE-20-2003: "Routing and Wavelength Assignment in GMPLS-baased DWDM ...", LC. Cieutat and L.N. Binh

3

 The implementation of several schemes that appear at different stages of the RWA problem,
such as routing algorithms based on different metrics, first-fit and random wavelength
assignment and parallel reservation

 The design of an object-oriented framework for implementing these schemes, that will ease
simulation software re-use and further work based on this model

 The implementation of a simulation model of a link-state routing algorithm in an all-optical
network, giving near-optimal explicit route and wavelength assignments

 A demonstration of typical results which can be obtained with the model, such as the evolution
of the blocking with the average link utilisation for different number of channels used in a fibre.
This includes performance comparisons between the different schemes implemented under
various network conditions.

1.4. REPORT ORGANIZATION

Section 2 – Introduces the project and its initial aims. Defines the RWA problem and its different
parts. Gives an overview of the common approaches to solve the problem.

Section 3 – Introduces the theory of graphs and especially explains the principle of the Dijkstra
algorithm, one of most well-known shortest path algorithm.

Section 4 – This is a very thorough survey of approaches to solve the RWA problem. First, a
perspective of MPLS and its analogy in optical networks is given. This is followed by a survey of
research studies on the RWA problem, which on the whole concentrates upon Dynamic Lightpath
Establishment problem, which can be itself subdivided into three problems: routing, wavelength
assignment and reservation. Finally, a comprehensive introduction of how GMPLS issues take
place into the RWA problem is given.

SEction 5 – Based on the survey of Section 4, describes the principles of several schemes that
have been chosen to be implemented. This includes a description of the experimental methodology
and the hypotheses used. Finally, based on the remarks and analysis on the first part of this
chapter, the second part concentrates on giving the guidelines of the implementation model that
has been developed.

Section 6 – Describes the results of the implementation and discusses them. Especially, the
results give an estimation of the blocking in the network for different average link utilisation in the
ION and for different total number of channels per fibre.

Section 7 – Based on the literature survey of Section 4 and the conclusions of Section 6, gives
recommendations for further work.

MECSE-20-2003: "Routing and Wavelength Assignment in GMPLS-baased DWDM ...", LC. Cieutat and L.N. Binh

4

2. PROJECT OVERVIEW

In the following, an overview of the project is given. This includes an accurate definition of the RWA
problem, a separation of the RWA problem in two distinct problems and a brief overview for
common approaches used to solve the problem.

2.1. DEFINITION OF THE RWA PROBLEM

Over the last few years, DWDM has become the dominant technology for next generation optical
networks. Using DWDM, multiple channels, distinguished by their wavelengths, can be transmitted
on a single fibre, with each channel operating at its peak speed. Each wavelength of each fibre of a
link is then a sub-channel that is completely independent of the other wavelengths of the same
fibre. Such a concept is usually referred to as optical networking and ION, that is where the
physical optical layer becomes aware of connections by identifying them thanks to their
wavelengths. A typical topology of a DWDM network and its different associated channels, known
as wavelengths, is given in Figure 1.

Lightpath on wavelength λ1

Lightpath on wavelength λ2

End system

Optical Switch

Figure 1 A wavelength-routed DWDM network

A route (a set of links) traversed by data between a source and a destination pair forms an all-
optical path with a wavelength assigned on each link. Such a route is called a lightpath. Given a set
of connection requests, how to set up lightpaths for them is called the RWA problem. Basically, the
objective of an RWA algorithm is to set up lightpaths and assign wavelengths in a manner which
minimizes on average the blocking for the current and future requests.

In the absence of wavelength conversion, a lightpath must use the same wavelength on all fibre
links that it spans, which is known as the wavelength-continuity constraint. This constraint is unique
to WDM networks, which may lead to inefficient wavelength utilization and degraded network
performance.

MECSE-20-2003: "Routing and Wavelength Assignment in GMPLS-baased DWDM ...", LC. Cieutat and L.N. Binh

5

To overcome this constraint, wavelength converters can be introduced at network nodes, which
allow a wavelength to be optically converted to another wavelength. However, wavelength
conversion technology is not mature yet. The cost of wavelength converters is still considerably
high and is likely to remain as such in a short term. In this work, the use of wavelength conversion
is not considered.

2.2. TYPES OF RWA PROBLEMS

Typically, there are two types of network traffic, either static or dynamic. Thus, the RWA problem is
not one but double. This entails two kinds of lightpath establishment: the Static Ligthpath
Establishment and the Dynamic Lightpath Establishment problems.

 Static Lightpath Establishment (SLE)
All connection requests are known in advance and do not change. That is, a request for setting up
a set of optical paths is first given. These optical paths are not released once they are set up. The
optical paths are assumed to be lightpaths, namely following the wavelength continuity constraint.
The criterion of determining the best RWA is to minimize the number of wavelengths for a given
network topology, the numbers of fibres, and the set of optical paths demanded.

 Dynamic Lightpath Establishment (DLE)
All connection requests arrive dynamically. The optimisation problem is to minimize the request
blocking probability for a given number of wavelengths and/or to minimize the network cost.

The static lightpath establishment problem is more achievable with the current technology and
would be a short term solution in an ION. But when the traffic in the core of the network will
become too dynamic, dynamic lightpath establishment will have to be implemented in the ION. This
work is to examine the DLE problem.

2.3. DIFFERENT APPROACHES FOR SOLVING THE PROBLEM

The RWA problem involves different parts, usually solved separately to simplify the problem. In the
routing aspect, there are three basic types of routing approaches: fixed routing, fixed-alternate
routing, and adaptive routing.

 In fixed routing, there is only one fixed route (e.g. the shortest path) between a pair of source
and destination nodes.

 In fixed-alternate routing, each node maintains a routing table that contains an ordered list of
fixed routes to each destination node. For example, these routes may include the first-shortest-
path route, the second-shortest-path route, the third-shortest-path route, etc. The actual route
for a connection request can only be chosen from this set of routes.

 In adaptive routing, routing is based on the current wavelength availability on each link. Any
feasible route from the source node to the destination node can be a candidate as the actual
route for a connection request. The choice of a route depends on the network policy used,
such as the shortest-cost path first or the least-congested path first.

In general, fixed routing is the simplest while adaptive routing yields the best performance in terms
of the request blocking probability. Fixed-alternate routing offers a trade-off between computing
overhead and network performance.

The WA problem is the other part of the RWA problem. It is generally much easier that the routing
problem, but depends also on the actual result of the routing solution. Nevertheless, it has usually
repercussions on the performance results of the RWA algorithm when it is considered as a whole.

MECSE-20-2003: "Routing and Wavelength Assignment in GMPLS-baased DWDM ...", LC. Cieutat and L.N. Binh

6

3. BACKGROUND THEORY

3.1.1. INTRODUCTION TO THE GRAPH THEORY

In the graph theory, a network topology can be represented as a graph G(V,E), where V denotes
the set of vertices (network nodes) and E the set of edges (network links). |V| represents the
number of nodes in the graph and is usually referred to as the magnitude of the graph. Each link
(i, j) E∈ can be associated with a weight function i, jw which represents in a certain manner (to

be defined) the cost of using the link (i,j). The degree of a node i V∈ is the number of neighbours
of the node i.

Of special interest in this work is the problem of the shortest path in a graph. Given a graph G(V,E),
the problem is to find the path in the graph that minimizes the sum of the weights of all the links
taken between a two vertices. The graph theory has given numerous ways to solve that problem.
The most commonly known algorithms are Bellman-Ford and Dijkstra algorithms [1]. In the
following, an introduction to Dijkstra’s algorithm is given.

3.1.1.1. Dijkstra’s algorithm

Dijkstra's Algorithm, introduced in 1959 [2] provides one the most efficient algorithms for solving
the shortest-path problem. It finds the shortest paths from a given source vertex s in V to each
vertex v in V by developing the paths in order of increasing path lengths.

The Dijkstra algorithm can be formally described as follows. Let L(n) be the least cost path from
vertex s to vertex n, with i V∈ . The algorithm has 5 steps:

1. Set i=0, S0= {u0=s}, L(u0)=0, and L(v)=infinity for v ≠ u0. If |V| = 1 then stop, otherwise go to
step 2.

2. For each v in V – Si, replace L(v) by min(L(v), L(ui)+ i, jw). If L(v) is replaced, put a label
(L(v), ui) on v.

3. Find a vertex v which minimizes {L(v): v in V - Si}, say ui+1.

4. Let Si+1 = Si U {ui+1}.

5. Replace i by i+1. If i=|V|-1 then stop, otherwise go to step 2.

The time required by Dijkstra's algorithm is O(|V|2). For the beginner reader on the subject, a nice
Java-based animation can explain very easily how the algorithm is practically working [3].

MECSE-20-2003: "Routing and Wavelength Assignment in GMPLS-baased DWDM ...", LC. Cieutat and L.N. Binh

7

4. LITERATURE REVIEW

In the following, as a background information, an overview of the MPLS technology is presented. It
explains its possible analogy to all-optical networking in an ION. Then, an extensive literature
review of different schemes that have been elaborated to solve the RWA problem in a WDM
network is depicted. Finally, how the RWA problem fits into the broader scope of the GMPLS
framework is reviewed.

4.1. BACKGROUND INFORMATION

WDM networking has been launched by the concept of wavelength routing and optical networking.
This is a critical milestone in the transport network evolution leading to the concept of a future third
generation transport network based on all-optical networks.

There is currently a merging between the networking communities and the optics community. The
Internet Engineering Task Force (IETF) is a community that provides drafts and standards (RFC)
on the networking aspects of the Internet, of which the Internet Protocol (IP) is the fundamental
basis. Such a merging appears because of the ever dramatically increasing ubiquity of the IP
packets in next transport networks.

Since several years, one of the hot topics in IP-based backbone networks is MPLS. Taken apart
the numerous value-added and brand-new services that it provides, MPLS is relevant in our
context because of the label switching paradigm it provides. The label switching paradigm stems
from the idea to merge the switching speed of circuit-switching technologies such as ATM and the
survivability of an IP-based network.

The label switching paradigm used in MPLS is very similar to the concept of optical switching in all-
optical networks issues. If the label is not any more an ordinary and abstract number that has local
significance but a wavelength in an optical network, the lambda switching paradigm is born. This
paradigm is now possible due to the availability of all-optical components such as OXC and
Wavelength Converters that are able to manage the wavelength switching in one node of the ION.
Those components do not execute any Optical / Electrical / Optical conversion, thus explaining the
term “all-optical”.

If each node having this wavelength switching capability is now considered, the reunion of all
nodes is referred to as an ION, where Wavelength Routing is possible. IONs acquired intelligence
that do not reduce them to dumb point-to-point WDM optics any more. The ION is now an agile
Optical Transport Network, able to manage and route the wavelengths, providing if necessary self
healing and restoration capabilities. In the following, the key features of the MPLS technology are
described. It is also explained more extensively what are the analogy with MPLS label switching
and optical switching in an ION.

4.1.1. MPLS AND INTELLIGENT OPTICAL NETWORKS

4.1.1.1. A high level view of MPLS

If necessary, the novice reader can refer to a nice introduction to the MPLS main aspects found in
[4]. MPLS is based on the following set of ideas:

 Forwarding information (label) separate from the content of IP header

 A single forwarding paradigm (label swapping), multiple routing paradigms

MECSE-20-2003: "Routing and Wavelength Assignment in GMPLS-baased DWDM ...", LC. Cieutat and L.N. Binh

8

 Multiple link-specific realizations of the label swapping forwarding paradigm: “shim,” virtual
connection/path identifier (VCI/VPI), frequency slot (wavelength), time slot

 The flexibility to form forwarding equivalence classes (FECs)

 A forwarding hierarchy via label stacking

The separation of forwarding information from the content of the IP header allows MPLS to be used
with devices such as OXCs, which data plane cannot recognize the IP header. Label switch routers
forward data using the label carried by the data. This label, combined with the port on which the
data was received, is used to determine the output port and outgoing label for the data. The MPLS
control plane operates in terms of the label swapping and forwarding paradigm abstraction. At the
same time, the MPLS data plane allows multiple link-specific realizations of this abstraction. For
example, a wavelength could be viewed as an implicit label.

Finally, the concept of a forwarding hierarchy via label stacking enables interaction with devices
that can support only a small label space. This property of MPLS is essential in the context of
OXCs and DWDMs since the number of wavelengths (which act as labels) is not very large.

4.1.1.2. Routing and label distribution protocols in the MPLS
framework

The MPLS framework includes significant applications such as constraint-based routing.
Constraint-based routing is a combination of extensions to existing IP link-state routing protocols
(e.g., OSPF and IS-IS) with RSVP or CR-LDP as the MPLS control plane, and a Constrained
Shortest-Path-First (CSPF) heuristic. The extensions to OSPF and IS-IS allow nodes to exchange
information about network topology, resource availability and even policy information.

This information is used by the CSPF heuristic to compute paths subject to specified resource
and/or policy constraints. For example, either RSVP-TE or CR-LDP is used to establish the label
forwarding state along the routes computed by a CSPF-based algorithm ; this creates the LSP. The
MPLS data plane is used to forward the data along the established LSPs. Constraint-based routing
is used today mainly for two main purposes: traffic engineering and fast reroute.

4.1.1.3. Towards a simpler protocol stack: IP/MPLS over DWDM

With suitable network design, the constraint-based routing of IP/MPLS can replace ATM as the
mechanism for traffic engineering. Likewise, fast reroute mechanisms offers an alternative to
SONET as a mechanism for protection/restoration. Both traffic engineering and fast reroute are
examples of how enhancements provided by MPLS to IP routing make it possible to bypass ATM
and SONET/SDH by migrating functions provided by these technologies to the IP/MPLS control
plane.

4.1.1.4. The analogy between MPLS and Optical Networks

Paving a path for future evolution of MPLS technologies are several emerging synergies between
Label Switch Routers used in MPLS and photonic switches, and between an LSP and an optical
path or lightpath. A lightpath is an end-to-end path composed exclusively of photonic elements
without optical-electronic conversions. Analogous to switching labels in an LSR, a photonic switch
toggles wavelengths from an input to an output port. Establishing an LSP involves configuring each
intermediate LSR to map a particular input label and port to an output label and port. Similarly, the
process of establishing a ligthpath involves configuring each intermediate photonic switch to map a
particular input wavelength and port to an output wavelength and port.

LSRs and photonic switches need routing protocols like OSPF or IS-IS to exchange link-state
topology and other optical resource availability information for path computation. They also need
signalling protocols like RSVP and LDP to automate the path establishment process.

MECSE-20-2003: "Routing and Wavelength Assignment in GMPLS-baased DWDM ...", LC. Cieutat and L.N. Binh

9

The important is that MPLS allows to separate logically the network into a control plane and a
forwarding plane. The forwarding plane is responsible of switching information using a very
simplified switching table (analogous to ATM but with increased capabilities). On the other hand,
the control plane task is to manage the resources of the network. Especially, the control plane is to
reserve resources on an end-to-end basis between the ingress and the egress nodes ; this
includes the set-up and the turn-down of the optical path. A summary of the different schemes
used in different layers is given in Table 1.

 Control Plane Data Plane
IP Routing layer: OSPF, IS-IS and BGP. Forwarding layer: IP.

MPLS Binding layer: CR-LDP or RSVP-TE. Forwarding layer: MPLS.
OTN λ Mapping layer: LMP or GMPLS or a combination

of the two ?
λ Forwarding layer: wavelength

Table 1: Protocols and mechanisms in IP, MPLS, OTN

4.1.1.5. Interworking and managing the three control planes

[5] presents how it is possible to benefit from the advantages of each layer technology, i.e. the
route discovery capabilities of the IP control plane, the Traffic Engineering capabilities of the MPLS
control plane and the forwarding speed of the ION control plane.

A gradually more accepted idea is to couple the three control planes by implementing another
layer, as a Management plane. At this stage, there are no common agreement on how the different
control planes will interact with each other, that is no consensus has been reached on how the
operations of extended OSPF, IS-IS, extended BGP, RSVP-TE, CR-LDP, LMP, GMPLS, the OIF
UNI and NNI will be executed.

Nevertheless, the IP community and the optical network community have agreed that the control
plane responsible of the management of the optical network layer will be based on the GMPLS
framework. Before delving into the GMPLS framework, of which the RWA problem is only one part,
albeit a big part, a review of the research studies on the RWA is conducted.

4.2. RESEARCH STUDIES ON THE RWA PROBLEM

In the following, a thorough review of the research studies concerning the SLE and DLE problems
that constitute the two sub problems of the RWA problem is presented.

4.2.1. RWA FOR STATIC LIGHTPATH ESTABLISHMENT (SLE)

4.2.1.1. Dissociating the routing problem from the WA problem

A number of studies have investigated the RWA problem for setting up a static set of lightpaths [6]
[7]. These studies formulate the problem using integer linear program (ILP) formulations, or rely on
heuristic approaches in an attempt to minimize the number of wavelengths required to establish a
given set of lightpaths. The ILP formulations are NP-complete and therefore may only be solved for
very small systems. For larger systems, heuristic methods must be used. More generally, it is a
fact that the RWA problem is an intricate problem that can be solved practically only with heuristics.

MECSE-20-2003: "Routing and Wavelength Assignment in GMPLS-baased DWDM ...", LC. Cieutat and L.N. Binh

10

For instance, in [7], the routing problem is formulated as an ILP in which the objective is to
minimize the number of wavelengths required to establish a fixed set of lightpaths. The search
space of the problem is reduced by restricting the set of links through which a lightpath for a given
source-destination pair may traverse. The resulting ILP is then solved by relaxing the integer
constraint, solving the resulting non-integer linear program, and then utilizing a randomised
rounding approach on the result to obtain an integer solution.

Other heuristics consider only alternate shortest-hop paths between a source-destination pair, and
choose one of the paths according to a predefined policy. In [8], a shortest-hop path is randomly
chosen for each source-destination pair. Each source-destination pair is then considered
individually, and the route for the pair of nodes is switched to an alternate shortest-hop path if
doing so results in a reduction of load on the most heavily loaded link in the original shortest-path
route.

In [9], an approach similar to that in [7] is considered; however, the objective is to minimize the
number of fibres in a multifibre network, and the set of alternate paths includes routes which may
be longer than the shortest-hop routes. Quite satisfying solutions to the RWA problem are obtained
most of the time by finding a lightpath that is not the shortest-hop path.

4.2.1.1.1 Wavelength assignment sub-problem

The wavelength-assignment sub-problem of the RWA problem can itself be formulated as a graph
colouring problem, which is also NP-complete. Greedy heuristics for the wavelength-assignment
problem for a static set of lightpaths typically involve ordering the wavelengths, and assigning the
same wavelength to as many lightpaths as possible before moving on to the next wavelength [6].
Also, the set of lightpaths may be ordered by length, such that wavelengths are assigned to longer
lightpaths before wavelengths are assigned to shorter lightpaths. All those heuristics are extremely
CPU-intensive and they are unpractical solutions to be implemented because of their usual
complexity.

4.2.1.2. Solving the routing problem and the WA problem
simultaneously

[10] focuses on static lightpath assignment. That is, a request for setting up a set of optical paths is
first given. The criterion of determining the RWA is to minimize the number of wavelengths for a
given network topology, the numbers of fibres, and the set of optical paths demanded.

[10] shows that the routing problem and the wavelength assignment problem can be solved
simultaneously by employing a multi-commodity flow model, which has been comprehensively
studied in the literature. On the basis of this notion, a heuristic routing and wavelength assignment
algorithm is proposed. Through numerical examples, the proposed algorithm is compared with
conventional algorithms that run under the same criteria. It is shown to run better that the algorithm
presented in [7].

Even though solutions have been found to solve the SLE problem, they mostly rely on complex
heuristics and thus are not well suited for any practical implementations. Furthermore, the SLE
problem does not consider any dynamic traffic. This may be suitable for today’s backbones ; but in
the very near future, automation of lightpath management responding to needs for dynamic traffic
must be provided. This is the object of DLE schemes that is presented in the following.

4.2.2. RWA FOR DYNAMIC LIGHTPATH ESTABLISHMENT (DLE)

When lightpaths are established and taken down dynamically, RWA decisions must be made as
connection requests arrive to the network. It is possible that, for a given connection request, there
may be insufficient network resources to set up a lightpath, in which case the connection request
will be blocked. The connection may also be blocked if there is no common wavelength available
on all of the links along the chosen route (Wavelength Continuity Constraint also known as WCC).

MECSE-20-2003: "Routing and Wavelength Assignment in GMPLS-baased DWDM ...", LC. Cieutat and L.N. Binh

11

Thus, the objective in the dynamic situation is to choose a route and a wavelength which
maximizes the probability of setting up a given connection, while at the same time attempting to
minimize the blocking for future connections. Similar to the case of static lightpaths, the dynamic
RWA problem can also be decomposed into a routing sub problem and a corresponding
wavelength assignment sub problem. Approaches to solving the routing sub problem can be
categorized as being either fixed or adaptive, and as utilizing either global or local network state
information.

4.2.2.1. Fixed routing

In fixed routing, a single fixed route is predetermined for each source-destination pair. When a
connection request arrives, the network will attempt to establish a lightpath along the fixed route. If
no common wavelength is available on every link in the route, then the connection will be blocked.

A fixed routing approach is simple to implement; however, it is very limited in terms of routing
options and may lead to a high level of blocking. In order to minimize the blocking in fixed routing
networks, the predetermined routes need to be selected in a manner which balances the load
evenly across the network links. Fixed routing schemes do not require the maintenance of global
network state information.

4.2.2.2. Adaptive Routing Based on Global Information

Adaptive routing approaches increase the likelihood of establishing a connection by taking into
account network state information. For the case in which global information is available, routing
decisions may be made with full information as to which wavelengths are available on each link in
the network.

4.2.2.2.1 Centralized Versus Distributed Routing

Adaptive routing based on global information may be implemented in either a centralized or
distributed manner. In a centralized algorithm, a single entity, such as a network manager,
maintains complete network state information, and is responsible for finding routes and setting up
lightpaths for connection requests. Since a centralized entity manages the entire network, there
does not need to be a high degree of coordination among nodes; however, a centralized entity
becomes a possible single point of failure. Furthermore, a centralized approach does not scale
well, as the centralized entity would need to maintain a large database to manage all nodes, links,
and connections in the network.

4.2.2.2.2 Fixed-alternate-Path Routing

One approach to adaptive routing with global information is alternate-path routing. Alternate-path
routing relies on a set of predetermined fixed routes between a source node and a destination
node [11] [12] [13] [14]. When a connection request arrives, a single route is chosen from a set of
predetermined routes, and a lightpath is established on this route. The criteria for route selection is
typically based on either path length or path congestion.

a) Route selection based on path length

An example of a routing algorithm based on path length is the K-shortest paths algorithm [11], in
which the first K shortest paths are maintained for each source-destination pair, and the paths are
selected in order of length, from shortest to longest. A connection is shortest attempted on the
shortest path. If resources are not available on this path, the next shortest path is attempted.

b) Route selection based on path congestion

A path selection policy based on path congestion examines the available resources on each of the
alternate paths, and chooses the path on which the highest amount of resources are available.

MECSE-20-2003: "Routing and Wavelength Assignment in GMPLS-baased DWDM ...", LC. Cieutat and L.N. Binh

12

c) Comparison of path congestion and path length-based
route selection

Choosing the shortest-path route consumes less network resources, but may lead to high loads on
some of the links in the network, while choosing the path with the least congestion leads to longer
paths, but distributes the load more evenly over the network.

4.2.2.2.3 Unconstrained Routing

Another adaptive routing approach utilizing global information is unconstrained routing which
considers all possible paths between a source node and a destination node. In order to choose an
optimal route, a cost is assigned to each link in the network based on current network state
information, such as wavelength availability on links. A least-cost routing algorithm is then
executed to find the least-cost route [15] [16] [17]. Whenever a connection is established or taken
down, the network state information is updated.

Two examples of unconstrained routing approaches are link-state routing and distance-vector
routing.

a) Link-state routing

In a distributed link-state routing approach, each node in the network must maintain complete
network state information [16]. Each node may then find a route for a connection request in a
distributed manner. Whenever the state of the network changes, all of the nodes must be informed.
Therefore, the establishment or removal of a lightpath in the network may result in the broadcast of
update messages to all nodes in the network. The need to broadcast update messages may result
in significant control overhead. Furthermore, it is possible for a node to have outdated information,
and for the node to make an incorrect routing decision based on this information.

Some efforts have been made to enhance common shortest path algorithms using link-state
routing. In [18], several different enhanced links weights especially designed for WDM networks
are defined and their performance are compared. It is showed that as a rule of thumb, a metric
based on using lowest hop count and combination of available and total number of wavelengths
results in the lowest blocking probability.

In the following, an enhanced metrics that can be used in the Dijkstra algorithm is presented [18].
Let be a

i, jλ the number of available (unused) wavelengths on a link and T
i, jλ the total number of

possible wavelengths on that link.

a1). Total and available wavelengths (TAW)

Let be wi,j the weight of a link (i,j). In TAW, wi,j is defined as the following:

a
i , ja

i, j 2
i, j T

i, j

w log 1 1 (i,j) E
λ

λ
λ

 = − − − ∀ ∈

 (1)

Let be p the probability that a wavelength is used on one link. If a
i, jλ and T

i, jλ , are known, p can be
estimated:

T a a
i, j i, j i, j

T T
i, j i, j

p 1
λ λ λ

λ λ
−

= = − (2)

MECSE-20-2003: "Routing and Wavelength Assignment in GMPLS-baased DWDM ...", LC. Cieutat and L.N. Binh

13

Then, the probability that all wavelengths will be used in the future can be written as
a
i , jpλ . Then,

the probability that at least one wavelength is available on the link in future is given by
a
i , j1 pλ− . For

a route composed of multiple links, the goal is to maximise the probability that one wavelength will

be available in future, ie maximise the product of
a
i , j1 pλ− that constitute the possible route. Due to

the additive characteristic of the Dijkstra algorithm, maximising the probability of an available
wavelength is equivalent to minimizing the value because of the following relation

() ()a a
i , j i , j

i, ji, j

log 1 p log 1 pλ λ − − = − −
∑∏ .

b) Distance-vector routing

A distance-vector approach to routing with global information is also possible [17]. This approach
doesn't require that each node maintains complete link-state information at each node as in [16],
but instead has each node maintain a routing table which indicates for each destination and on
each wavelength, the next hop to the destination and the distance to the destination. The approach
relies on a distributed Bellman-Ford algorithm to maintain the routing tables. Similar to [16], the
scheme also requires nodes to update their routing table information whenever a connection is
established or taken down. This update is accomplished by having each node send routing
updates to their neighbours periodically or whenever the status of the node's outgoing links
changes. Although each node maintains less information than in [16] and the updates are not
broadcast to all nodes, the scheme may still suffer from a high degree of control overhead.

An interesting approach to distance-vector algorithms is also that, in some way, it can perform a
constraint routing based on the number of hops and any other kind of metric [19]. Indeed, it should
be noted that standard routing algorithms are typically single objective optimisations, i.e., they may
minimize the hop-count, or minimize any other kind of metric, but not both. Double objective path
optimisation is a more complex task, and, in general, it is an intractable problem.

The Bellman-Ford shortest path algorithm is adapted to compute paths of a minimum metric for all
hop counts. It is a property of the BF algorithm that, at its h-th iteration, it identifies the optimal path
between the source and each destination, among paths of at most h hops. However, because the
BF algorithm progresses by increasing hop count, it essentially provides for free the hop count of a
path as a second optimisation criteria. This can be an especially interesting feature if the objective
is to find the shortest path (with a certain metric) while still finding a ‘relatively’ short path, i.e. a
path that also minimizes the hop count.

c) Comparison between distance-vector and link-state
routing in the RWA problem

When it is possible to handle global knowledge of the network, distance-vector and link-state
routing are two possibilities. Nevertheless, the choice of either algorithm entails very different
behaviours when considering the RWA problem. In [20], the performance of the two approaches
for solving dynamic lightpath establishment is studied. Major results are that link-state outperforms
distance-vector algorithms for shorter stabilizing delays and lower blocking at low loads. Distributed
routing yields lower blocking probability under high loads.

Nevertheless, the principal drawback of distance-vector algorithms is that they are not suited as
much as link-state algorithms when considering traffic engineering issues. Particularly, the major
advantage of link-state algorithms is that each node has a global knowledge of the network. This
makes it very easy to find explicit routes from a source node to a destination node, thus adding
more fault tolerance to the network. For instance, it is possible to add restoration capacities when
nodes have full knowledge of the network.

MECSE-20-2003: "Routing and Wavelength Assignment in GMPLS-baased DWDM ...", LC. Cieutat and L.N. Binh

14

Although routing schemes based on global knowledge must deal with the task of maintaining a
potentially large amount of state information which is changing constantly, these schemes often
make the most optimal routing decisions if the state information is up to date. Thus, global-
knowledge based schemes may be well suited for networks in which lightpaths are fairly static and
do not change much with time.

4.2.2.3. Adaptive Routing Based on Local Information

While near-term emerging systems will be fairly static, with lightpaths being established for long
periods of time, it is expected that, as network traffic continues to scale up and become more
bursty in nature, a higher degree of multiplexing and flexibility will be required at the optical layer.
Thus, lightpath establishment will become more dynamic in nature, with connection requests
arriving at higher rates, and lightpaths being established for shorter time durations.

In such situations, certain people estimated that maintaining distributed global information may
become infeasible. The alternative is to implement routing schemes which rely only on local
information. A number of adaptive routing schemes exist which rely on local information rather than
global information. The advantage of using local information is that the nodes do not have to
maintain a large amount of state information; however, routing decisions tend to be less optimal
than in the case of global information. Two examples of local-information-based adaptive routing
schemes are alternate routing with local information, and deflection routing.

4.2.2.3.1 Alternate-Path Routing with Local Information

While alternate-path routing schemes typically rely on global information, variations exist which
utilize only local information. A least-congested alternate path routing scheme is investigated in
[21]. In this scheme, the choice of a route is determined by the wavelength availability along the
alternate paths. Two variations of the scheme are considered: the case in which wavelength
availability information is known along the entire path, and the case in which only local information
is available.

a) End-to-end wavelength knowledge

In the first approach, the decision making entity is aware of the wavelength availability information
for all of the links in each of the alternate paths. In this case, the chosen route is that which has the
greatest number of wavelengths which are available along all of the links in its path. For example,
in Figure 2, if two alternate routes from source node A to destination node D are considered, with
available wavelengths as shown on each link, then two wavelengths (λ1 and λ3) are available along
the entire length of route 1, while only one wavelength (λ2) is available along the entire length of
route 2; thus, route 1 will be chosen.

Figure 2: Alternate routing. Available wavelengths are shown on each link.

MECSE-20-2003: "Routing and Wavelength Assignment in GMPLS-baased DWDM ...", LC. Cieutat and L.N. Binh

15

The limitation of basing the route selection decision on full path information is that the information
may be difficult to maintain or difficult to obtain in a timely manner. Each node would be required to
either maintain complete state information, or the information would need to be gathered in real
time, as the lightpath is being established.

b) Partial wavelength knowledge

The alternative, based on local information, is to gather wavelength availability information only
along the shortest k hops of each path. The route is then chosen based on which path is the least
congested along its shortest k hops. In Figure 2, if k = 2, then route 2 would be chosen, since it has
three wavelengths available on the shortest two links (λ1; λ2, and λ4), while route 1 only has two
wavelengths available on the shortest two links (λ1 and λ3).

Although local information may provide a good estimate of the congestion along a path, it does not
guarantee that any particular wavelength will be available along the entire path; thus, it is possible
that after choosing a route, the connection will still be blocked due to lack of available wavelengths.

4.2.2.3.2 Deflection Routing

Another approach to adaptive routing with limited information is deflection routing, or alternate-link
routing [22]. This routing scheme chooses from alternate links on a hop-by-hop basis rather than
choosing from alternate routes on an end-to-end basis. The routing is implemented by having each
node maintain a routing table which indicates, for each destination, one or more alternate outgoing
links to reach that destination. These alternate outgoing links may be ordered such that a
connection request will preferentially choose certain links over other links as long as wavelength
resources are available on those links.

Other than a static routing table, each node will only maintain information regarding the status of
wavelength usage on its own outgoing links. When choosing an outgoing link for routing, the
decision can be determined on either a shortest-path or least-congested basis.

a) Shortest path deflection routing scheme

Under the shortest path criteria, the routing scheme will shortest attempt to choose the outgoing
link which results in the shortest path to the destination. If there is no feasible wavelength available
on the link, then the routing scheme will attempt to choose an alternate outgoing link which leads to
the next shortest path to the destination. The routing scheme proceeds in this manner until the
destination is reached or the connection is blocked.

Figure 3: Shortest path deflection routing scheme

MECSE-20-2003: "Routing and Wavelength Assignment in GMPLS-baased DWDM ...", LC. Cieutat and L.N. Binh

16

Figure 3 illustrates the deflection routing scheme for a connection request from node A to node D.
The default shortest path in this example is along the path A→B→C→D. When the request
reaches node C, it cannot continue over link CD, since no common wavelength is available on links
AB, BC, and CD. The request is therefore deflected to node F, where it can continue to the
destination along link FD. The wavelength selected for the lightpath will be λ1.

Note that, in the absence of any deflections, the default routing for any connection will be shortest-
path routing. Also, once the routing for a lightpath is deflected at a node, the default routing from
the point of deflection onward will again be shortest-path routing if no further deflections take place.

b) Least-congested deflection routing scheme

In a least-congested deflection routing approach, the routing scheme chooses, from among the
alternate outgoing links, the link which has the largest number of feasible wavelengths. The set of
feasible wavelengths consists of the set of wavelengths which are available on all of the previous
hops as well as the next outgoing link.

Figure 4: least-congested deflection routing scheme

Least-congested deflection routing is illustrated in Figure 4 for a connection from node A to node D.
On the shortest hop, link AB is selected, since it has three available wavelengths, while link AE has
only two available wavelengths. When the connection request arrives to node B, it will be routed to
node E, since there are three feasible wavelengths (λ1; λ2; and λ4) available on link BE, and there
is only one feasible wavelength (λ1) available on link BC.

The least-congested deflection routing approach will generally result in longer paths than the
shortest-path deflection routing approach; however, least-congested deflection will allow a lightpath
to be routed around congested areas in the network, balancing the load more evenly across the
network. The results in [22] show that a shortest-first policy results in lower blocking at low loads,
while a least-congested policy results in lower blocking at higher loads.

c) Issues in deflection routing

A number of issues arise when implementing a deflection routing scheme. One such issue is the
problem of looping, in which a connection request message returns to a node which has already
been visited. Loop detection may be addressed by having each connection request message
maintain a path vector containing a list of visited nodes. If a node receives a connection request
message which indicates that the message has already visited this node, then the connection
attempt will be blocked. An alternative to maintaining a path vector is to utilize a time-to-live field,
which would prevent the connection request message from looping in the network indefinitely.

MECSE-20-2003: "Routing and Wavelength Assignment in GMPLS-baased DWDM ...", LC. Cieutat and L.N. Binh

17

Another problem which may arise is that a connection request may be deflected a large number of
times, leading to an unreasonably long route for the lightpath. Possible solutions to this problem
include limiting the maximum length or number of hops in a lightpath, or limiting the number of
deflections that a route can take. When a connection request message reaches its limit on the
maximum number of hops or deflections, the connection attempt will be blocked. Further
restrictions may also be placed on the selection of possible outgoing ports in order to prevent
routes from heading back towards the source node.

MECSE-20-2003: "Routing and Wavelength Assignment in GMPLS-baased DWDM ...", LC. Cieutat and L.N. Binh

18

4.2.2.4. Summary

A summary of the different kinds of routing algorithms in the RWA problem are presented in Table 2.

Routing classification Description Advantages Drawbacks
Fixed routing A single fixed route is predetermined for

each source-destination pair
Simple to implement.
No state information
needed.

limited in terms of
routing options.
High blocking.

Path length Alternate path

Path
congestion

A set of fixed routes are predetermined
for each source node and a destination
node.
The criteria for route selection is typically
based on either path length or path
congestion.
Path length may lead to high loads on
some of the links in the network.
Path congestion leads to longer paths,
but distributes the load more evenly over
the network.

Probability of blocking is
smaller than for fixed
routing.
Simplicity.
Optimal routing decision.
Well suited for networks in
which lightpaths are fairly
static and do not change
much with time.

Global information
needed (high load in
the network).

Link state
routing

Adaptive routing
(global
information).

Unconstrained

Vector
distance
routing

A cost is assigned to each link in the
network based on current network state
information, such as wavelength
availability on links.
A least-cost routing algorithm is then
executed to find the least-cost route.
Contrary to link-state routing, vector-
distance doesn't require that each node
maintains complete link-state information.

Probability of blocking is
smaller than for fixed
routing.
Simplicity.
Optimal routing decision.
Well suited for networks in
which lightpaths are fairly
static and do not change
much with time.

Global information
heeded (high load in
the network).

Adaptive routing
(local
information).

Alternate path routing.

Each node maintains λ
usage at least for k hops.

End-to-end λ
knowledge.

The criteria for choosing routes is based
on wavelength availability.
Wavelength availability can be known
completely or partially.
In partial wavelength knowledge,
i f ti i l th d l th

Local information.
More adapted for fast
changing networks with
very dynamic lightpaths
CAC.

Routing decision is
not necessarily
optimal.
Possible blocking
due to non λ

ibilit

M
E

C
S

E
-20-2003: "R

outing and W
avelength A

ssignm
ent in G

M
P

LS
-baased D

W
D

M
 ...", LC

. C
ieutat and L.N

. B
inh

19

 Partial λ
knowledge.

information is only gathered along the
first k hops of each path.
The route is then chosen based on which
path is the least congested along its
shortest k hops

 avaibility.

Shortest path Choose the outgoing link which results in
the shortest path to the destination.
If there is no feasible wavelength
available on the link, choose an alternate
outgoing link which leads to the next
shortest path to the destination.
Proceed in this manner until the
destination is reached or the connection
is blocked.
In the absence of any deflections, the
default routing for any connection will be
shortest-path routing

Deflection (or alternate-link)
routing.

For each node, status of
wavelength usage only on
its own outgoing links.

Least-congested results in
longer paths than the
shortest-path deflection
routing approach but
provides better load
balancing.
Shortest-first policy results in
lower blocking at low loads,
while a least-congested
policy results in lower
blocking at higher loads.

Least
congested

Choose the outgoing link which has the
largest number of feasible wavelengths.
The set of feasible wavelengths consists
of the set of wavelengths which are
available on all of the previous hops as
well as the next outgoing link.

Local information.
More adapted for fast
changing networks with
very dynamic lightpaths
CAC.

Possible looping.
May return
excessively long
routes for the
lightpath.

Table 2: Routing algorithms in the RWA problem

M
E

C
S

E
-20-2003: "R

outing and W
avelength A

ssignm
ent in G

M
P

LS
-baased D

W
D

M
 ...", LC

. C
ieutat and L.N

. B
inh

20

4.2.3. WAVELENGTH ASSIGNMENT

In general, if there are multiple feasible wavelengths between a source node and a destination
node, then a wavelength assignment algorithm is required to select a wavelength for a given
lightpath. The wavelength selection may be performed either after a route has been determined, or
in parallel with finding a route.

Since the same wavelength must be used on all links in a lightpath, it is important that wavelengths
are chosen in a way which attempts to reduce blocking for subsequent connections. A review of
wavelength-assignment approaches can be found in [23].

4.2.3.1. First-fit WA heuristic

One example of a simple but effective wavelength-assignment heuristic is first-fit. In first-fit, the
wavelengths are indexed, and a lightpath will attempt to select the wavelength with the lowest
index before attempting to select a wavelength with a higher index. By selecting wavelengths in
this manner, existing connections will be packed into a smaller number of total wavelengths,
leaving a larger number of wavelengths available for longer lightpaths.

4.2.3.2. Random WA heuristic

Another approach for choosing between different wavelengths is to simply select one of the
wavelengths at random. In general, first-fit will outperform random wavelength assignment when
full knowledge of the network state is available [12]. However, if the wavelength selection is done in
a distributed manner, with only limited or outdated information, then random wavelength
assignment may outperform first-fit assignment. The reason for this behaviour is that, in a first-fit
approach, if multiple connections are attempting to set up a lightpath simultaneously, then it may
be more likely that they will choose the same wavelength, leading to one or more connections
being blocked.

4.2.3.3. Most-used and least-used WA heuristic

Other simple wavelength assignment heuristics include the most-used-wavelength heuristic and
the least-used-wavelength heuristic. In most-used wavelength assignment, the wavelength which
is the most used in the rest of the network is selected. This approach attempts to provide maximum
wavelength reuse in the network. The least-used approach attempts to spread the load evenly
across all wavelengths by selecting the wavelength which is the least-used throughout the network.
Both most-used and least-used approaches require global knowledge.

4.2.3.4. More advanced WA heuristics

A number of more advanced wavelength assignment heuristics which rely on complete network
state information have been proposed [24] [25]. It is assumed in these heuristics that the set of
possible future lightpath connections is known in advance. For a given connection, the heuristics
attempt to choose a wavelength which minimizes the number of lightpaths in the set of future
lightpaths that will be blocked by this connection. It is shown that these heuristics offer better
performance than first-fit and random wavelength assignment.

MECSE-20-2003: "Routing and Wavelength Assignment in GMPLS-baased DWDM ...", LC. Cieutat and L.N. Binh

21

4.2.3.5. Summary

A summary of the different kinds of WA algorithms in the RWA problem are presented in Table 3.

WA heuristics Characteristics Advantage Drawback
First-fit The wavelengths are indexed, and a lightpath will attempt

to select the wavelength with the lowest index before
attempting to select a wavelength with a higher index

If global information, outperforms
random heuristics.

Possible blocking if simultaneous
lightpath connections.

Random Select one of the wavelengths at random If local information, outperforms first-fit
heuristics.
Very simple.

Does not provide optimal wavelength
assignment.

Least-used The wavelength which is the most used in the rest of the
network is selected.

Spreads the load evenly across all
wavelengths

Global information needed.

Most-used The wavelength which is the most used in the rest of the
network is selected.

Provides maximum wavelength reuse
in the network

Global information needed.

Table 3 WA algorithms in the RWA problem

M
E

C
S

E
-20-2003: "R

outing and W
avelength A

ssignm
ent in G

M
P

LS
-baased D

W
D

M
 ...", LC

. C
ieutat and L.N

. B
inh

22

4.2.4. SIGNALLING AND RESOURCE RESERVATION

In order to set up a lightpath, a signalling protocol is required to exchange control information
among nodes and to reserve resources along the path. In many cases, the signalling protocol is
closely integrated with the RWA algorithms.

Signalling and reservation protocols may be categorized based on whether the resources are
reserved on each link in parallel, reserved on a hop-by-hop basis along the forward path, or
reserved on a hop-by-hop basis along the reverse path. Algorithms will also differ depending on
whether global information is available or not.

4.2.4.1. Parallel Reservation

In [16], the control scheme reserves wavelengths on multiple links in parallel. The scheme, which is
based on link-state routing, assumes that each node maintains global information on the network
topology and on the current state of the network, including information regarding which
wavelengths are being used on each link. Based on this global information, the node can calculate
an optimal route to a destination on a given wavelength. The source node then attempts to reserve
the desired wavelength on each link in the route by sending a separate control message to each
node in the route. Each node that receives a reservation request message will attempt to reserve
the specified wavelength, and will send either a positive or negative acknowledgement back to the
source. If the source node receives positive acknowledgements from all of the nodes, it can
establish the lightpath and begin communicating with the destination.

Nevertheless, [16] does not provide any details of the routing algorithm used. Also, it uses
periodical acknowledgements which can put a severe burden on the network. This paper was also
first aimed at ATM networks ; so it does not take into account the RWA problem into a broader and
deeper framework that GMPLS embraces for IP networks.

The advantage of a parallel reservation scheme is that it shortens the lightpath establishment time
by having nodes process reservation requests in parallel. It is also simpler to implement that other
reservation schemes such as hop by hop reservation detailed in the next paragraph. The
disadvantage is that it requires global knowledge, since both the path and the wavelength must be
known ahead of time.

4.2.4.2. Hop-by-Hop Reservation

An alternative to parallel reservation is hop-by-hop reservation in which a control message is sent
along the selected route one hop at a time. At each intermediate node, the control message is
processed before being forwarded to the next node. When the control message reaches the
destination, it is processed and sent back towards the source node. The actual reservation of link
resources may be performed either while the control message is travelling in the forward direction
towards the destination, or while the control message is travelling in the reverse direction back
towards the source.

4.2.4.2.1 Forward Reservation

In forward reservation schemes, wavelength resources are reserved along the forward path to the
destination on a hop-by-hop basis. The method of reserving wavelengths depends on whether or
not global information is available to the source node.

a) Global knowledge of wavelength usage

MECSE-20-2003: "Routing and Wavelength Assignment in GMPLS-baased DWDM ...", LC. Cieutat and L.N. Binh

23

If the source node is maintaining complete state information, then it will be aware of which
wavelengths are available on each link. Assuming that the state information is current, the source
node may then send a connection setup message along the forward path, reserving the same
available wavelength on each link in the path.

b) Local knowledge of wavelength usage

For the case in which a node only knows the status of its immediate links, the wavelength selection
becomes more complicated, as the source node doesn't know which wavelength will be available
along the entire path.

b1). Conservative reservation scheme

The source node may utilize a conservative reservation approach, choosing a single wavelength
and sending out a control message to the next node attempting to reserve this wavelength along
the entire path; however, there is no guarantee that the selected wavelength will be available along
every link in the path. If the wavelength is blocked, the source node may select a different
wavelength and reattempt the connection. The limitation of this approach is that it may result in
high setup times, since it may take several attempts before a node can establish a lightpath.

b2). Aggressive reservation scheme

An alternate approach to maximizing the likelihood of establishing a lightpath in a forward
reservation scheme is to use an aggressive reservation scheme which over-reserves resources
[26]. Multiple wavelengths may be reserved on each link in the path, with the expectation that at
least one wavelength will be available on all links in the path. In a greedy approach, all feasible
wavelengths will be reserved at every link in the path. The source node will first reserve all
available wavelengths on the desired outgoing link. A connection request message containing the
wavelength reservation information is then sent to the next node along the path.

At each intermediate node, the subset of wavelengths consisting of the intersection of the
wavelengths reserved on the previous link and the wavelengths available on the next link will be
reserved. For example, if S1 is the set of wavelengths available on the nth link, then the set of
wavelengths reserved on the first link in the path will be S1, the set of wavelengths reserved on the
second link will be S1 ∩ S2, the set of wavelengths reserved on the third link would be S1 ∩ S2 ∩ S3,
etc. When the connection request reaches the destination, one wavelength of the remaining set of
wavelengths will be chosen, and all of the other wavelengths will be released.

MECSE-20-2003: "Routing and Wavelength Assignment in GMPLS-baased DWDM ...", LC. Cieutat and L.N. Binh

24

Figure 5: Forward reservation

Figure 5 illustrates the forward reservation of wavelengths when establishing a lightpath from node
A to node D. As the control message propagates from A to D, each node reserves the set of
wavelengths which have been available on all links traversed by the control message. One
disadvantage of over-reserving resources is that, during the time that the resources are reserved,
the reserved resources cannot be utilized by other users, even if these resources will never be
used by the connection.

In order to reduce the amount of time that an unused wavelength is reserved on a link, the
wavelength may be released as soon as it is apparent that the wavelength is not viable for a given
connection. For example, if wavelengths λ1; λ2, λ3; and λ4 are available on the first link, then all four
of the wavelengths will be reserved on this link. However, if it is subsequently discovered that only
λ1, λ2, and λ4 are available on the second link, then not only will λ1, λ2, and λ4 be reserved on the
second link, but λ3 will immediately be released on the first link.

4.2.4.3. Aggressive with wavelength group reservation scheme

Another approach to limiting the number of wavelengths that are reserved is to divide the
wavelengths into groups. When reserving wavelengths on a link, a node will reserve only those
wavelengths which belong to a specific group [27]. The choice of the group is made at the source
node and is based on the number of available wavelengths in each group. The source node will
find the group with the largest number of available wavelengths, and the node will reserve all of the
available wavelengths in that group before sending the request on to the next node. The size of the
group is a critical parameter. If the group is too large, then too many resources will be reserved, but
if the group is too small, then the likelihood of establishing a lightpath will be smaller.

4.2.4.3.1 Backward Reservation

To prevent the over-reservation of resources altogether, reservations may be made after the
control message has reached the destination and is headed back to the source. Such reservation
schemes are referred to as backward reservation schemes [26].

MECSE-20-2003: "Routing and Wavelength Assignment in GMPLS-baased DWDM ...", LC. Cieutat and L.N. Binh

25

By reserving wavelengths in the reverse direction, the reserved wavelengths are idle for less time
than if the wavelengths are reserved in the forward direction. Another advantage is that the
connection request message can gather wavelength usage information along the path in the
forward direction. This information can then be used by the destination node to select an
appropriate wavelength to reserve.

Figure 6: Backward reservation

Figure 6 illustrates the backward reservation scheme. . As the control message propagates from A
to D, it records the set of wavelengths that are available. It is shown in [26] that, in general,
backward reservation schemes outperform forward reservation schemes for the case in which
there is no wavelength conversion.

One possible drawback of a backward reservation scheme is that if multiple connection are being
set up simultaneously, it is possible that a wavelength that was available on a link in the forward
direction will be taken by another connection request and will no longer be available when the
reservation message traverses the link in the reverse direction.

4.2.4.4. Holding Policies

To improve the connection setup probability at the cost of higher setup times, it is possible to hold
or buffer connection requests at intermediate nodes if wavelength resources are not immediately
available [28] [29]. If an appropriate wavelength becomes available, the connection request will
continue towards the destination. If, after waiting for some time, the appropriate resources do not
become available, then the connection is blocked.

In [29], it is shown that a holding policy decreases the blocking probability without significantly
increasing setup time. However, it is also shown in [28] that a holding policy reduces the network
throughput compared to a policy in which calls are blocked immediately if resources are not
available.

MECSE-20-2003: "Routing and Wavelength Assignment in GMPLS-baased DWDM ...", LC. Cieutat and L.N. Binh

26

4.2.4.5. Summary

A summary of the different kinds of reservation algorithms in the RWA problem are presented in Tableau 4.

Reservation scheme Characteristics Advantages Drawbacks
Parallel Reserves wavelengths on multiple links in parallel.

Based on link-state routing, it assumes that each node
maintains global information on the network topology
and on the current state of the network, including
wavelengths usage. Based on this global information,
the node can calculate an optimal route to a destination
on a given wavelength.

Very fast lightpath
establishment
Optimal route.

Global information
knowledge: network
topology and wavelength
usage.

Global knowledge With global knowledge of wavelength usage, sends a
connection setup for an available wavelength.

Very simple. Global knowledge.
Possibly outdated
information.

Conservative Chooses randomly a single wavelength and sends out
a control message to the next node attempting to
reserve this wavelength along the entire path.
If the wavelength is blocked, the source node may
select a different wavelength and reattempt the
connection.

Local knowledge. High setup times.

Hop-by-
hop

Forward

Local
knowledge

Aggressive Multiple wavelengths may be reserved on each link in
the path, with the expectation that at least one
wavelength will be available on all links in the path. The
source node will first reserve all available wavelengths
on the desired outgoing link. A connection request
message containing the wavelength reservation
information is then sent to the next node along the
path.
At each intermediate node, the subset of wavelengths
consisting of the intersection of the wavelengths
reserved on the previous link and the wavelengths
available on the next link will be reserved.

Local knowledge.
Decreases blocking.

Over reserve resources.

M
E

C
S

E
-20-2003: "R

outing and W
avelength A

ssignm
ent in G

M
P

LS
-baased D

W
D

M
 ...", LC

. C
ieutat and L.N

. B
inh

27

 Aggressive
with group
reservation

The source node find the group with the largest number
of available wavelengths, and the node will reserve all
of the available wavelengths in that group before
sending the request on to the next node.

 The size of the group is a
critical parameter. Less
over reservation than for
aggressive.

Backward Reservations are made after the control message has
reached the destination and is headed back to the
source.
The connection request message can gather
wavelength usage information along the path in the
forward direction.

Local knowledge.
Prevents the over
reservation of resources.
Outperform forward
reservation when no WC.

Higher blocking probability
than forward reservation in
case of simultaneous
reservations

Holding policy (can be added to either
backward or forward reservation
schemes).

Buffer connection requests at intermediate nodes if
wavelength resources are not immediately available.
If an appropriate wavelength becomes available, the
connection request will continue towards the
destination. If, after waiting for some time, the
appropriate resources do not become available, then
the connection is blocked.

Improves setup connection
probability of backward
and forward reservation
schemes.

Increases setup time.
Reduces the network
throughput.

Tableau 4: Reservation mechanisms in the RWA problem

M
E

C
S

E
-20-2003: "R

outing and W
avelength A

ssignm
ent in G

M
P

LS
-baased D

W
D

M
 ...", LC

. C
ieutat and L.N

. B
inh

28

4.3. A FRAMEWORK FOR OPTICAL NETWORKING: GMPLS

4.3.1. THE RWA PROBLEM IN THE GMPLS FRAMEWORK

The RWA problem is now a part of the work undergone under several IETF workgroups, such as
Common Control and Measurement Plane (ccamp), Multiprotocol Label Switching (mpls), Open
Shortest Path First IGP (ospf) and IS-IS for IP Internets (isis). In the following, an overview of the
trends in the industry that make optical networking a reality in all-optical networks is depicted. The
motivations and purposes of the GMPLS framework are explained and are linked to the RWA
problem.

4.3.1.1. Overview of GMPLS

Generalized MultiProtocol Label Switching, also referred to as MultiProtocol lambda Switching
supports not only devices that perform packet switching, but also those that perform switching in
the time, wavelength, and space domains. In that sense, it is a “generalized” version of the MPLS
technology presented in 4.1.1.

There is presently a great deal of interest in automating lightpath set-ups and teardowns in an
optical transport network. An emerging trend in the industry is to utilize an optical-layer control
plane, rather than a management plane as being done traditionally, to provision lightpaths. An
intelligent optical-layer control plane is expected to offer several benefits including rapid circuit
provisioning, service flexibility such as bandwidth on-demand services, enhanced interoperability of
network elements from different vendors, and enhanced survivability by providing a dynamic
rerouting capability when a failure occurs [30].

A common approach is that the control plane (i.e., routing and signalling) for the optical layer
should be based on reusing and leveraging existing control-plane protocols in order to reduce
product development cycles and foster rapid deployment of a new class of optical network
elements.

It has recently become evident that the industry has gravitated toward GMPLS (also referred
before to as MPλS standing for Multi Protocol Lambda Switching), as the control plane solution for
next-generation optical networking. GMPLS is an extension to MPLS which enables Generalized
Label Switched Paths (G-LSPs) such as lightpaths to be automatically set up and torn down by
means of a signalling protocol. This requires the definition of an MPLS label to be generalized so
that a label can also be encoded as a time slot, a wavelength, or a spatial identifier. By taking
advantage of the new definition of a generalized label, it becomes apparently clear that MPLS can
also be extended to control and configure a TDM DXC, a lambda or a fibre OXC.

A good overview of the routing and management enhancements used in the GMPLS framework is
[31]. A good collection of links related to GMPLS is www.gmpls.org. Here is an introduction of the
particularity of the routing problems in an OTN.

4.3.1.2. Lightpath set-up and restoration

One of the major objective for optical networks is to provide fast end-to-end optical lightpath set-up
and restoration. This is done by three different components:

 Resource discovery. In resource discovery, state information such as network connectivity,
link capacity and special constraints are derived. By and large, this is done by extending an
IGP protocol, such as OSPF or IS-IS in order to carry the additional information in the LSAs.

MECSE-20-2003: "Routing and Wavelength Assignment in GMPLS-baased DWDM ...", LC. Cieutat and L.N. Binh

29

 Path selection. Path selection is used to select an appropriate route through the ION for the
requested lightpath. This is generally implemented by introducing a Constraint Based Routing
(CBR) algorithm, which computes the desired route under physical layer constraints and
operational constraints.

 Path management. Path management includes path setup and teardown, path maintenance
and label distribution. This is done mainly by using extensions of RSVP-TE or CR-LDP.

As the reader may have noticed, the RWA problem concerns mostly the two first points.
Nevertheless, as it was said before, the RWA problem can be intricately linked to the path
management process, so that it is usually impossible to determinate the results of the RWA
algorithm implemented without implementing any kind of path management protocol.

4.3.2. OPTICAL ROUTING ISSUES

Although there are similarities in the routing aspect of IP networks and ION, ION is more complex
because it contains added constraints in the routing decision. Such differences are for instance as
follows:

 Datagram network vs circuit-switched network. In IP networks, packet forwarding is done on a
hop-by-hop basis. On the contrary, in ION, an end-to-end connection, or lightpath must be
established according to constraints based on the network topology and resources.

 Separation of control plane and data plane topology. Contrary to IP networks, ION is likely to
offer a greater security by managing an out of band control plane; entirely distinct from the data
plane topology.

Among the major constraints added at the ION layer are the physical layer constraints that typically
deal with the optical signals.

4.3.2.1. Physical layer constraints

A number of physical constraints that influence the lightpath computation results must be taken into
account. Power budget at the source node, PMD, chromatic dispersion, ASE, cross talk between
channels and other non-linearities are all critical constraints for the lightpath computation. Not
much work has been done yet on that subject. A starter is done in [32].

It is possible that other constraints, especially 3R regeneration of signals should be considered by
the ingress node undertaking the RWA algorithm when calculating the optimum route to an egress
node. For instance, the Hikari GMPLS router is based on a photonic universal platform with the
addition of 3R functions and wavelength conversion. If the signal is degraded by fibre loss as well
as non-linear effects such as PMD or ASE, the 3R function is activated. In addition, wavelength
conversion is also used when signalling is blocked by wavelength overbooking.

4.3.2.2. Wavelength constraints

In all-optical networks, unless there is Wavelength Conversion used, wavelength continuity must
be preserved all along the lightpath, which complicates the routing decision. This is known as the
Wavelength Continuity Constraint (WCC). This means that the route advertisements must contain
information about available wavelength in each fibre link in the ION. Such a solution can pose
important scalability problems because the number of wavelengths in the ION tend to be important.
Some solutions giving the available wavelength in a fibre link have been discussed. Unfortunately,
those methods imply important changes to the routing protocols.

4.3.3. THE GMPLS ARCHITECTURE

MECSE-20-2003: "Routing and Wavelength Assignment in GMPLS-baased DWDM ...", LC. Cieutat and L.N. Binh

30

The basis of the GMPLS framework is defined in [33]. Extensions to IGPs, such as OSPF and IS-
IS, allow nodes to exchange information about optical network topology, resource availability and
administrative constraints. The core GMPLS routing specification is available in three parts:

 A routing function description[34],

 IGP extensions such as OSPF-TE extensions [35] and IS-IS extensions.

The GMPLS signalling extends certain base functions of the RSVP-TE and CR-LDP signalling and,
in some cases, adds functionality. These changes and additions impact basic LSP properties, how
labels are requested and communicated, the unidirectional nature of LSPs, how errors are
propagated, and information provided for synchronizing the ingress and egress nodes. The core
GMPLS signalling specification is available in three parts:

 A signalling functional description [36],

 RSVP-TE extensions [37],

 CR-LDP extensions.

Dynamic lightpath routing in IP-over-WDM networks is based on GMPLS constraint based routing
model. For instance, OSPF is a link state protocol in which the state of each link in the network is
periodically broadcast to all nodes in the form of LSAs. This information is used as input to a usual
or constraint-based path computation algorithm that computes paths subject to topology, resource,
and administrative constraints. To the extent of the author’s knowledge, the GMPLS standard does
not determine nor impose any kind of routing scheme. This is done for differentiation of
implementation between vendors.

Once an appropriate lightpath is selected, a signalling protocol such as CR-LDP or RSVP-TE is
then invoked to set up the connection. While the current focus of the IETF is on few specific
protocols, GMPLS itself is not restricted to any single routing or signalling protocol. Furthermore,
protocols such as OSPF, CR-LDP, and RSVP-TE are flexible and lend themselves to the
implementation of various routing and signalling schemes for lightpath establishment.

4.3.3.1. A practical implementation of GMPLS: the Hikari router

An interesting approach to solve the RWA problem is implemented in the Hikari router [38]. In this
study, wavelength converters are used only when there is blocking due to the absence of available
wavelengths satisfying the wavelength continuity constraint. The Hikari router consists of an IP
router, a wavelength router and a GMPLS router-manager as presented in Figure 7.

Figure 7: Structure of Hikari router with multi-layer TE based on IP traffic monitoring

MECSE-20-2003: "Routing and Wavelength Assignment in GMPLS-baased DWDM ...", LC. Cieutat and L.N. Binh

31

To solve the RWA problem, the Hikari router implements an OSPF extension and an RSVP-TE
extension to achieve effective route selection as well as to minimize the number of wavelength
conversions needed. The OSPF extension allows to build two different link-state databases
reflecting the links capability of the network. The usual link-state database contains IP link-state
information while the TE database (TED) contains photonic link-state information.

First, for route advertisement, the OSPF extension is used. Each Hikari router advertises its total
number of used and unused wavelengths. Edge nodes use this information to discern GMPLS link
state and can select the least expensive path The changes include 3R resource information and
statistical information such as utilization of each wavelength, and 3R and wavelength conversion
resources. This information is typically used for source routing based on a combination of shortest
path first and load information.

To enhance the signalling function, an RSVP-TE extension is proposed. The first Hikari router sets
the unused wavelength information, using a bit map format, in RSVP signalling. Each transit Hikari
router overwrites this information by placing “And” between arriving signalling unused wavelength
bitmap and its own unused wavelengths. If there is no unused wavelength, wavelength conversion
is used. The router, which offers wavelength conversion, creates a new unused wavelength bitmap
and sends it to the next router. This signalling and routing technique minimizes the frequency of
wavelength conversion in the network and so can provide very cost effective photonic networks.

The approach used to provide dynamic lightpath establishment described in the Hikari router is
particularly interesting. To the author’s knowledge, it is the most state of the art standardized
implementation of a DLE. Nevertheless, it doesn’t provide any further information on how the
information gathered by the link advertisements are actually processed into the RWA algorithm.
Especially, a definition of the links metric is not given and few performance results are presented.
Thus, it is possible that poor results concerning the blocking of the connection requests has been
concealed by the massive use of wavelength conversion.

To that regard, wavelength conversion is still extremely expensive and not fully commercially
available at any reasonable prices. Thus, it seems very likely that there is an actual need for a
RWA algorithm that would perform relatively well even under the conditions of the wavelength
continuity constraint.

4.3.4. OVERVIEW OF IETF CURRENT DRAFTS AND RFCS

In the following, an overview of the format of the route advertisements that are used in OSPF and
its following extensions is presented. Such an introduction seemed necessary to the author,
because it allows to understand how the GMPLS framework allows practically to establish
dynamically lightpath in the ION. In the following, OSPF was chosen as an example, but it could
also have been IS-IS. It is possible to use indifferently one of them.

Nevertheless, OSPF is more widely deployed in the Internet that its counterpart IS-IS, the later
being mostly known in large provider and carrier networks. Also, OSPF is a free software
implemented in C++ [39]. In the following description, only fields that would be relevant in a future
implementation of a RWA algorithm based on OSPF are presented.

4.3.4.1. Link state routing protocol extensions of OSPF

4.3.4.1.1 Packets formats

a) Packet header

The packet header has the following structure:

Version # Type Packet length
Router ID

MECSE-20-2003: "Routing and Wavelength Assignment in GMPLS-baased DWDM ...", LC. Cieutat and L.N. Binh

32

Data

The following fields are relevant in this work:

 Version #. The OSPF version number. This will be always 2.

 Type. The OSPF packet types that will be used. This includes: Hello (type 1), Database
Description (type 2) and Link State Update (type 4). Link State Request (type 2) and Link State
Acknowledgment (type 5) will not be used. For simplicity’s sake, this simulation considers that
the underlying layers provide a reliable service.

 Packet length. The length of the OSPF protocol packet in bytes. This length includes the
standard OSPF header.

 Router ID. The Router ID of the packet's source.

b) Hello Packet

Hello packets are packet type 1. These packets are sent periodically on all interfaces in order to
establish and maintain neighbour relationships.

Packet Hdr

Hello Interval Router Dead Interval

The following fields can be used:

 Hello Interval. The number of seconds between this router's Hello packets.

 Router Dead Interval. The number of seconds before declaring a silent router down.

c) Database Description packet

Database Description packets are OSPF packet type 2. These packets are exchanged when an
adjacency is being initialised. They describe the contents of the link-state database.

Packet Hdr

I M DD sequence number
LSA
Etc.

I M DD sequence number
LSA

The following fields will be used:

 I-bit. The Init bit. When set to 1, this packet is the first in the sequence of Database Description
Packets.

 M-bit. The More bit. When set to 1, it indicates that more Database Description Packets are to
follow.

 DD sequence number. Used to sequence the collection of Database Description Packets.
The initial value (indicated by the Init bit being set) should be unique. The DD sequence
number then increments until the complete database description has been sent.

 LSA(s).

d) Link State Update packet

MECSE-20-2003: "Routing and Wavelength Assignment in GMPLS-baased DWDM ...", LC. Cieutat and L.N. Binh

33

Link State Update packets are OSPF packet type 4. These packets implement the flooding of
LSAs. Each Link State Update packet carries a collection of LSAs one hop further from their origin.
Several LSAs may be included in a single packet.

Packet Hdr

LSAs = N
LSA 1
Etc.

LSA N

The following field will be used:

 # LSAs. The number of LSAs included in this update.

 LSA(s).

4.3.4.1.2 LSA formats

OSPF includes five distinct types of LSAs. Each LSA begins with a standard LSA header. Each
LSA describes a piece of the OSPF routing domain. Every router originates a router-LSA.

a) The LSA header

All LSAs begin with a common header. This header contains enough information to uniquely
identify the LSA (LS type, Link State ID, and Advertising Router). Multiple instances of the LSA
may exist in the routing domain at the same time. It is then necessary to determine which instance
is more recent. This is accomplished by examining the LS age, LS sequence number fields that are
also contained in the LSA header.

LS age LS type
Advertising router

LS sequence number

The following fields will be used:

 LS age. The time in seconds since the LSA was originated.

 LS type. The type of the LSA. Each LSA type has a separate advertisement format. For this
work, it is worth mentioning the LS type 1 (Router-LSA) and the type 10 (opaque LSA).

 Advertising Router. The Router ID of the router that originated the LSA.

 LS sequence number. Detects old or duplicate LSAs. Successive instances of an LSA are
given successive LS sequence numbers.

a1). The Router-LSA (LS type 1)

Router-LSAs are the Type 1 LSAs. Each router in an area originates a router-LSA. The LSA
describes the state and cost of the router's links (i.e., interfaces) to the area. All of the router's links
to the area must be described in a single router-LSA.

The following fields will be used:

 # links. The number of router links described in this LSA. This must be the total collection of
router links (i.e., interfaces) to the area.

 Link Type. A quick description of the router link. In this work, the type 1 (Point-to-point
connection to another router) will be only used.

MECSE-20-2003: "Routing and Wavelength Assignment in GMPLS-baased DWDM ...", LC. Cieutat and L.N. Binh

34

 Link ID. Identifies the object that this router link connects to. In this work, as the Link Type is 1,
the Link ID identifies the Neighboring router's Router ID.

 Metric. The cost of using this router link.

This type of LSA is the one commonly used in OSPF for link state updates in order to calculate the
shortest path (and build the link-state database). Instead, in this work, it is legitimate to use the
opaque LSA (type 10), as proposed in the OSPF extensions. This LSA is considered in the
following.

4.3.4.1.3 LSAs extensions

The extensions of the LSAs are based on the TE extensions of OSPF for MPLS [40] and GPMLS
[35]. Those extensions use opaque LSAs [41] [40]. TE extensions, commonly associated with
MPLS, are better described by "extended link attributes", as what is proposed is simply to add
more attributes to links in OSPF advertisements.

The information made available by these extensions can be used to build an extended link state
database just as router LSAs are used to build a regular link state database. The difference is that
the extended link state database (referred to as a TED) has additional link attributes. For
simplicity’s sake, only the relevant LSAs extensions that would be suited to the RWA problem are
described.

a1). Opaque LSAs (types 9,10 and 11)

Opaque LSAs provide a generalized mechanism to allow for the future extensibility of OSPF. They
consist of a standard LSA header followed by application-specific information. Opaque LSAs are
types 9, 10 and 11 link-state advertisements. Standard link-state database flooding mechanisms
are used for distribution of Opaque LSAs.

Link-state type 10 represents an area-local scope. Type-10 Opaque LSAs are not flooded beyond
the borders of their associated area.

a2). The area scope opaque LSA (type 10)

 Traffic Engineering extensions to OSPF [40]
The LSA ID of an Opaque LSA is defined as having eight bits of type and 24 bits of type-specific
data. The Traffic Engineering LSA uses type 1.

1 Reserved Instance

The LSA payload consists of one or more nested Type/Length/Value (TLV) triplets for extensibility.
They have the following structure.

Type Length
Value

An LSA contains one top-level TLV. There are two top-level TLVs defined: (1) Router Address and
(2) Link.

The Link TLV (type 1) describes a single link. It is constructed of a set of sub-TLVs. There are no
ordering requirements for the sub-TLVs. The following sub-TLVs are defined:

− 1 - Link type (1 octet)

− 2 - Link ID (4 octets)

MECSE-20-2003: "Routing and Wavelength Assignment in GMPLS-baased DWDM ...", LC. Cieutat and L.N. Binh

35

− 3 - Local interface IP address (4 octets)

− 4 - Remote interface IP address (4 octets)

− 5 - Traffic engineering metric (4 octets)

− 6 - Maximum bandwidth (4 octets)

− 7 - Maximum reservable bandwidth (4 octets)

− 8 - Unreserved bandwidth (32 octets)

− 9 - Resource class/color (4 octets)

The Link Type and Link ID sub-TLVs are mandatory, i.e., must appear exactly once. All other sub-
TLVs defined here may occur at most once. Of particular interest are the following:

− Link Type. The Link Type sub-TLV (TLV type 1) defines the type of the link. In this
work, the value 1 - Point-to-point – will be used.

− Link ID. The Link ID sub-TLV (TLV type 2) identifies the other end of the link. For
point-to-point links, this is the Router ID of the neighbour.

− Traffic Engineering Metric. The Traffic Engineering Metric sub-TLV (TLV type 5)
specifies the link metric for traffic engineering purposes. This metric may be different
than the standard OSPF link metric.

 OSPF extensions in support of GMPLS [35]
The TE LSA, which is an opaque LSA with area flooding scope, has only one top-level
Type/Length/Value (TLV) triplet and has one or more nested sub-TLVs for extensibility. The top-
level TLV can take one of two values (1) Router Address or (2) Link. In [35], sub-TLVs for the Link
TLV in support of GMPLS are enhanced. Specifically, the following sub-TLVs are added to the Link
TLV:

Sub-TLV Type Length Name
11 8 Link Local/Remote Identifiers
14 4 Link Protection Type
15 variable Interface Switching Capability Descriptor
16 variable Shared Risk Link Group

Two sub-TLVs of particular importance are

− Link Protection Type

The first octet is a bit vector describing the protection capabilities of the link (see Section "Link
Protection Type" of [34]). They are: 0x01 Extra Traffic, 0x02 Unprotected, 0x04 Shared, 0x08
Dedicated 1:1, 0x10 Dedicated 1+1, 0x20 Enhanced, 0x40 Reserved, 0x80 Reserved. This is of
critical interest if, in a further work, one would try to model the performance of a GMPLS-based
network with restoration and self-healing capabilities.

− Interface Switching Capability Descriptor

The Interface Switching Capability Descriptor (ISCD) is the more relevant to direct applications for
this work.

As stated in [34], the Interface Switching Capability Descriptor describes switching capability of an
interface. Interface Switching Capability Descriptors present a new constraint for LSP path
computation.

The general structure of the Interface Switching Capability Descriptor is

Switching Cap Encoding Reserved

MECSE-20-2003: "Routing and Wavelength Assignment in GMPLS-baased DWDM ...", LC. Cieutat and L.N. Binh

36

Max LSP Bandwidth at priority 0
Max LSP Bandwidth at priority 1

Etc.
Max LSP Bandwidth at priority 7

Switching Capability-specific information (variable length)

Following the GMPLS framework [34], the Switching Capability (Switching Cap) field contains one
of the following values:

− 1 Packet-Switch Capable-1 (PSC-1)

− 2 Packet-Switch Capable-2 (PSC-2)

− 3 Packet-Switch Capable-3 (PSC-3)

− 4 Packet-Switch Capable-4 (PSC-4)

− 51 Layer-2 Switch Capable (L2SC)

− 100 Time-Division-Multiplex Capable (TDM)

− 150 Lambda-Switch Capable (LSC)

− 200 Fibre-Switch Capable (FSC)

The content of the Switching Capability specific information field depends on the value of the
Switching Capability field. When the Switching Capability field is LSC, there is no Switching
Capability specific information field present defined at the moment in the current drafts. As it
appears, of particular interest in this work is the 150 value for Lambda Switch Capable node.

The Max LSP fields will not be considered in this work.

− Proposed extension of the switching capability specific information

This field will hold the lambda switching capabilities of the node. In particular, it will contain a
bitmap format field defined in 5.1.1.5.2.

− Example of a Switching Capability LSA

LS age LS type = 10
Advertising router

LS sequence number
Type = 1 (Link) Length = 11 bytes

Type = 1 (Link type) Length = 1 byte
Link Type = 1

Type = 2 (Link Id) Length = 4 bytes
Link ID (first neighbour’s router ID)

Type = 15 (ISCD) Length = 6 bytes
Sw. cap = 150 0x 00 01 01 01 00 : Lambda capability

As one see, this adds traffic overhead, but this is necessary, if further works try to implement any
other kinds of OSPF functionalities.

MECSE-20-2003: "Routing and Wavelength Assignment in GMPLS-baased DWDM ...", LC. Cieutat and L.N. Binh

37

4.4. CONCLUSION

This literature survey has showed that the RWA problem is a very complex one. An important
number of studies have provided very different various schemes to solve this problem, but in very
different situations. Most of the time, this leads to sophisticated and very evolved heuristics,
because the RWA is known as intractable. Unfortunately, even if numerous schemes have been
proposed, there are no agreed solution on how to solve the problem and no practical
recommendation to implement the problem. There has been also very few work done on how to
integrate all different schemes (routing, WA and reservation) together and estimate their
performance as a whole.

On the other hand, it has recently become evident that GMPLS is the best control plane solution for
next-generation optical networking. In GMPLS, the MPLS label is generalized so that a label can
also be encoded as a time slot, a wavelength, or a spatial identifier.

The framework embraced by GMPLS is extremely large and tries to standardize a way to solve the
general problem of dynamic lightpath establishment in IONs. The GMPLS is so large that the RWA
problem appears as a relatively small part of the GMPLS framework, albeit a very critical part. It
seemed important to the author that the solution of the RWA problem must be found within the
different recommendations of the IETF for GMPLS. Obvious reasons for that are software reuse for
the implementations, easy upgrades of the simulation network (such as link protection, efficient
reservation schemes, easily added physical constraints, etc).

Nevertheless, the GMPLS framework is relatively new and very few implementations of it have
been done. There is a critical research need in the modelling of lightpath set-up schemes
(equivalently RWA algorithms) in a GMPLS-based network in order to estimate the performance of
the solutions advocated by the drafts and standards of the IETF.

In particular, it is of foremost importance to estimate the performance of several RWA schemes,
especially when build around a link-state routing algorithm in a GMPLS-based ION. There is also a
urge to estimate the consequences of special physical constraints implied by the optical domain in
the performance of the RWA algorithm.

MECSE-20-2003: "Routing and Wavelength Assignment in GMPLS-baased DWDM ...", LC. Cieutat and L.N. Binh

38

5. INVESTIGATION: A SIMULATION MODEL OF THE
RWA PROBLEM

In the following, the approach in order to solve and simulate the RWA problem in an ION is
presented. First, the specifications of the simulation model are enumerated. This includes defining
accurately the hypotheses, the objectives and the proposed schemes chosen that will be
implemented. Secondly, the guidelines for the implementation of the model are described.

5.1. EXPERIMENTAL METHODOLOGY

5.1.1. HYPOTHESES

5.1.1.1. Definition of the problem

Given a set of dynamic and randomly chosen lightpaths that need to be established in the ION, and
given a constraint on the total number of wavelengths into a fibre, the RWA scheme must
determine the routes over which these lightpaths should be set up and also determine the
wavelengths that should be assigned to these lightpaths so that, as a whole, the maximum number
of lightpaths may be established.

While shortest path routes may be most preferable, this choice may have to be sacrificed in order
to allow more lightpaths to be set up. Lightpaths that cannot be set up due to constraints on routes
and wavelengths are said to be blocked, so the corresponding network optimisation problem is to
maximise the probability of set-up for a current connection request while minimizing the blocking
probability of future connection requests.

5.1.1.2. Requests’ set-up time considerations

Once the routing table is ready, the set-up time of a request is the time taken by the reservation
process. If a hop-by-hop reservation scheme is chosen, the set-up time is proportional to the
number of nodes and the number of links that the reservation messages will encounter. As it was
said before, the routing algorithm will have to sacrifice the choice of shortest path routes and will
advertise routes that are not the shortest, but that yield the best wavelength utilization in the
network. If the processing in each node is important, this will inevitably increase the set-up time.

Nevertheless, contrary to several other works, the RWA to be implemented will not consider the
set-up time as a performance parameter. This is because the lightpath establishment problem is
not considered as a whole.

Furthermore, there is no commonly accepted idea concerning the architecture of the control plane
for all-optical networks. All types of signalling are viable, that is in-band signalling, out-of-band
signalling or common channel signalling. For instance, out-of-band signalling would result of the
use of one wavelength for the signalling of the entire network. This possibility is interesting
because it allows to carry safely the possible large amount of route advertisements issued by the
routing protocol and also the reservation messages.

5.1.1.3. Requests’ arrivals

MECSE-20-2003: "Routing and Wavelength Assignment in GMPLS-baased DWDM ...", LC. Cieutat and L.N. Binh

39

In this work, we consider only the DLE problem. This is different to the SLE problem in which there
is a known set of connections that needs to be routed, before the RWA algorithm is performing in
the network.

The DLE problem is more complicated than the SLE. Nevertheless, if it is assumed that MPLS is
used on the upper layer, it can be considered that the rate of arrivals is somewhat relatively low. By
low, the author means that the MPLS label stacking methods allows requests coming from an
MPLS-based end-system to be bundled together in a label stack in order to minimize the load
entailed by dynamic lightpath requests. For instance, a usual analogy is the one of ATM, that uses
a 2-level label stacking (VPI-VCI) in order to simplify the network architecture. Yet, MPLS (and thus
GMPLS) is much more powerful than ATM in this regard, because it allows an infinite-level label
stacking.

5.1.1.4. Architecture of the ION considered in this work

In this work, the RWA scheme will be tested on a meshed network. This is a usual situation in all-
optical networks where several redundant paths are possible between each node of the network.

Each node consists of an OXC controlled by a GMPLS controller using the services of an IP router.
Typically, the different tasks of the controller could be the management of all non local
management functions, including the management of optical resources, configuration and capacity
management, addressing, routing, topology discovery, TE and restoration.

It is assumed that the GMPLS controller functions purely as a controller for the optical layer and
carries no IP data traffic. The electronic controllers communicate with each other over a control
network, either out-of-band, or in band. It is assumed that it exists a reliable transport protocol
within the control network to ensure that messages between controllers are delivered reliably and
in sequence.

The model will be tested on a typical network used in many research papers for network
performance evaluation. The network topology considered is a meshed network (partially
connected graph) such as the Abilene network in the United States.

Abilene is an advanced backbone network that supports the development and deployment of the
new applications being developed within the Internet2 community in the United States. Abilene
connects regional network aggregation points, called gigaPoPs, to support the work of Internet2
universities as they develop advanced Internet applications. A map of the network is given in
Figure 8.

Figure 8 the Abilene network in February 2002

In Abilene, the degree of each node is between 1 and 4, with an average degree of about 3. The
total number of nodes |V| is 12.

MECSE-20-2003: "Routing and Wavelength Assignment in GMPLS-baased DWDM ...", LC. Cieutat and L.N. Binh

40

5.1.1.5. Physical constraints

In this work, parameters that are not wavelength-based constraints are not taken into account. For
instance, some other works try to consider other physical constraints and integrate them in the
routing decision [38]. This is reserved for further work.

5.1.1.5.1 Wavelength Continuity Constraint

Because the all-optical wavelength-conversion is an expensive and still immature technology, it is
assumed that none of the OXCs has wavelength conversion capability. Consequently, in the
following, the solution will have to respect the WCC.

The WCC is a unique constraint that is not found in usual telephony circuit-switched networks.
Consequently, it is very likely that any algorithm respecting the WCC will suffer higher blocking
probability. For instance, in the figure given below, two lightpaths have been established in the
network: (1) between node 1 and node 2 on λ1 and (2) between node 2 and node 3 on λ2. Now,
suppose that a lightpath has to be set up between node 1 and node 3. This is impossible and this
will lead to blocking for such a lightpath establishment, because the two last available wavelengths
(λ2 between node 1 and node 2 and λ1 between node 2 and node 3) are different.

N ode
1

N ode
2

N ode
3

λ1

λ2 λ2

λ1

Figure 9 Blocking due to the Wavelength Continuity Constraint

The algorithm must establish dynamically an end-to-end path between any ingress node A and any
egress node B in the all-optical network. First, not considering TE aspects, the main goal is to
minimize the blocking in the network. Taking this aspect for granted, it means that the optimal path
will not be the IGP’s optimal path. To obtain such a result, the metrics of the links have to be
changed according to this goal. Different metrics (refer to 4.2.2.2.3a1) for dynamic routing
algorithms have to be tested.

5.1.1.5.2 Number of wavelengths per link

Let us consider one link between two adjacent nodes. Each link may be composed of several
fibres, each fibre being itself composed of several WDM wavelengths. In Figure 10, the link is
composed of 3 fibres, each of them containing a certain number of wavelengths. Let λi,j be the
wavelength number i in the fibre j.

λ2,1

λ1,1
 λ3,1
 λ4,1

λ6,2
λ5,2

λ4,3

λ3,3
λ5,3
 λ6,3

MECSE-20-2003: "Routing and Wavelength Assignment in GMPLS-baased DWDM ...", LC. Cieutat and L.N. Binh

41

Figure 10: An example of a fibre’s trunk

It is assumed that the operating wavelength range is the 1,550-nm band, usually named the
Conventional band or C-band by the ITU-T. The wavelengths range in the C-band is 1,530 nm to
1,565 nm. Each wavelength is assigned a specific emission wavelength that is specified by the
ITU-T [42].

The ITU-T’s frequency plan is followed. Consequently, it is assumed that there is a maximum of 44
wavelengths per fibre. The wavelengths are ordered as follows: λ1,i = 1,530.33 nm and λ44,i =
1,564.68 nm, with j being the number of fibres used.

In a nutshell, in this work, the following physical-based wavelength constraints are considered:

i, j

1, j 44, j

 Wavelength i in fibre j

 i 1, 44
 = 1,530.33 nm ; = 1,564.68 nm (C-band)

λ

λ λ

=
 ∈

Still, it can be showed that a multi-fibre RWA problem is algorithmically equivalent to a single fibre
based optical network. Thus, in the following, an ordered list of wavelengths with only one fibre will
be considered.

Also, it is very unlikely that the 44 wavelengths of the C band will be all practically used to transmit.
Usually, only a few wavelength are lit ; this actually depends on the optical network designer.
Generally, the population of the WDM slots is limited to a multiple of 8 wavelengths, up to 32 or 40.

5.1.2. OBJECTIVES IN THIS WORK

If possible, the RWA algorithm will reuse common algorithms that are well-known and available. It
will be as simple to implement as possible. This is to minimize the computation problems that may
arise if other physical constraints than wavelength availability were to be added.

The RWA algorithm must be able to identify the maximum of explicit routes in the ION in order to
satisfy dynamic requests. The goal is to minimize the blocking of the lightpaths requests in the
network while respecting the WCC.

The RWA algorithm will separate the routing, the WA and the reservation mechanisms. In other
words, this work will primarily concentrates upon the search of an explicit route in the network that
would meet the physical constraints of the ION. Such a separation between routing and reservation
protocols eases further work.

In order for this work be continued, it has been thought that the RWA algorithm that will be defined
will give as an output an explicit route in the ION. This explicit route will determine each node to be
traversed by the lightpath. Besides, a WA algorithm will allow to determine the wavelength
satisfying the WCC that will have to be reserved on the lightpath. The explicit route and wavelength
will be then treated as the input of a reservation protocol in order to establish the circuit in the
network.

Any software written must prone software reuse. This is particularly important, because the RWA
problem can grow more and more complex when new physical constraints are added. For
instance, in this work, only the wavelength constraints will be considered. Nevertheless, this work
must build the foundation for following works, such as taking into account specific ION constraints
such as signal regeneration and wavelength conversion.

5.1.3. DESCRIPTION OF THE RWA SCHEME

MECSE-20-2003: "Routing and Wavelength Assignment in GMPLS-baased DWDM ...", LC. Cieutat and L.N. Binh

42

The present work is to develop a model of a GMPLS-based ION based on an adaptive link-state
routing using global network knowledge. This choice is explained in the following.

5.1.3.1. Routing algorithm

Several types of RWA algorithms have been presented. The three main types of routing schemes
are fixed, fixed-alternate and dynamic routing. Fixed and fixed-alternate routing principles are very
simple. Nevertheless, they have poor capabilities when dealing with self healing capabilities and
can yield a very high blocking probability when considering DLE.

Thus, dynamic routing will be considered. The main disadvantage of dynamic routing is the
possible high overhead due to route advertisements. Also, dynamic routing algorithms can become
very greedy in CPU when considering several constraints. Nevertheless, the choice of an algorithm
is always a turnoff between performance and traffic overhead. Considering earlier research studies
described in the literature survey, it has been thought that a dynamic routing is one of the best way
to solve the RWA problem.

In a first approach, both adaptive routing schemes, that is link-state routing and distance-vector
routing have been considered. Contrary to link-state based routing algorithms that flood packets
onto the network, distance-vector algorithms send their route advertisements only to their
neighbours. In link-state algorithms, the link state update are flooded onto the whole network (or
area in OSPF).

It is possible that a distance-vector algorithm can minimize the traffic overhead in the network while
still giving relatively low blocking probabilities under high loads. A distance-vector algorithm is also
interesting when considering constraint routing. Indeed, It is a property of the Bellman-Ford
algorithm that, at its h-th iteration, it identifies the optimal (in our context: maximal number of
wavelengths) path between the source and each destination, among paths of at most h hops. This
is recommended for QoS routing implementations [19].

Because the Bellman-Ford algorithm progresses by increasing hop count, it essentially provides for
free the hop count of a path as a second optimisation criteria. This property is very interesting
when applied to all-optical networks. Even if the shortest path will be sacrificed for a longer – in
hops – route, the lightpath should not be too long, because this could lead to a poor and / or costly
optical communication.

RIP is the most famous implementation of a distance-vector based protocol. It continues to be
popular, because it is simple and is well suited to small networks. However, RIP has several flaws
that make it particularly unsuitable for ION. Particularly, RIP is unsuitable for large configurations
and the convergence of the algorithm can also be lengthy ; it suffers also from the count-to-infinity
problem, of which the best remedy is to implement link-state algorithms.

In the context of the ION, in order to compute an explicit route, it is also much easier to use a link-
state based routing algorithm. Indeed, the lightpath to be established will be more optimal if each
node has a complete knowledge of the network. It is also a property of the Dijkstra algorithm that
the complete route from the source to any other node in the network can be easily found by a
recursive iteration on the graph. This makes it very easy to use Dijkstra algorithm in order to find an
explicit route in the ION while minimizing the requests blocking probability in the ION.

In link-state based routing, information is only sent when changes occur. A node builds up first a
description of the topology of the network. Then it may use any routing algorithm to determine the
route. Conversely, a distance-vector approach needs to use a distributed algorithm such as the
popular Bellman-Ford algorithm.

In our context, the fact that link-state algorithms can use any routing algorithm is particularly
important. Any more advanced routing algorithm can be safely added to the RWA algorithm,
without having to undergo massive changes. This is particularly important for software reuse. For
instance, different RWA algorithms can be implemented, based on different optimisation schemes
(partial or total wavelength knowledge).

MECSE-20-2003: "Routing and Wavelength Assignment in GMPLS-baased DWDM ...", LC. Cieutat and L.N. Binh

43

The OSPF protocol, known mostly for its second version [43], is the most widely known link-state
protocol. It has been increasingly popular over RIP, because it is most suitable for large networks.
OSPF is an open source algorithm that can be found in different languages, including C++ [39].
This is a particular advantage for software reuse, because the simulation program (OMNeT++) to
be used is based on C++.

The previous points explain why a link-state based algorithm has been chosen. Such a choice is
also a must, because the GMPLS standard takes it as granted that only link-state routing
algorithms will be used. That is why only extensions to OSPF or IS-IS are given in the GMPLS
drafts.

5.1.3.2. Description of the routing scheme

5.1.3.2.1 Route advertisements

The route advertisement messages are build according to the OSPF extensions for GMPLS. As the
literature survey points it, this work proposes to extend the sub TLV relative to the ISCD field of the
GMPLS OSPF extensions.

In order to dynamically monitor the state of the network, each GMPLS router keeps track of all the
wavelength capabilities of the whole network in a “links” database. This database is constantly
updated each time a ROUTING message is received. The ROUTING message contains the
description of the wavelength capabilities of a certain link that have changed very recently.

Those ROUTING messages are actually flooded on the whole network by the node which one of
its links’ capability changed. They basically contain the address of the extremities of the link of
which the wavelength capability has changed and the state of the changed wavelength.

The links database is composed of records, where each record describes one link of the network.
Each record contains the node addresses of the link’s extremities, a wavelength capability field and
a metric field. The wavelength capability field describes explicitly the wavelength resources of the
considered link. The metric field is the cost to use this link when performing the shortest path
calculation. In this work, two different metrics will be implemented. They are both function of the
total number of wavelengths and the number of available wavelength(s) on the link (5.1.3.2.2).

5.1.3.2.2 Link metrics

The link metric represents the cost to use a certain link in the network. Intuitively, the link cost is a
function of the total number of wavelength and the number of available wavelengths. The more
available wavelength, the lower cost the link will be.

The routing scheme is tested under different link metrics: simple TAW or enhanced TAW. Let a
i, jλ

be the number of available (unused) wavelengths on the link (i,j) and T
i, jλ the total number of

possible wavelengths on that link. The simple TAW metric represents the load assigned to a link
and is defined by:

a
i, j 2

i, j T
i, j

w 1 (i,j) E
λ
λ

= − ∀ ∈ (3)

The enhanced TAW metric is to test the metric proposed by [18] that equivalently minimizes the
probability of blocking on an explicit route:

MECSE-20-2003: "Routing and Wavelength Assignment in GMPLS-baased DWDM ...", LC. Cieutat and L.N. Binh

44

a
i , ja

i, j 2
i, j T

i, j

w log 1 1 (i,j) E
λ

λ
λ

 = − − − ∀ ∈

A comparison of the different weights for a
i, j 32λ = is given in .

5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Figure 11 Link metrics for a 32 wavelengths fibre

5.1.3.2.3 Path calculation

The links database that has been freshly updated by the GMPLS router serves as the basis of the
path discovery calculation based on the Dijkstra algorithm. This path computation is performed by
each node in the network when it receives a ROUTING message, that is an update of a certain link
capability in the network.

The routing algorithm actually allows each node to build its own photonic database which is its own
representation of the network. The photonic database contains N records, where N is the number
of nodes of the network. Each record is based on the following structure:

− A node destination address. This identifies the record ; it is the node to reach.

− A total cost to this destination node. This is the total cost when taking the shortest
path route to the destination node.

− An address of the last-but-one node on the shortest path route to the destination
node.

− An end-to-end available wavelength capability. This field determinates explicitly the
possible wavelengths to be assigned, if any, on the shortest path route.

− An explicit route. This is an ordered list of all the addresses of the nodes on the
shortest path route.

Given the links database, the three first fields are actually the direct output of the Dijkstra shortest
path algorithm. The two last fields are the result of a sub-routine of the Dijkstra algorithm. Indeed, it
is a property of the Dijkstra algorithm that it is possible to find the list of the nodes of each shortest
path by a simple recursive call.

MECSE-20-2003: "Routing and Wavelength Assignment in GMPLS-baased DWDM ...", LC. Cieutat and L.N. Binh

45

5.1.3.2.4 Wavelength assignment

There are numerous possible WA schemes. Possible schemes tested in this work are first-fit and
random. First-fit chooses the first wavelength available in an ordered list of wavelength. Random
chooses a wavelength randomly between the different available wavelengths.

Those two schemes are used directly at the output of the path calculation algorithm in order to
determinate a wavelength to be reserved on the path to each destination in the network from a
source node.

5.1.3.2.5 Reservation scheme

For simplicity sake’s, a reservation protocol based on parallel reservation has been implemented in
order to test the different routing and WA schemes implemented. The reservation is simplified
because it does not consider that packets could be lost, allowing not to consider any
retransmission mechanisms. Also, it is assumed that the service of a routing protocol (such as
OSPF) from hop to hop between the different routers is provided.

The reservation by itself uses the following types of packets: REQUEST, RESERVE, RESPONSE,
TAKEDOWN. The process of messages exchanges for reservation is as follows:

 A generator of an end-system of a node emits a REQUEST message for a new connection to
another randomly chosen node in the ION. It transmits this request to its associated GMPLS
router. Thanks to its photonic database built by the wavelength routing algorithm, the GMPLS
router module is able to determine if (1) an explicit route is available to the destination
requested ; (2) on this explicit route, choose a wavelength that will maximise the probability of
non-blocking.

 If an explicit route and a wavelength are available for the destination, the GMPLS router then
reserves in parallel the route and the wavelength assigned for that connection. That is, it sends
in parallel a RESERVE message to each node of the explicit route, excepted itself.

 When a node on the explicit route receives the RESERVE message, it checks if its wavelength
is available on the link linking the node considered with his predecessor in the explicit route. It
then sends a RESPONSE message back to the GMPLS router sub-module that sent the
RESERVE message.

A diagram of the reservation process illustrating the REQUEST, RESERVE and RESPONSE
messages is given in Figure 12. The end-system attached to the node S sends a REQUEST
message to the GMPLS router S (1). Then, S sends in parallel 3 RESERVE messages to nodes 1,
2 and D (2). Finally, each nodes answers independently to S (3).

----- RESERVE message

S

D

2

1

----- RESPONSE message

----- REQUEST message

Requesting end-system:
- Explicit-route: S-1-2-D
- Lambda λ3

1

2
2

2
3

3

3

- Check λ3 available
- Reserve λ3 on link S-1

- Check λ3 available
- Reserve λ3 on link 1-2

- Check λ3 available
- Reserve λ3 on link 2-D

Figure 12 Parallel reservation mechanism – REQUEST, RESERVE, RESPONSE messages

MECSE-20-2003: "Routing and Wavelength Assignment in GMPLS-baased DWDM ...", LC. Cieutat and L.N. Binh

46

 In case the wavelength to be reserved was not available in one or several node of the explicit
route, the requesting GMPLS router module sends a TAKEDOWN message to all the nodes of
the explicit route to warn them to reset as available the wavelength that had been reserved.

A diagram of the reservation process illustrating the TAKEDOWN message is given in Figure 13.
The node 2 checks its available wavelengths on the link 1-2 ; the wavelength requested by S is not
available. It then warns S by sending a RESPONSE message refusing the wavelength reservation
(3). Immediately, S sends back to the other nodes of the explicit route a TAKEDOWN message (4)
that resets the lambda requested to available.

----- RESERVE message

S

D

2

1

----- RESPONSE message

----- REQUEST message

Requesting end-system:
- Explicit-route: S-1-2-D
- Lambda λ3

1

2
2

2
3

3
3

- Check λ3 available
- Reserve λ3 on link S-1

- Check λ3 available
- λ3 NOT available on link 1-2

- Check λ3 available
- Reserve λ3 on link 2-D

----- TAKEDOWN message
4 4

Figure 13 Illustration of the use of TAKEDOWN messages

5.2. MODEL IMPLEMENTATION

The model is implemented using the simulation software OMNeT++. OMNeT++ is becoming
increasingly popular among a wide range of scientific communities, and competes well in these
communities with established commercial tools such as OPNET. It is being used at a number of
universities for research on communication networks [44].

There are several reasons to use OMNeT++. First, this is a free software that is currently available
on UNIX at Monash. It is also currently increasingly employed by Monash research students as a
simulation tool for different works, including routing protocols. Thus, there is actually an extremely
profitable cooperation between research fellows working on OMNeT++ that will definitely boost the
research on optical networking simulation topics. OMNeT++ allows also to more efficiently reuse
former implementation because it uses C++, an object-oriented programming for simple modules.

5.2.1. IMPLEMENTATION GUIDELINES

5.2.1.1. Network model

The ION model is composed of simple modules – referred to as GMPLS router modules – and
compound modules – referred to as EndSystem compound module. The GmplsRouter module
contains all the RWA and reservation algorithms, while the EndSystem module is responsible of
generating and analysing the response to connection request messages.

MECSE-20-2003: "Routing and Wavelength Assignment in GMPLS-baased DWDM ...", LC. Cieutat and L.N. Binh

47

The EndSystem sub module is composed of a Generator simple module and a Sink simple
module. The generator module task is to generate a certain number of connection requests to
randomly chosen destination nodes in the ION. The sink module receives the responses to each
connection request generated by its counterpart Generator module. The sink module principle task
is to analyse the responses and to build statistics table.

It is worth noting that the Endsystem compound module actually models an end system in an ION.
Effectively, the EndSystem module represents one or several end systems such as switches or
routers. For instance, it is very likely that such end systems will be ATM switch or IP routers with
MPLS-based software. A current area of research is to standardize the physical interface between
the clients (end systems) and the transport network (ION). This interface is designated as the UNI
interface. An implementation agreement for the UNI has been proposed by the OIF [45].

Each GmplsRouter module is associated to only one Endsystem module. Those modules have the
same address. A simplified view of the model is given in Figure 14.

Gmpls
Router

Generator Sink

Endsystem compound module

to other GmplsRouter

modules

to other GmplsRouter

modules

Figure 14: Endsystem, Generator, Sink and GmplsRouter modules

The network model is based on the Abilene network. It is composed of 12 GmplsRouter modules
scattered at different GigaPops around the U.S. ; each GmplsRouter module is associated to its
own Endsystem module.

5.2.1.2. System parameters

The network traffic is generated in terms of connection requests. A connection request is a request
to establish a lightpath from a source node to a randomly chosen destination node. The connection
requests arriving at each router is assumed to follow an exponential distribution with mean λpoisson
per unit of time.

The system parameters that are varied are T
i, jλ , the total number of wavelengths on each link and

the connection requests arrivals. T
i, jλ is varied between 8 and 24 by increment of 8.

The performance parameter considered is the blocking probability P and the link utilization U.

Let P be the probability that a connection request is blocked due to the unavailability of
wavelengths for a lightpath. It is not possible to give any analytical definition of P

The average link utilization U is given by the percentage of time that all wavelengths of each link in
the network are fully utilised.

MECSE-20-2003: "Routing and Wavelength Assignment in GMPLS-baased DWDM ...", LC. Cieutat and L.N. Binh

48

 U

ai<j, i j
i, j
T

i,j i, j
i<j, i j

i,j

1
=

1

λ
λ

≠

≠

−

∑

∑

5.2.1.3. Object-oriented framework

The UML class diagram (implemented with Rational Rose) of the RWA model is given in Figure 15.
This framework describes the relation and contents of each class. The different classes of the
model are the following: Generator, Sink, GmplsRouter, Node, LinkInfo, NodeInfo, ExplicitRoute
and LambdaCap.

GmplsRouter is the central class of the simulation. It is composed of several databases
implemented as vectors of objects.

− Links is a vector of objects called LinkInfo. Each LinkInfo object contains all the
necessary information on a certain link (i,j) in the network. Especially, it contains
instances of the LambdaCap class.

− Nodes is a vector of objects called Node. Each node object contains information about
a node of the network, especially if it needs to be extracted to the graph that will serve
as an input to the calcShortestPath method of the GmplsRouter class.

− PhotonicDb is a vector of objects called NodeInfo. Each NodeInfo objects is
comprised of one record of the forwarding database of the GmplsRouter module. This
database is filled up by the calcShortestPath and calcExplicitRoute methods. The
NodeInfo contains one instance of the ExplicitRoute class and one instance from the
LambdaCap class.

The class ExplicitRoute is used to represent the explicit route (shortest path) from the GmplsRouter
node to a destination node in the network. Several methods have been implemented to facilitate
the use of this object.

The class LambdaCap represents the wavelength capability of a link or an explicit route. The
reader will note that this class implements the wavelength assignment and the metric schemes.

MECSE-20-2003: "Routing and Wavelength Assignment in GMPLS-baased DWDM ...", LC. Cieutat and L.N. Binh

49

explicitRoute

expRte : int []
maxNodes : int

ExplicitRoute()
operator=()
operator==()
operator[]()
addNode()
numberNodes()

LambdaCap

lCa p : in t []

Lambda Cap()
operator=()
operator==()
operator+=()
operator[] ()
numberUnu sed Lam bda s()
rat io()
li nkLoad ()
lamb daAvail ab le()
setLamb daAvail able()
setLamb daNon Avai labl e()
pri nt ()
wa()
fi rstFit ()
ran dom ()
li nkWe ig ht()
me tricHop s()
me tricTaw1 ()
me tricTaw2 ()

LinkInfo

src : int
dest : int
metric : double

LinkInfo()
operator=()
srcAddress()
destAddress()
metric()
setSrcAddress()
setDestAddress()
setMetric()
print()

1

1

1

1

is composed of

NodeInfo

no d : int
cos : double
be foreNod : int

NodeInfo()
op erator=()
op erator<()
no de()
cost()
be foreNod()
e2 eAvailableLambdas()
explicitRoute()
setNode()
setCost()
setBeforeNode()
pri nt()

11

is composed of

11

is composed of

Node
add : int
toExt : bool

Node()
toBeExtracted()
address()
print()

Generator
myAdd ress : i nt
total_sentmes : int
packetsToSend : int

activity()

GmplsRouter
photonicDb : NodeInfo
links : LinkInfo
nodes : Node
myAddress : int
degree : int
totalLambdas : int
numberNodes : int
numberLinks : int
metricType : int

activity()
finish()
printLinks()
printPhotonicDb()
printNodes()
sendUpdate()
sendReserve()
sendReserveResponse()
sendResponseToSink()
sendTakedown()
receiveUpdate()
receiveTakedown()
receiveResponse()
receiveRequest()
receiveReserve()
takedownRoute()
calcExplicitRoute()
calcShortestPath()
linkUtil()
l inkTraffic()

1..n1..n

is co mposed of

1..n1..n

is compo sed of

1..n1..n

is composed of

11

is associated to

Sink

myAddress : int

activity()

11

is associated to

Figure 15 RWA simulation class diagram

M
E

C
S

E
-20-2003: "R

outing and W
avelength A

ssignm
ent in G

M
P

LS
-baased D

W
D

M
 ...", LC

. C
ieutat and L.N

. B
inh

50

As this framework subjects, it will be very easy for any further work to reuse this model. Thanks to
the object-oriented programming in C++, it will just be necessary to overload certain methods of the
model to use different and more efficient RWA schemes. For instance, one can simply add another
method in GmplsRouter if another routing algorithm has to be tested. Similarly, other wavelength
assignment schemes and more evolved metric can be added to the LambdaCap class with very
little change to the model framework.

5.2.1.4. OMNeT++ Modules description

As the object oriented framework suggests it, the classes are organised in different OMNeT++
files. The simulation code is shared amongst the following. All those files are given in Annex.

File name General description
includes.h Defines the constants and the different types of messages
gen.cc Implements the generator of an end system class
sink.cc Implements the sink of an end system class
gmplsRouter.cc Implements the Gmpls Router class. This is the main class of the system.

Includes
gmplsRouter.h Implements the Node, NodeInfo, LinkInfo, LambdaCap and ExplicitRoute

classes.
abilene.ned Describes the topology of the Abilene transport network
omnetpp.ini Describes the different parameters for a run in OMNeT++

5.2.2. SIMULATION RESULTS PROCESS

In order to have a good estimation of the blocking probability, it is necessary to run several times
the algorithm with different requests arrival parameters. Each run is assigned a different random
generator, called a random seed.

For selecting good seeds, the seedtool program of OMNeT++ is used. For instance, the command
seedtool g seed0 dist n generates 'n' seeds that are 'dist' apart, starting at ‘seed0’. The
bash script presented in Figure 16 was used to simulate 20 runs with different seeds.

#! /bin/bash
for seed in `seedtool g 1 10000000 20`
do
 (
 echo "random-seed = ${seed}"
 echo "output-vector-file = rwa-${seed}.vec"
) >parameters.ini
 ./rwa
done

Figure 16 Script to perform 20 independant runs

Each run outputs a vector (a cOutVector in OMNeT++). An extract of such a vector is given in the
listing of Figure 17.

vector 36 "net.endsystem9.sink" "blockingVsLinkUtil" 2
36 189.780099 0 0.633333333
vector 37 "net.endsystem9.sink" "blockingVsLinkUtil" 2
37 194.075275 0 0.65
vector 38 "net.endsystem11.sink" "blockingVsLinkUtil" 2
38 196.36799 0 0.675
vector 39 "net.endsystem11.sink" "blockingVsLinkUtil" 2

39 197.664505 1 0.675

MECSE-20-2003: "Routing and Wavelength Assignment in GMPLS-baased DWDM ...", LC. Cieutat and L.N. Binh

51

Figure 17: Extract of one simulation run

Each vector is the response to one request made by an end system. There are label lines
(beginning with vector) and data lines.

− A vector line introduces a new vector. Its columns are: vector ID, module of creation,
name of cOutVector object, multiplicity of data (single numbers or pairs will be
written).

− Lines beginning with numbers are data lines. The columns: vector ID, current
simulation time, and one or two double values. Here the first one identifies if the
request has been blocked (1) or fulfilled (0). The second value represents the link
utilisation when the connection request was made.

Several UNIX utilities such as awk, sed, sort and grep are used to process the vectors and obtain
the necessary information, that is the third and fourth fields of the data lines. An extract of the
actual C shell script used to process the raw data is given in Annex.

Finally, a short C++ program is used to determine the blocking probality versus the link utilisation
data. This program is used to calculate the probability of blocking P at certain link utilisation. This is
done by making the average of the blocking on a certain interval ∆U. This program can be found in
Annex.

MECSE-20-2003: "Routing and Wavelength Assignment in GMPLS-baased DWDM ...", LC. Cieutat and L.N. Binh

52

6. RESULTS AND DISCUSSION

One of the goals of this project was to estimate how the developed RWA algorithm performs
relatively to the blocking of requests in the network. As it will be seen, because wavelength
conversion is not used, the wavelength continuity constraint leads to a high level of blocking when
the load increases. First, wavelength assignment schemes are compared. Secondly, the blocking
in the network as a function of the average link utilisation is described, analysed and discussed.

6.1. WAVELENGTH ASSIGNMENT SCHEMES COMPARISONS

It was found that the first-fit and the random wavelength assignments perform in very similar ways,
either when blocking is plotted versus average link utilisation or versus average node traffic.
Actually, the results show that there are no real differences in performance between the two
schemes. There was no real explanation found; except that it is maybe a result of the mix of those
WA schemes with the routing and reservation schemes that were developed. Nevertheless, it
highlights the importance of a model to discover such relations that are not obvious. In the
following, the simulation uses a first-fit wavelength assignment scheme.

6.2. BLOCKING AND AVERAGE LINK UTILISATION

The blocking probability P is plotted as a function of the link utilisation U for different values of T
i, jλ ,

the total number of wavelengths in a fibre. T
i, jλ is varied between 8 and 24 by increment of 8 and

different schemes, including simple TAW metric, enhanced TAW metric, first-fit and random
wavelength assignment are tested. The processed data is given in Table 5, Table 6 and Table 7.

T
i, jλ = 8

Simple TAW Enhanced TAW Aver. Link Utilisation
Blocking Blocking % Used lambdas

0,00 0,00 3 0,2
0,00 0,00 8 0,6
0,02 0,02 12 0,96
0,00 0,00 18 1,44
0,02 0,00 23 1,84
0,00 0,00 28 2,24
0,00 0,00 33 2,64
0,05 0,00 38 3,04
0,00 0,04 42 3,36
0,17 0,19 47 3,76
0,29 0,31 52 4,16
0,33 0,48 57 4,56
0,57 0,53 62 4,96
0,65 0,54 68 5,44
0,72 0,66 73 5,84
0,79 0,75 78 6,24
0,86 0,82 83 6,64
0,87 0,87 88 7,04
0,90 0,84 93 7,44

MECSE-20-2003: "Routing and Wavelength Assignment in GMPLS-baased DWDM ...", LC. Cieutat and L.N. Binh

53

Table 5 Processed data for 8 wavelengths per fibre

T
i, jλ = 16

Simple TAW Enhanced TAW Link Utilisation
Blocking Blocking % Used Lambdas

0,00 0,00 3 0,4
0,01 0,01 8 1,2
0,01 0,01 12 1,92
0,02 0,02 18 2,88
0,04 0,00 23 3,68
0,03 0,00 28 4,48
0,00 0,00 33 5,28
0,02 0,01 38 6,08
0,00 0,01 42 6,72
0,02 0,00 47 7,52
0,14 0,13 52 8,32
0,43 0,39 57 9,12
0,60 0,48 62 9,92
0,66 0,61 68 10,88
0,76 0,70 73 11,68
0,79 0,77 78 12,48
0,84 0,83 83 13,28
0,85 0,84 88 14,08
0,82 0,86 93 14,88

Table 6 Processed data for 16 wavelengths per fibre

T
i, jλ = 24

TAW1 - FF TAW2 - FF Link Utilisation
Blocking Blocking % Used Lambdas

0,01 0,01 3 0,6
0,01 0,01 8 1,8
0,01 0,02 12 2,88
0,02 0,03 18 4,32
0,01 0,01 23 5,52
0,01 0,01 28 6,72
0,03 0,01 33 7,92
0,05 0,02 38 9,12
0,05 0,02 42 10,08
0,07 0,00 47 11,28
0,14 0,12 52 12,48
0,42 0,35 57 13,68
0,55 0,53 62 14,88
0,65 0,62 68 16,32
0,77 0,70 73 17,52
0,84 0,78 78 18,72
0,85 0,86 83 19,92
0,88 0,88 88 21,12

Table 7 Processed data for 24 wavelengths per fibre

MECSE-20-2003: "Routing and Wavelength Assignment in GMPLS-baased DWDM ...", LC. Cieutat and L.N. Binh

54

The plots of the blocking versus the average link utilisation for different values of T
i, jλ are given in

Figure 18. Graphs a), b) and c) represent the blocking versus the average link utilisation for T
i, jλ =

8, T
i, jλ = 16, T

i, jλ = 24 respectively. In each graph, the blocking versus the average link utilisation is
plotted for the two metrics that were expected to be compared, that is simple TAW and enhanced
TAW.

MECSE-20-2003: "Routing and Wavelength Assignment in GMPLS-baased DWDM ...", LC. Cieutat and L.N. Binh

55

0,0

0,2

0,4

0,6

0,8

1,0

0 1 2 3 4 5 6 7 8

Link utilisation

blocking

Simple TAW
Enhanced TAW

Blocking vs link utilisation | Number of wavelengths = 8

0,0

0,2

0,4

0,6

0,8

1,0

0 5 10 15 20

link utilisation

blocking

Simple TAW

Enhanced TAW

Blocking vs link utilisation | Number of wavelengths = 16

0,0

0,2

0,4

0,6

0,8

1,0

0 2 4 6 8 10 12 14 16 18 20 22

link utilisation

blocking

Simple TAW
Enhanced TAW

Blocking vs link utilisation | Number of wavelengths = 24

Figure 18. Blocking versus link utilisation for different T
i, jλ

a) Number of wavelengths: 8.

b) Number of wavelengths: 16

c) Number of wavelengths: 24

a)

c)

b)

M
E

C
S

E
-20-2003: "R

outing and W
avelength A

ssignm
ent in G

M
P

LS
-baased D

W
D

M
 ...", LC

. C
ieutat and L.N

. B
inh

56

6.2.1. GENERAL OBSERVED BEHAVIOURS FOR THE BLOCKING IN AN ION

The different graphs show a somewhat similar behaviour regarding to the blocking in the ION. At
low link utilisation, that is when less than about half of the wavelengths are used, the blocking
probability is extremely low (almost zero). When more than half of the wavelengths are used on
average on the links in the network, the blocking increases suddenly and steadily and tends to 100
% of blocking when the average link utilisation goes to 100 %.

A low blocking level is defined for a blocking inferior to 5 %. Higher blocking is for blocking superior
or equal to 5 %. If this threshold is used, the following is observed from the graphs:

 The low blocking threshold is reached by the simple TAW at 33 % link utilisation while the
enhanced TAW reaches it at 42 % for T

i, jλ = 8.

 The low blocking threshold is reached by the simple TAW at 47 % link utilisation while the
enhanced TAW reaches it at 47 % for T

i, jλ = 16.

 The low blocking threshold is reached by the simple TAW at 33 % link utilisation while the
enhanced TAW reaches it at 47 % for T

i, jλ = 24.

As a rule of thumb, whatever the metric is used, it seems that high blocking appears at higher link
utilisation when more wavelengths are used. Nevertheless, a real behaviour is difficult to interpret
here because only 3 different numbers of wavelengths have been used.

However, even with 24 wavelengths, somewhat poor performance is observed. Indeed, relatively
high blocking appears fastly at higher link utilisation than about 50 %. This poor performance is
mostly due to the hypotheses of this work. Especially, no wavelength conversion has been taken
into account ; the wavelength continuity constraint then leads to much higher blocking at relatively
medium link utilisation.

6.2.2. COMPARISON BETWEEN SIMPLE AND ENHANCED TAW METRICS

In this work, two metrics are compared, simple TAW and enhanced TAW. The performance of the
two metrics are compared, that is their performance relatively to the blocking at low utilisation and
high utilisation are estimated.

Ut is defined as the threshold link utilisation where blocking is equal to 5 %. The data comparing
the two metrics are given in Table 8, Table 9 and Table 10.

MECSE-20-2003: "Routing and Wavelength Assignment in GMPLS-baased DWDM ...", LC. Cieutat and L.N. Binh

57

T
i, jλ = 8

Blocking

difference
Blocking diff at

low blocking
Blocking diff at
high blocking

 0% 0%
 0% 0%
 0% 0%
 0% 0%
 2% 2%
 0% 0%
 0% 0%
 5% 5%
 -4% -4%
 -2% -2%
 -2% -2%
 -15% -15%
 4% 4%
 11% 11%
 6% 6%
 4% 4%
 4% 4%
 0% 0%
 6% 6%

Mean 5% 1% 7%
Table 8 Comparison data between simple and enhanced TAW metrics for 8 wavelengths per fibre

T
i, jλ = 16

Blocking

difference
Blocking diff at

low blocking
Blocking diff at
hith blocking

 0% 0%
 0% 0%
 0% 0%
 0% 0%
 4% 4%
 3% 3%
 0% 0%
 1% 1%
 -1% -1%
 2% 2%
 1% 1%
 4% 4%
 12% 12%
 5% 5%
 6% 6%
 2% 2%
 1% 1%
 1% 1%
 -4% -4%

Mean 3% 2% 4%
Table 9 Comparison data between simple and enhanced TAW metrics for 16 wavelengths per fibre

MECSE-20-2003: "Routing and Wavelength Assignment in GMPLS-baased DWDM ...", LC. Cieutat and L.N. Binh

58

T
i, jλ = 24

 Blocking diff At low util At high util
 0% 0%
 0% 0%
 -1% -1%
 -1% -1%
 0% 0%
 1% 1%
 1% 1%
 4% 4%
 3% 3%
 7% 7%
 2% 2%
 7% 7%
 2% 2%
 3% 3%
 7% 7%
 6% 6%
 -1% -1%
 0% 0%

Mean 3% 1% 3%
Table 10 Comparison data between simple and enhance TAW metrics for 24 wavelengths per fibre

The major observations from these are given in the following table.

 Simple TAW Enhanced TAW Performance comparison
(mean blocking difference)

 Ut U < Ut U > Ut
T
i, jλ = 8 33 % 42 % 1 % 7 %
T
i, jλ = 16 47 % 47 % 2 % 4 %
T
i, jλ = 24 33 % 47 % 1 % 3 %

Tableau 11 Recapitulation table for metrics comparison

It seems difficult to explain why in the case of T
i, jλ = 16, blocking superior to 5 % appears at

relatively high link utilisation for the simple TAW. One answer would be that only 20 runs have
been used, which is not really sufficient to have very exact values of the blocking probability at one
given link utilisation.

The main conclusions are as follows:

 At low link utilisation, simple TAW and enhanced TAW perform the same way. The blocking in
this case stays very low (strictly inferior to 5 %).

 At higher link utilisation, the enhanced TAW metric performs much better than the simple TAW
metric. This is particularly true when very few wavelengths are used.

 When the number of wavelengths increase, blocking superior to 5 % appears at higher link
utilisation.

MECSE-20-2003: "Routing and Wavelength Assignment in GMPLS-baased DWDM ...", LC. Cieutat and L.N. Binh

59

In general, it has been observed that the enhanced TAW metric performs better than the simple
TAW metric at higher utilisation. One reason is that the enhanced metric tries to minimizes the
weight of the explicit route while still trying to minimize the probability of blocking for further
requests. Conversely, the simple TAW metric does not take into account any probabilities. It just
tries to minimize the total link utilisation on a possible explicit route from the ingress node to the
egress node.

MECSE-20-2003: "Routing and Wavelength Assignment in GMPLS-baased DWDM ...", LC. Cieutat and L.N. Binh

60

7. CONCLUSIONS

Built on different researches in the field, a RWA scheme including a routing, a wavelength
assignment and a reservation scheme were proposed. First, the proposed routing scheme was
based on the implementation of OSPF and different associated drafts that extend OSPF
capabilities for routing in all-optical networks. A proposal for an extension of the ISCD field in type
10 opaque LSA was given, allowing to consider two different metrics for the shortest path
calculation based on Dijkstra algorithm. Secondly, two different wavelength assignment schemes
were tested, that is first-fit and random. Finally, a simplified parallel reservation scheme was
implemented in order to estimate the performance of the routing and wavelength assignment
schemes previously mentioned.

An object-oriented framework of the RWA scheme was designed in order to ease software reuse
for further work. This framework was used to develop a simulation model of the proposed schemes
in OMNeT++.

The model was tested under different parameters, including total number of wavelengths per fibre
and different schemes: simple TAW, enhanced TAW for the routing scheme, first-fit and random for
the wavelength assignment. The ION tested was the Abilene network, the research network linking
U.S. universities.

The main conclusions of the simulation model are:

 The probability of a request to be blocked P is very low and stable (< 5 %) for link utilisation
varying between 0 % and up to a threshold Ut varying between 33 % (worst schemes and
parameters combination) and 47 % (better schemes and parameters combination). At higher
link utilisations than Ut, (U > Ut), blocking increases very fastly when link utilisation
increases.

 The enhanced TAW metric implemented performs better at link utilisations higher than the
simple TAW metric particularly when the number of wavelengths per fibre is low. Conversely,
at low link utilisation (U < Ut), both metrics have very similar results whatever the number of
wavelengths are used.

 The wavelengths assignment schemes implemented, that is first-fit and random, yield
extremely similar performance when associated with any routing and reservation schemes
implemented in this work.

MECSE-20-2003: "Routing and Wavelength Assignment in GMPLS-baased DWDM ...", LC. Cieutat and L.N. Binh

61

8. RECOMMENDATIONS FOR FURTHER WORK

There are currently numerous research studies that can be build onto the RWA algorithm proposed
in this work. The purpose of any of this work may be to build a more accurate model of an all-
optical GMPLS-based ION. Further work may involve building, developing and simulating a more
efficient RWA algorithm or reservation protocol. Finally, other possible work include building and
simulating a restoration scheme in an ION.

8.1. IMPROVEMENTS OF THE RWA ALGORITHM

The RWA algorithm proposed in this work should be improved so that the blocking probability is
lower than the one demonstrated, particularly at link utilisation superior than 50 %. A way to
diminish the blocking probability of requests is to use wavelength conversion. The RWA should be
also able to consider other physical constraints that only the number of available and total
wavelengths as it was done in this work.

8.1.1. WAVELENGTH CONVERSION CAPABILITY

It is possible to improve the blocking probability of the RWA algorithm by using wavelength
converters [14, 38, 46-48]. It is necessary to bear in mind that wavelength conversion is still a very
costly solution, because most of the wavelength converters are currently laboratory devices. This is
one of the reasons why it was not considered in this work.

Thus, in practical implementations using wavelength conversion, not every node in the ION will
have a wavelength conversion capability. The nodes should be able to know at which node there is
a possible wavelength conversion. Another good idea is that the use of wavelength conversion
should be performed only if blocking in the system attains a certain threshold, that, if passed, is
undesirable [38].

8.1.2. PHYSICAL CONSTRAINTS

It is possible to extend the RWA algorithm to take into account other physical constraints than
wavelength availability. For instance, regeneration of the signal could impose to go through a node
after a certain distance. A study should be followed on other physical constraints to be taken into
account when performing the RWA algorithm, such as the use of wavelength converters, the use of
signal regeneration to combat ASE and PMD [38] [32].

8.2. STUDY OF A RESERVATION PROTOCOL IN A GMPLS-
BASED NETWORK

MECSE-20-2003: "Routing and Wavelength Assignment in GMPLS-baased DWDM ...", LC. Cieutat and L.N. Binh

62

In this work, a simple parallel reservation has been implemented. Nevertheless, more complex
reservation protocols can significantly decrease the blocking probability of the requests in the ION
[26, 49, 50]. Two reservation protocols are proposed in the GMPLS architecture: CR-LDP and
RSVP-TE [33]. It seems that RSVP-TE has the favour in the industry, since it is implemented by
Cisco and Juniper. The advantage of using RSVP is that it is possible to reuse RSVP
implementations that are mainly free of bugs, because RSVP is already an “old” protocol.
Conversely, CR-LDP is based on LDP. This protocol has been mainly designed and supported by
Nortel for the LDP and signalling protocol in MPLS. This is a new software, that may not be as
mature as RSVP.

There are a lot of studies and drafts on lightpath set-up in GMPLS-based networks implemented
with RSVP-TE [30] [20] [31] [51] [52] [37] [36] .

8.3. RESTORATION CAPABILITIES

Restoration capabilities should be added to this work’s model, so that the breakdown of a node or
a link be bypassed. Several studies currently deal with this problem and are implemented
according to several GMPLS drafts [31] [53].

MECSE-20-2003: "Routing and Wavelength Assignment in GMPLS-baased DWDM ...", LC. Cieutat and L.N. Binh

63

9. REFERENCES

1. Stallings, W., ed. High Speed Networks and Internets, Performance and Quality of Service.
2nd ed. 2002, Prentice Hall.

2. Dijkstra, E., ed. A Note on Two Problems in Connection with graphs. 1959, Numerical
Mathematics.

3. Laffra, C., Dijkstra's Shortest Path Algortithm Animation in Java. 2002.
4. Stallings, W., Multi Protocol Label Switching. Sept. 2001, Cisco.
5. Black, U., Optical networks, Third Generation Transport systems. 2002: Prentice Hall PTR.
6. Chlamtac, I.G., A.; Karmi, G., Lightpath communications: an approach to high bandwidth

optical WAN's. Communications, IEEE Transactions on, July 1992. 40(7): p. 1171 -1182.
7. Banerjee, D. and B. Mukherjee, A Practical Approach for Routing and Wavelength

Assignment in Large Wavelength-Routed Optical Networks. IEEE Journal on Selected
Areas in Communications, 1996. 14(5): p. 903-908.

8. Baroni, S. and P. Bayvel, Wavelength Requirements in Arbitrary Connected Wavelength-
Routed Optical Networks. IEEE/OSA Journal of Lightwave Technology, 1997. 15(2): p.
242-251.

9. Alanyali, M. and E. Ayanoglu, Provisioning algorithms for WDM optical networks.
IEEE/ACM Transactions on Networking, Oct. 1999. 7(5): p. 767 -778.

10. Ohta, S.G. and A. Greca. Comparison of routing and wavelength assignment algorithms
for optical networks. in High Performance Switching and Routing, 2001 IEEE Workshop on
, 2001. 2001.

11. Bala, K. and T.E. Stern. Algorithms for routing in a linear lightwave network. in INFOCOM
'91. Proceedings. Tenth Annual Joint Conference of the IEEE Computer and
Communications Societies. Networking in the 90s. 1991: IEEE.

12. Birman, A. and A. Kershenbaum. Routing and Wavelength Assignment Methods in Single-
Hop All-Optical Networks with Blocking. in Proceedings, IEEE Infocom '95. Apr. 1995.
Boston, MA.

13. Harai, H.M., M.; Miyahara, H. Performance of alternate routing methods in all-optical
switching networks. in INFOCOM '97. Sixteenth Annual Joint Conference of the IEEE
Computer and Communications Societies. Driving the Information Revolution.,
Proceedings IEEE. 1997.

14. Ramamurthy, S.M., B. Fixed-alternate routing and wavelength conversion in wavelength-
routed optical networks. in Global Telecommunications Conference, 1998. GLOBECOM
1998. The Bridge to Global Integration. IEEE. 1998.

15. Mokhtar, A.A., M., Adaptive wavelength routing in all-optical networks. Networking,
IEEE/ACM Transactions on, April 1998. 6(2): p. 197 -206.

16. Ramaswami, R.S., A. Distributed network control for wavelength routed optical networks.
in INFOCOM '96. Fifteenth Annual Joint Conference of the IEEE Computer Societies.
Networking the Next Generation., Proceedings IEEE. 1996.

17. Zang, H., et al. Connection management for wavelength-routed WDM networks. in Global
Telecommunications Conference, 1999. GLOBECOM '99. 1999.

18. Fabry-Asztalos, T., N.M. Bhide, and K.M. Sivalingam. Adaptive Weight Wunctions for
Shortest Path Routing Algorithms for Multi-Wavelength Optical WDM Networks. in IEEE
Intl. Conference on Communications. 2000. New Orleans, LA.

19. Apostolopoulos, G., et al., QoS Routing Mechanisms and OSPF Extensions - RFC 2676.
1999.

20. Zang, H., et al., Dynamic lightpath establishment in wavelength routed WDM networks.
IEEE Communications Magazine, Sept. 2001. 39(9): p. 100 -108.

21. Li, L. and A.K. Somani, Dynamic wavelength routing using congestion and neighborhood
information. Networking, IEEE/ACM Transactions on, Oct. 1999. 7(5): p. 779 -786.

22. Jue, J.P. and G. Xiao. An adaptive routing algorithm for wavelength-routed optical
networks with a distributed control scheme. in Computer Communications and Networks,
2000. Proceedings. Ninth International Conference on. 2000.

23. Zang, H., J.P. Jue, and B. Mukherjee, Review of Routing and Wavelength Assignment
Approaches for Wavelength-Routed Optical WDM Networks, in Optical Networks
Magazine. 2000. p. 47-60.

MECSE-20-2003: "Routing and Wavelength Assignment in GMPLS-baased DWDM ...", LC. Cieutat and L.N. Binh

64

24. Subramaniam, S. and R.A. Barry. Wavelength assignment in fixed routing WDM networks.
in Communications, 1997. ICC '97 Montreal, Towards the Knowledge Millennium. 1997
IEEE International Conference on. 1997.

25. Zhang, X. and C. Qiao. Wavelength Assignment for Dynamic Traffic in Multi-fiber WDM
Networks,". in Proceedings, 7th International Conference on Computer Communications
and Networks. Oct. 1998. Lafayette, LA.

26. Yuan, X., et al., Distributed Control Protocols for Wavelength Reservation and Their
Performance Evaluation. Photonic Network Communications, 1999. 1(3): p. 207-218.

27. Sotica, A.G. and A. Sengupta. On a Dynamic Wavelength Assignment Algorithm for
Wavelength-Routed All-Optical Networks. in Proceedings, SPIE/IEEE/ACM OptiComm
2000. Oct. 2000. Dallas, TX.

28. Mei, Y. and C. Qiao. Efficient Distributed Control Protocols for WDM All-Optical Networks.
in Proceedings, International Conference on Computer Communication and Networks.
Sept. 1997. Las Vegas, NV.

29. Sengupta, A., et al., Algorithms for Dynamic Routing in All-Optical Networks. Photonic
Network Communications, 2000. 2(2): p. 163-184.

30. Widjaja, I. and A.I. Elwalid. Study of GMPLS lightpath setup over lambda-router networks.
in Communications, 2002. ICC 2002. IEEE International Conference on. 2002.

31. Banerjee, A., et al., Generalized multiprotocol label switching: an overview of signaling
enhancements and recovery techniques, in IEEE Communications Magazine. 2001. p. 144
- 151.

32. Strand, J., A.L. Chiu, and R. Tkach, Issues for routing in the optical layer, in IEEE
Communications Magazine. Feb. 2001.

33. Ashwood-Smith, P., et al., Generalized Multi-Protocol Label Switching (GMPLS)
Architecture - draft-ietf-ccamp-gmpls-architecture-02.txt. 2002.

34. Kompella, K., et al., Routing Extensions in Support of Generalized MPLS - draft-ietf-
ccamp-gmpls-routing-04.txt. 2002.

35. Kompella, K., et al., OSPF Extensions in Support of Generalized MPLS - draft-ietf-ccamp-
ospf-gmpls-extensions-07.txt.

36. Berger, L., et al., Generalized MPLS - Signaling Functional Description - draft-ietf-mpls-
generalized-signaling-08.txt. 2002.

37. Berger, L., et al., Generalized MPLS Signaling - RSVP-TE Extensions - draft-ietf-mpls-
generalized-rsvp-te-07.txt. 2002.

38. Ken-ichi Sato, N.Y., Yoshihiro Takigawa, Masafumi Koga, Satoru Okamoto, and E.O.
Kohei Shiomoto, and Wataru Imajuku, NTT Corporation, GMPLS-Based Photonic
Multilayer Router (Hikari Router) Architecture: An Overview of Traffic Engineering and
Signaling Technology, in IEEE Communications Magazine. March 2002. p. 96 -101.

39. OSPFD Release 2.0.
40. Katz, D., D. Yeung, and K. Kompella, Traffic Engineering Extensions to OSPF - draft-katz-

yeung-ospf-traffic-06.txt. 2002, IETF.
41. Coltun, R., The OSPF Opaque LSA Option, RFC 2370. 1998.
42. Hecht, J., Understanding Fiber Optics. 4th ed. 2002: Prentice Hall.
43. Moy, J., OSPF Version 2 - RFC 2328. 1998.
44. Varga, A., OMNeT++. 2002.
45. Working Group: Architecture, O.P., PLL, & Signaling Working Groups, User Network

Interface (UNI) 1.0 Signaling Specification. 2001, Optical Internetworking Forum (OIF).
46. Swaminathan, M.D.S., K.N. Practical routing and wavelength assignment algorithms for all

optical networks with limited wavelength conversion. in Communications, 2002. ICC 2002.
IEEE International Conference on.

47. Xiao, G., Y.-W. Leung, and K.-W. Hung, Two-stage cut saturation algorithm for designing
all-optical networks. Communications, IEEE Transactions on, June 2001. 49(6): p. 1102 -
1115.

48. Zhang, Y., et al. An efficient heuristic for routing and wavelength assignment in optical
WDM networks. in Communications, 2002. ICC 2002. IEEE International Conference on.
2002.

49. Shami, A., et al., Performance Evaluation of Two GMPLS-Based Distributed Control and
Management Protocols for Dynamic Lightpath Provisioning in Future IP Networks. IEEE,
2002.

MECSE-20-2003: "Routing and Wavelength Assignment in GMPLS-baased DWDM ...", LC. Cieutat and L.N. Binh

65

50. Zheng, J. and H.T. Mouftah. Routing and wavelength assignment for advance reservation
in wavelength-routed WDM optical networks. in Communications, 2002. ICC 2002. IEEE
International Conference on. 2002.

51. Semaria, C., RSVP signalling extensions for MPLS TE. 2002, Juniper.
52. Braden, R., et al., RFC2205 Resource ReSerVation Protocol (RSVP) -- Version 1

Functional Specification. 1997.
53. Sengupta, S. and R. Ramamurthy, From network design to dynamic provisioning and

restoration in optical cross-connect mesh networks: an architectural and algorithmic
overview. IEEE Network, 2001. 15(4): p. 46 -54.

MECSE-20-2003: "Routing and Wavelength Assignment in GMPLS-baased DWDM ...", LC. Cieutat and L.N. Binh

66

10. APPENDIX

10.1. SIMULATION PROGRAM

10.1.1. INCLUDES.H

// Defines the different types of messages
#include <map>

#ifndef __INCLUDES_H
#define __INCLUDES_H

typedef std::map< int, int, std::less<int> > mid;

const int UNDEF = 60000; // undefined node
const double INF = 60000; // infinity metric

const int hops = 1;
const int TAW1 = 2;
const int TAW2 = 3;

const int waFF = 1;
const int waR = 2;

const long ROUTING = 1;
const long REQUEST = 2;
const long RESPONSE = 3;
const long RESERVE = 4;
const long RESERVE_ACK = 5;
const long TAKEDOWN = 6;

const long PT_HELLO = 1; // Hello packet
const long PT_DD = 2; // Database Description
const long PT_LSREQ = 3; // Link State Request
const long PT_UPD = 4; // Link State Update
const long PT_LSACK = 5; // Link State Acknowledgment

/* Definitions for the "lsType" field */
const long LST_RTR = 1; // Router-LSAs
const long LST_NET = 2; // Network-LSAs
const long LST_SUMM = 3; // Summary-link LSAs (inter-area routes)
const long LST_ASBR = 4; // ASBR-summaries (inter-area)
const long LST_ASL = 5; // AS-external_LSAs
const long LST_GM = 6; // Group-membership-LSA (MOSPF)
const long LST_NSSA = 7; // NSSA externals
const long LST_EXATTR = 8; // External-attributes LSA
const long LST_LINK_OPQ = 9; // Link-scoped Opaque-LSA
const long LST_AREA_OPQ = 10; // Area-scoped Opaque-LSA - the one that we use
const long LST_AS_OPQ = 11; // AS-scoped Opaque-LSA
const long MAX_LST = 11; // Maximum number of supported LSA types

/* Assigned TLV Types*/
const long TLV_T_ROUTERADDR = 1; // Router Address top-level TLV
const long TLV_T_LINK = 2; // Link top-level TLV

/* Assigned sub TLV Types*/
const long SUB_TLV_T_LINKTYPE = 1; // sub TLV link type
 // identifies the type of the link
 // in this work, 1 is used (point to point)
const long SUB_TLV_T_LINKID = 2; // sub TLV link id
 // identifies the other end of the link
const long SUB_TLV_T_ISCD = 15; // sub TLV Interface Sw. Cap. Descriptor (ISCD)
 // Defines the switching capabilities

/* Assigned switching capability descriptors for the ISCD sub tlv */
const long SW_CAP_T_LSC = 150; // Lambda Switching Capable link
#endif

MECSE-20-2003: "Routing and Wavelength Assignment in GMPLS-baased DWDM ...", LC. Cieutat and L.N. Binh

67

10.1.2. GEN.CC

#include <omnetpp.h>
#include "includes.h"

class Generator : public cSimpleModule {
 Module_Class_Members(Generator,cSimpleModule,16384)
 int myAddress;
 int total_sentmsg;
 int numberPacketsToSend;
 virtual void activity();
};

Define_Module(Generator);

void Generator::activity() {

 cPar rnd("rnd");
 int num_nodes = par("num_endnodes");
 myAddress = par("address");
 int degree = par("degree");
 int totalLambdas = par("totalNumberLambdas");
 double delay = par("delta");
 numberPacketsToSend = (degree * totalLambdas);
 simtime_t d;
 total_sentmsg = 0;

 // Idle time between 0 and 1 min
 simtime_t idleTime = uniform(0, 60);

 // Wait for a random time before sending packets
 cout << "Time to wait in " << myAddress << " before sending any packet = "
 << simtimeToStr(idleTime) << endl;
 wait(idleTime);
 cMessage *toSend = new cMessage;
 toSend->addPar("sendRequest") = (bool) true;
 scheduleAt(simTime() + 0.01, toSend);

 for (;;) {
 cout << "we are here\n";
 cMessage *mes = receive();
 cout << "we are here\n";

 if (mes->hasPar("sendRequest")) {
 if (total_sentmsg <= numberPacketsToSend) {
 cMessage *msg = new cMessage();

 // add the type of packet
 msg->addPar("messageType") = REQUEST;

 //select a destination randomly
 int dest = myAddress;
 while (dest == myAddress) {
 dest = (int) intuniform(1,num_nodes);
 }

 d = simTime();

 // set a name for packet
 cout << endl << "CONNECTION REQUEST from " << myAddress << " to "
 << dest << " at time " << simtimeToStr(d) << endl;

 //add dest to the message
 msg->addPar("destAddr") = dest;

 //send the packet
 send(msg,"out");
 total_sentmsg++;

 if (total_sentmsg < numberPacketsToSend) {

 // Next packet to send scheduled in delay time
 cMessage *nextMes = new cMessage;
 nextMes->addPar("sendRequest") = (bool) true;

 simtime_t timeForNextPacket = simTime() + delay;
 scheduleAt(timeForNextPacket, nextMes);

 // Wait 3 minutes to tear down the route

MECSE-20-2003: "Routing and Wavelength Assignment in GMPLS-baased DWDM ...", LC. Cieutat and L.N. Binh

68

 }
 }
 }

 if (mes->hasPar("sendTearDown")) {

 }
 }
}

10.1.3. SINK.CC

#include <omnetpp.h>
#include "includes.h"

class Sink : public cSimpleModule {
 Module_Class_Members(Sink,cSimpleModule,16384)

 virtual void activity();
};

Define_Module(Sink);

void Sink::activity() {
 int numberPacketsToReceive = 0;
 int numberPacketsReceived = 0;
 int numberRequestAccepted = 0;
 int numberRequestBlocked = 0;
 int myAddress = par("address");
 int degree = par("degree");
 int totalLambdas = par("totalNumberLambdas");
 numberPacketsToReceive = degree * totalLambdas;

 for(;;) {
 //cOutVector blockingVsNodeTraffic("blockingVsNodeTraffic",2);
 cOutVector blockingVsLinkUtil("blockingVsLinkUtil",2);
 cOutVector blockingVsRequest("blockingVsRequest",2);

 cMessage *msg = receive();
 numberPacketsReceived++;
 bool requestAccepted = msg->par("accepted");
 double linkUtil = msg->par("linkUtil");
 double nodeTraffic = msg->par("nodeTraffic");

 if (requestAccepted) {
 numberRequestAccepted++;
 blockingVsRequest.record(0, numberPacketsReceived);
 blockingVsLinkUtil.record(0, linkUtil);
 }
 else {
 blockingVsRequest.record(1, numberPacketsReceived);
 blockingVsLinkUtil.record(1, linkUtil);
 }

 simtime_t t = simTime()-msg->timestamp();

 numberRequestBlocked = numberPacketsReceived - numberRequestAccepted;

 cout << endl << "SINK : response for a request" << " at "
 << simtimeToStr(t) << endl
 << "In node " << myAddress << endl
 << "Total Request accepted = " << numberRequestAccepted << endl
 << "Total Request blocked = " << numberRequestBlocked << endl
 << "the average link utilisation is " << linkUtil << endl
 << "the node traffic for " << myAddress << " is " << nodeTraffic << endl;

 delete msg;
 }
}

10.1.4. GMPLSROUTER.CC

#include <omnetpp.h>
#include <iostream>
#include <vector>
#include <map>
#include <cassert>

MECSE-20-2003: "Routing and Wavelength Assignment in GMPLS-baased DWDM ...", LC. Cieutat and L.N. Binh

69

#include <algorithm>
#include <cmath>
#include "includes.h"
#include "gmplsRouter.h"

class GmplsRouter : public cSimpleModule {
 Module_Class_Members(GmplsRouter, cSimpleModule, 56384)

 int myAddress;
 double degree;
 double totalLambdas;

 // For stats purposes
 int numberNodes;
 int numberLinks;
 int respToBeReceived;
 int respReceived;
 int numberLightpathEstablished;

 // Types of schemes used by this node
 int metricType; // type of the metric: hops, TAW1, TAW2, etc
 int waType; // type of wa: first fit, random, etc

 cTopology graphe;
 std::vector<NodeInfo> photonicDb;
 std::vector<NodeInfo> temp;

 std::vector<LinkInfo> links;
 std::vector<Node> nodes;

 // map
 mid pairs;

 virtual void activity();
 virtual void finish();
 virtual void printLinks();
 virtual void printPhotonicDb();
 virtual void printTemp();
 virtual void printNodes();
 virtual void printMap();
 virtual void initGraph();
 virtual void sendUpdate(cModule *destMod, int neighbourAddress, int lambda);
 virtual void sendReserve(int lambda, cModule *destMod, int beforeNode);
 virtual void sendReserveResponse(bool accepted, int src);
 virtual void sendResponseToSink (bool accepted);
 virtual void sendTakedown(cModule *destMod, int lambda, int neighbour);
 virtual void receiveUpdate (cMessage *mes);
 virtual void receiveResponse(cMessage *mes);
 virtual void receiveRequest(cMessage *mes);
 virtual void receiveReserve(cMessage *mes);
 virtual void receiveTakedown(cMessage *mes);
 virtual void takedownRoute(int dest, int lambda);
 virtual void initTemp();
 virtual void calcExplicitRoute();
 virtual void calcShortestPath();
 virtual double linkUtil();
 virtual double nodeTraffic();

};

// Module registration
Define_Module(GmplsRouter);

// ***************** ACTIVITY ******************************
void GmplsRouter::activity() {
 myAddress = par("address");
 totalLambdas = par("totalNumberLambdas");
 degree = par("degree");

 // parameters for testing different schemes
 metricType = par("metricType");
 waType = par("waType");

 //cout << "Enter activity - We are in module: " << myAddress << endl;

 // extract all the nodes in the topology
 graphe.extractByModuleType("GmplsRouter", NULL);
 numberNodes = graphe.nodes();
 // cout << "The graphe extracted has " << numberNodes << " nodes" << endl;

 // fills up the links and nodes databases

MECSE-20-2003: "Routing and Wavelength Assignment in GMPLS-baased DWDM ...", LC. Cieutat and L.N. Binh

70

 //cout << "Init the links and nodes databases " << endl;
 numberLinks = 0;
 for (int i=0 ; i<numberNodes ; i++) {
 sTopoNode *node = graphe.node(i);
 cModule *nodeMod = node->module();
 int nodeAddress = nodeMod->par("address");
 Node n(nodeAddress, true);
 nodes.push_back(n);

 for (int j=0; j<node->outLinks(); j++) {
 sTopoNode *neighbour = node->out(j)->remoteNode();
 cModule *neighbourMod = neighbour->module();
 int neighbourAddress = neighbourMod->par("address");
 bool linkIncluded = false;

 // avoids to put twice the same link in the links db
 for (unsigned int k=0 ; k<links.size() ; k++) {
 if (links[k].srcAddress() == neighbourAddress &&
 links[k].destAddress() == nodeAddress) {
 linkIncluded = true;
 }
 }

 if (linkIncluded == false) {
 // sets by default the metric to 0
 LinkInfo link(nodeAddress, neighbourAddress);
 links.push_back(link);
 numberLinks++;
 }
 }
 }

 // init the graph for sp calculation
 // cout << "Init the graph for sp calculation " << endl;
 initGraph();

 // cout << "Calculate shortest path - fills up the database links " << endl;
 calcShortestPath();

 // Endless loop
 for(;;) {
 // cout << endl << "Enters loop of node " << myAddress << endl;
 cMessage *msg = receive();

 if (msg->hasPar("messageType")) {
 long mes = msg->par("messageType");
 switch (mes) {
 case ROUTING:
 // ROUTING packet
 cout << endl << "ROUTING packet received in node " << myAddress << endl;
 receiveUpdate(msg);
 break;

 case REQUEST:
 // REQUEST packet
 cout << endl << "REQUEST packet received in node " << myAddress << endl;
 receiveRequest(msg);
 break;

 case RESERVE:
 // RESERVE packet
 cout << endl << "RESERVE packet received in node " << myAddress << endl;
 receiveReserve(msg);
 break;

 case RESPONSE:
 // RESPONSE packet
 cout << endl << "RESPONSE packet received in node " << myAddress << endl;
 receiveResponse(msg);
 break;

 case TAKEDOWN:
 // Takedown message
 cout << endl << "TAKEDOWN message received in node " << myAddress << endl;
 receiveTakedown(msg);
 break;

 default:
 cout << "Reception of an unknown type of message !!!";
 }
 }

MECSE-20-2003: "Routing and Wavelength Assignment in GMPLS-baased DWDM ...", LC. Cieutat and L.N. Binh

71

 else
 cout << "Reception of an unknown type of message !!!";
 }
}

// ******************* FINISH ********************************
void GmplsRouter::finish() {
 cout << "*** Module: " << fullPath() << "***" << endl;
 cout << "Stack allocated: " << stackSize() << " bytes";
 cout << " (includes " << ev.extraStackForEnvir() << " bytes for environment)" << endl;
 cout << "Stack actually used: " << stackUsage() << " bytes" << endl;

}

// Prints of the different containers
void GmplsRouter::printLinks() {
 cout << "Contents of the links database for node " << myAddress << endl;
 for (unsigned int i=0 ; i<links.size() ; i++) {
 links[i].print();
 cout << endl;
 }
 cout << endl;
}

void GmplsRouter::printPhotonicDb() {
 cout << "Contents of the Photonic Db for node " << myAddress << endl;
 for (unsigned int i=0 ; i<photonicDb.size() ; i++) {
 photonicDb[i].print();
 cout << endl;
 }
 cout << endl;
}

void GmplsRouter::printTemp() {
 cout << "Contents of the temp vector" << endl;
 for (unsigned int i=0 ; i<temp.size() ; i++) {
 temp[i].print();
 cout << endl;
 }
 cout << endl;
}

void GmplsRouter::printNodes() {
 cout << "The nodes db" << endl;
 for (unsigned int i=0 ; i<nodes.size() ; i++) {
 nodes[i].print();
 }
 cout << endl;
}

void GmplsRouter::printMap() {
 cout << "The map are" << endl;
 mid::const_iterator iter;
 for (iter = pairs.begin() ; iter != pairs.end() ; iter++) {
 int dest = iter->first;
 int lambda = iter->second;
 cout << "Lambda: " << lambda << " - Dest: " << dest << endl;
 }
}

void GmplsRouter::initGraph() {
 // disables all the nodes that must not be considered for the sp calculation
 /* for (int i=0 ; i<graphe.nodes() ; i++) {
 if (nodes[i].toBeExtracted() == false && nodes[i].address != myAddress)
 graphe.node(i)->disable();
 }*/

 //cout << "Enters initGraph\n";

 // Sets the metrics of the graph
 for (int i=0 ; i<graphe.nodes() ; i++) {
 sTopoNode *node = graphe.node(i);
 cModule *nodeMod = node->module();
 int nodeAddress = nodeMod->par("address");

 //cout << "In node " << nodeAddress << endl;
 for (int j=0 ; j<node->outLinks() ; j++) {
 sTopoLinkOut *link = node->out(j);
 sTopoNode *neighbour = node->out(j)->remoteNode();

MECSE-20-2003: "Routing and Wavelength Assignment in GMPLS-baased DWDM ...", LC. Cieutat and L.N. Binh

72

 cModule *neighbourMod = neighbour->module();
 int neighbourAddress = neighbourMod->par("address");

 //cout << "the size of links is " << links.size();
 //printLinks();
 for (unsigned int k=0 ; k<links.size() ; k++) {
 if ((links[k].srcAddress() == nodeAddress &&
 links[k].destAddress() == neighbourAddress) ||
 (links[k].srcAddress() == neighbourAddress &&
 links[k].destAddress() == nodeAddress)) {

 link->setWeight(links[k].metric());
 //cout << "in the graph, we set link from " << nodeAddress
 // << "to " << neighbourAddress
 // << "at the value " << links[k].metric() << endl;
 }
 }
 }
 }
 //cout << "Out of initgraph\n";
}

void GmplsRouter::sendUpdate(cModule *destMod, int neighbourAddress, int lambda) {
 cout << "Enters sendUpdate in node " << myAddress << endl;
 cMessage *mes = new cMessage;

 // message type
 mes->addPar("messageType")= ROUTING;

 // Packet header
 mes->addPar("packetType") = PT_UPD;
 mes->addPar("source") = myAddress;

 // Update packet header
 mes->addPar("numberLsa") = 1;

 // LSA header
 mes->addPar("lsType") = LST_AREA_OPQ;

 // top level TLV Type
 mes->addPar("topLevelTlvType") = TLV_T_LINK;

 // sub TLV link
 mes->addPar("subTlvLinkType") = SUB_TLV_T_LINKTYPE;
 mes->addPar("subTlvLinkTypeValue") = 1;

 // sub TLV link ID
 mes->addPar("subTlvLinkIdType") = SUB_TLV_T_LINKID;
 mes->addPar("subTlvLinkIdTypeValue") = (long) neighbourAddress;

 // sub TLV switching capability
 mes->addPar("subTlvIscdType") = SUB_TLV_T_ISCD;
 mes->addPar("swCapType") = SW_CAP_T_LSC;
 mes->addPar("lambda") = (long) lambda;

 //double delay = uniform(0.001,0.005);
 sendDirect(mes, 0, destMod, "in", 0);
 int dest = destMod->par("address");
 cout << "Send update to " << dest << " - The link (" << myAddress << ","
 << neighbourAddress << ") has the lambda " << lambda << " unavailable\n";
}

void GmplsRouter::sendReserve(int lambda, cModule *destMod, int beforeNodeAddress) {
 cout << "Enters sendReserve in node " << myAddress << endl;
 cMessage *res = new cMessage;
 res->addPar("messageType") = RESERVE;
 res->addPar("lambda") = lambda;
 res->addPar("srcAddress") = myAddress;
 res->addPar("beforeNodeAddress") = beforeNodeAddress;

 int destAddress = destMod->par("address");

 //double delay = uniform(0.001,0.005);
 sendDirect(res, 0, destMod, "in", 0);
 cout << "Reserve message sent to " << destAddress << endl
 << "that has beforeNode: " << beforeNodeAddress
 << " in the explicit route" << endl;

}

MECSE-20-2003: "Routing and Wavelength Assignment in GMPLS-baased DWDM ...", LC. Cieutat and L.N. Binh

73

void GmplsRouter::sendReserveResponse(bool accepted, int src) {
 cout << "Enters sendReserveResponse in node " << myAddress << endl;
 cMessage *resp = new cMessage;
 resp->addPar("messageType") = RESPONSE;
 cPar& lambdaAvailable = resp->addPar("lambdaAvailable");
 lambdaAvailable.setBoolValue(accepted);

 for (int i=0 ; i<graphe.nodes() ; i++) {
 sTopoNode *node = graphe.node(i);
 cModule *mod = node->module();
 int address = mod->par("address");
 if (address == src) {
 //double delay = uniform(0.001,0.005);
 sendDirect(resp, 0, mod, "in", 0);
 cout << "Reserve response sent to " << address << endl
 << "The lambda requested "
 << (accepted == true ? " is " : " is NOT ") << "available" << endl;
 }
 }
}

void GmplsRouter::sendResponseToSink (bool accepted) {
 cout << "Enters sendResponseToSink in node " << myAddress << endl;
 cMessage *mes = new cMessage();
 mes->addPar("accepted") = (bool) accepted;
 mes->addPar("linkUtil") = (double) linkUtil();
 mes->addPar("nodeTraffic") = (double) nodeTraffic();
 cPar rnd("rnd");
 send(mes, "to_sink", 0);
}

void GmplsRouter::sendTakedown(cModule *destMod, int lambda, int neighbour) {
 cout << "Enters sendTakedown in node " << myAddress << endl;
 cMessage *mes = new cMessage;
 mes->addPar("messageType") = TAKEDOWN;
 mes->addPar("lambda") = lambda;
 mes->addPar("srcAddress") = myAddress;
 mes->addPar("neighbourAddress") = neighbour;

 cout << "Lambda to be taken down is " << lambda << endl;

 //double delay = uniform(0.001,0.005);
 sendDirect(mes, 0, destMod, "in", 0);
}

void GmplsRouter::receiveUpdate (cMessage *mes) {
 cout << "Enters receiveUpdate in node " << myAddress << endl;
 int src = mes->par("source");
 int neighbour = mes->par("subTlvLinkIdTypeValue");
 int lambda = mes->par("lambda");

 cout << "Updating the links database for link (" << src << ","
 << neighbour << ") with lambda " << lambda << " non available" << endl;

 if (mes->par("packetType").longValue() == PT_UPD &&
 mes->par("numberLsa").longValue() == 1 &&
 mes->par("lsType").longValue() == LST_AREA_OPQ &&
 mes->par("topLevelTlvType").longValue() == TLV_T_LINK &&
 mes->par("subTlvLinkType").longValue() == SUB_TLV_T_LINKTYPE &&
 mes->par("subTlvLinkTypeValue").longValue() == 1 &&
 mes->par("subTlvLinkIdType").longValue() == SUB_TLV_T_LINKID &&
 mes->par("subTlvIscdType").longValue() == SUB_TLV_T_ISCD &&
 mes->par("swCapType").longValue() == SW_CAP_T_LSC) {

 // Update the links db
 for (unsigned int i=0 ; i<links.size() ; i++) {
 if ((links[i].srcAddress() == src &&
 links[i].destAddress() == neighbour) ||
 (links[i].srcAddress() == neighbour &&
 links[i].destAddress() == src)) {
 links[i].lC().setLambdaNonAvailable(lambda);
 links[i].setMetric(links[i].lC().linkWeight(metricType));
 }
 }

 //cout << endl << "Links database after reception of an update" << endl;
 // printLinks();

 // run the shortest path algo on the new architecture
 // cout << "Updating the photonic db" << endl;

MECSE-20-2003: "Routing and Wavelength Assignment in GMPLS-baased DWDM ...", LC. Cieutat and L.N. Binh

74

 calcShortestPath();

 //cout << endl << "Photonic database after reception of an update" << endl;
 // printPhotonicDb();
 }

 delete mes;
}

void GmplsRouter::receiveResponse(cMessage *mes) {
 cout << "Enters receiveResponse in node " << myAddress << endl;
 bool mesRes = mes->par("lambdaAvailable");
 delete mes;

 if (mesRes == true) {
 respReceived++;
 if (respReceived == respToBeReceived) {
 cout << "Send message to sink - this request can be fulfilled\n";
 numberLightpathEstablished++;
 sendResponseToSink(true);
 }
 }

 else {
 // This lambda is not available => response is blocked
 sendResponseToSink(false);
 cout << "Send message to sink - this request canNOT be fulfilled\n";

 // we need to unreserve the lambdas on the explicit rte
 mid::const_iterator iter;
 for (iter = pairs.begin() ; iter != pairs.end() ; iter++) {
 int dest = iter->first;
 int lambda = iter->second;
 //cout << "We added dest " << dest << " and lambda " << "to map\n";

 takedownRoute(dest, lambda);
 }
 }
}

void GmplsRouter::receiveRequest(cMessage *mes) {
 cout << endl << "Enters receiveRequest in node " << myAddress << endl;
 int dest = mes->par("destAddr").longValue();
 cout << "A request has been received - Destination node: "
 << dest << endl;

 for (unsigned int i=0 ; i<photonicDb.size() ; i++) {
 if (photonicDb[i].node() == dest) {
 // ExplicitRoute &er = photonicDb[i].explicitRoute();
 cout << "The explicit route to reach " << dest << " is ";
 photonicDb[i].explicitRoute().print();
 cout << endl;

 if (photonicDb[i].explicitRoute().numberNodes() >= 2 &&
 photonicDb[i].e2eAvailableLambdas().numberUnusedLambdas() != 0) {
 respToBeReceived = photonicDb[i].explicitRoute().numberNodes()-1;
 respReceived = 0;

 int lambda;
 for (int j=0 ; j<photonicDb[i].explicitRoute().numberNodes()-1 ; j++) {
 int nodeAddress = photonicDb[i].explicitRoute(j);
 int beforeNode = photonicDb[i].explicitRoute(j+1);

 // Wavelength assignment (only done once)
 if (j == 0) {
 //cout << "nodeinfo\n";
 //photonicDb[i].print();
 lambda = photonicDb[i].e2eAvailableLambdas().wa(waType);
 cout << "The lambda chosen is " << lambda << endl;

 // Creates a map of the lambda to be set and the dest of the exp rte
 pairs.insert(mid::value_type(dest, lambda));
 }

 for (int k=0 ; k<graphe.nodes() ; k++) {
 sTopoNode *node = graphe.node(k);
 cModule *mod = node->module();
 int ad = mod->par("address");
 if (ad == nodeAddress) {
 sendReserve(lambda, mod, beforeNode);
 }

MECSE-20-2003: "Routing and Wavelength Assignment in GMPLS-baased DWDM ...", LC. Cieutat and L.N. Binh

75

 }
 }
 }
 // The request is blocked
 else {
 sendResponseToSink(false);
 }
 }
 }
 delete mes;
}

void GmplsRouter::receiveReserve(cMessage *mes) {
 cout << "Enters receiveReserve in node " << myAddress << endl;
 int lambda = mes->par("lambda");
 int srcAddress = mes->par("srcAddress");
 int beforeNodeAddress = mes->par("beforeNodeAddress");
 delete mes;

 cout << "receiveReserve is asked to reserve " << lambda << endl;
 // Check the resources
 // Reserve the resources and relay the RESERVE message
 for (unsigned int i=0 ; i<links.size() ; i++) {
 if ((links[i].srcAddress() == beforeNodeAddress &&
 links[i].destAddress() == myAddress) ||
 (links[i].srcAddress() == myAddress &&
 links[i].destAddress() == beforeNodeAddress)) {
 LambdaCap &l = links[i].lC();

 if (l.lambdaAvailable(lambda)) {
 // reserve the lambda on that link
 l.setLambdaNonAvailable(lambda);
 // recalculate the metric on that link
 links[i].setMetric(l.linkWeight(metricType));

 cout << endl << "Reserve the resource in our own links database" << endl;
 printLinks();

 // flood an update of our link change
 for (int i=0 ; i<graphe.nodes() ; i++) {
 sTopoNode *node = graphe.node(i);
 cModule *mod = node->module();
 if (mod->id() != this->id())
 sendUpdate(mod, beforeNodeAddress, lambda);
 }

 // Then send a response to the src
 sendReserveResponse(true, srcAddress);
 }

 // this lambda is not available
 else {
 sendReserveResponse(false, srcAddress);
 }
 }
 }
}

void GmplsRouter::receiveTakedown(cMessage *mes) {
 int lambda = mes->par("lambda");
 int neighbour = mes->par("neighbourAddress");
 delete mes;

 for (unsigned int i=0 ; i<links.size() ; i++) {
 if ((links[i].srcAddress() == neighbour &&
 links[i].destAddress() == myAddress) ||
 (links[i].srcAddress() == myAddress &&
 links[i].destAddress() == neighbour)) {
 LambdaCap &l = links[i].lC();

 l.setLambdaAvailable(lambda);
 // recalculate the metric on that link
 links[i].setMetric(l.linkWeight(metricType));
 }
 }
}

// Sends a lambda tear down message to all the routers of an explicit route
// to a destination dest node
void GmplsRouter::takedownRoute(int dest, int lambda) {
 for (unsigned int i=0 ; i<photonicDb.size() ; i++) {

MECSE-20-2003: "Routing and Wavelength Assignment in GMPLS-baased DWDM ...", LC. Cieutat and L.N. Binh

76

 if (photonicDb[i].node() == dest) {
 for (int j=0 ; j<photonicDb[i].explicitRoute().numberNodes()-1 ; j++) {
 int nodeAddress = photonicDb[i].explicitRoute(j);
 int beforeNode = photonicDb[i].explicitRoute(j+1);

 for (int k=0 ; k<graphe.nodes() ; k++) {
 sTopoNode *node = graphe.node(k);
 cModule *mod = node->module();
 int ad = mod->par("address");
 if (ad == nodeAddress) {
 sendTakedown(mod, lambda, beforeNode);
 }
 }
 }
 }
 }
}

void GmplsRouter::initTemp() {
 for (int i=0 ; i<numberNodes ; i++) {
 if (nodes[i].address() != myAddress) {
 NodeInfo node(nodes[i].address(), INF, UNDEF);
 temp.push_back(node);
 }
 else {
 NodeInfo node(myAddress, 0, UNDEF);
 temp.push_back(node);
 }
 }
}

void GmplsRouter::calcExplicitRoute() {
 for (unsigned int i=0 ; i<photonicDb.size(); i++) {
 if (photonicDb[i].node() != myAddress) {
 bool srcReached = false;
 int location = 0;
 int currentNode = photonicDb[i].node();
 int beforeNode = photonicDb[i].beforeNode();
 double cost = photonicDb[i].cost();

 if (cost != INF && beforeNode != UNDEF) {

 photonicDb[i].explicitRoute().addNode(currentNode);
 location++;

 //cout << "Calculating explicit route from " << myAddress
 // << "To " << currentNode << endl;

 while (!srcReached) {
 // determinates the available lambdas on the explicit route
 for (unsigned int j=0 ; j<links.size() ; j++) {
 if ((links[j].srcAddress() == currentNode &&
 links[j].destAddress() == beforeNode) ||
 (links[j].srcAddress() == beforeNode &&
 links[j].destAddress() == currentNode)) {
 LambdaCap &l = links[j].lC();
 //cout << "lambdas capability to be added taken from links with nodes "
 // << currentNode << " and " << beforeNode << endl;;
 // l.print();
 photonicDb[i].e2eAvailableLambdas() += l;
 //cout << "\nE2E availalble lambdas after sum of two lambda: " << endl;
 // photonicDb[i].e2eAvailableLambdas().print();
 //cout << endl;
 }
 }

 // determinates the explicit route
 //cout << "Det the explicit route\n";
 if (beforeNode == myAddress) {
 srcReached = true;
 photonicDb[i].explicitRoute().addNode(myAddress);
 }
 else {
 photonicDb[i].explicitRoute().addNode(beforeNode);
 location++;
 for (unsigned int j=0 ; j<photonicDb.size() ; j++) {
 if (photonicDb[j].node() == beforeNode) {
 currentNode = photonicDb[j].node();
 beforeNode = photonicDb[j].beforeNode();
 //cout << "next link is "
 // << currentNode << " " << beforeNode << endl;

MECSE-20-2003: "Routing and Wavelength Assignment in GMPLS-baased DWDM ...", LC. Cieutat and L.N. Binh

77

 }
 }
 }
 }
 }
 }
 }
 //cout << "Exits calcExplicitRoute";
}

void GmplsRouter::calcShortestPath() {
 //cout << "Enters calcShortestPath in node: " << myAddress << endl;
 if (graphe.nodes() == 0)
 cout << "the graphe is empty\n";
 else {
 // Erase the contents of the temp structure
 temp.clear();

 // init the temp structure used in the dijkstra algo
 initTemp();

 // init the graph with the correct weights determined in the links db
 initGraph();

 // Erase the photonicDb
 photonicDb.clear();

 //cout << "Enters algorithm\n";
 while(!temp.empty()) {
 // Sort temp based on the cost
 sort(temp.begin(),temp.end());

 // Put the lowest NodeInfo cost into the photonic db
 NodeInfo node(temp[0]);
 temp.erase(temp.begin());
 photonicDb.push_back(node);

 for (int k=0 ; k<graphe.nodes() ; k++) {
 sTopoNode *node = graphe.node(k);
 cModule *nodeMod = node->module();
 int nodeAddress = nodeMod->par("address");
 int sizeDb = photonicDb.size();

 if (photonicDb[sizeDb-1].node() == nodeAddress) {
 for (int i=0 ; i<node->outLinks() ; i++) {
 sTopoLinkOut *link = node->out(i);
 sTopoNode *neighbour = link->remoteNode();
 cModule *mod = neighbour->module();
 int neighbourAdd = mod->par("address");

 for (unsigned int j=0 ; j<temp.size() ; j++) {
 if (neighbourAdd == temp[j].node() &&
 (photonicDb[sizeDb-1].cost() + link->weight()) <
 temp[j].cost()) {
 temp[j].setCost(photonicDb[sizeDb-1].cost() + link->weight());
 temp[j].setBeforeNode(photonicDb[sizeDb-1].node());
 }
 }
 }
 }
 }
 }

 }

 //cout << "Before entering calcExplicitRoute\n";
 //printPhotonicDb();

 // set the explicit route and the wavelength availibilities
 //cout << "Enters calcExplicitRoute\n";
 calcExplicitRoute();
}

double GmplsRouter::linkUtil() {
 double temp = 0;
 for (unsigned int j=0 ; j<links.size() ; j++) {
 temp += links[j].lC().linkLoad();
 }
 return temp/numberLinks;
}

MECSE-20-2003: "Routing and Wavelength Assignment in GMPLS-baased DWDM ...", LC. Cieutat and L.N. Binh

78

double GmplsRouter::nodeTraffic() {
 double temp = 0;
 for (unsigned int k=0 ; k<links.size() ; k++) {
 if (links[k].srcAddress() == myAddress ||
 links[k].destAddress() == myAddress) {
 temp += (totalLambdas - links[k].lC().numberUnusedLambdas());
 }
 }
 return temp/(totalLambdas * degree);
}

10.1.5. GMPLSROUTER.H

#include <omnetpp.h>
#include <iostream>
#include <vector>
#include <algorithm>
#include <string>
#include <cassert>
#include "includes.h"

#define totalNumberLambdas 24
#define maxNodes 20

// lambda capabilities
class LambdaCap {
 private:
 int lCap[totalNumberLambdas];
 public:
 // default constructor : sets all the bits to one
 LambdaCap() {
 for (int i=0 ; i<totalNumberLambdas ; i++)
 lCap[i] = 1;
 }
 // copy constructor
 LambdaCap(const LambdaCap &l) {
 for (int i=0 ; i<totalNumberLambdas ; i++) {
 lCap[i] = l.lCap[i];
 }
 }
 // overloaded equality operator
 const LambdaCap &operator=(const LambdaCap &right) {
 if (&right != this) {
 for (int i=0 ; i<totalNumberLambdas ; i++) {
 lCap[i] = right.lCap[i];
 }
 }
 return *this;
 }
 // overloaded compare equal
 bool operator==(LambdaCap &lc) {
 for (int i=0 ; i<totalNumberLambdas ; i++) {
 if (lCap[i] != lc.lCap[i])
 return false;
 }
 return true;
 }
 // overloaded addition operator
 LambdaCap &operator+=(LambdaCap &right) {
 for (int i=0 ; i<totalNumberLambdas ; i++) {
 if (right.lCap[i] == 0 || lCap[i] == 0)
 lCap[i] = 0;
 }
 return *this;
 }
 // overloaded subscript operator
 int &operator[](int i) {
 return lCap[i];
 }
 int numberUnusedLambdas() {
 int count = 0;
 for (int i=0 ; i<totalNumberLambdas ; i++) {
 if (lCap[i] == 1) {
 count++;
 }
 }
 return count;

MECSE-20-2003: "Routing and Wavelength Assignment in GMPLS-baased DWDM ...", LC. Cieutat and L.N. Binh

79

 }
 double ratio() {
 double totalLambdas = totalNumberLambdas;
 double unusedLambdas = numberUnusedLambdas();
 return unusedLambdas/totalLambdas;

 }
 double linkLoad() {
 return (1.0000 - ratio());
 }
 bool lambdaAvailable(int number) {
 if (lCap[number] == 1)
 return true;
 return false;
 }
 void setLambdaNonAvailable(int number) {
 lCap[number] = 0;
 }
 void setLambdaAvailable(int number) {
 lCap[number] = 1;
 }
 void print() {
 cout << "'";
 for (int i=0 ; i<totalNumberLambdas ; i++)
 cout << lCap[i] << " ";
 cout << "'";
 }

 // wavelength assignment - different schemes can be implemented here
 // First fit wavelength assignment
 int wa(const int waType) {
 switch (waType) {
 case waR:
 cout << "Random wa is chosen\n";
 return random();
 break;
 case waFF:
 cout << "First Fit wa is chosen\n";
 return firstFit();
 break;
 default:
 cout << "Unknown type of metric !!!\n";
 }
 return -1;
 }

 int firstFit() {
 for (int i=0 ; i<totalNumberLambdas ; i++) {
 if (lCap[i] == 1)
 return i;
 }
 cout << "There is no available wavelength !!!" << endl;
 return UNDEF;
 }

 // Random wavelength assignment
 int random() {
 int unusedLambdas = numberUnusedLambdas();
 if (unusedLambdas != 0) {
 std::vector<int> v;
 for (int i=0 ; i<totalNumberLambdas ; i++) {
 if (lCap[i] == 1) {
 v.push_back(i);
 }
 }
 return v[0];
 }
 else {
 cout << "There is no available wavelength !!!" << endl;
 return UNDEF;
 }
 }

 // Adaptive weight functions - different schemes can be implemented here
 // Very simple (default) based on available lambdas and total number of lambdas
 // hops based (no lambda information needed)
 double linkWeight(const int metricType) {
 switch (metricType) {
 case hops:
 cout << "Metric chosen : hop count\n";
 return metricHops();

MECSE-20-2003: "Routing and Wavelength Assignment in GMPLS-baased DWDM ...", LC. Cieutat and L.N. Binh

80

 break;
 case TAW1:
 cout << "Metric chosen : simple TAW\n";
 return metricTaw1();
 break;
 case TAW2:
 cout << "Metric chosen : enhanced TAW\n";
 return metricTaw2();
 break;
 default:
 cout << "Unknown type of metric !!!\n";
 }
 return -1;
 }

 double metricHops() {
 return 1.0;
 }

 double metricTaw1() {
 if (this->numberUnusedLambdas() != 0) {
 double totalLambdas = totalNumberLambdas;
 return (1 - this->numberUnusedLambdas()/totalLambdas);
 }
 else
 return INF;
 }

 double metricTaw2() {
 double weight = INF;
 double nuw = this->numberUnusedLambdas();
 cout << "nuw = " << nuw << endl;
 if (nuw != 0) {
 weight = 0.0001 - log(1 - pow((1 - nuw/totalNumberLambdas), nuw));
 return weight;
 }
 else
 return INF;
 }

};

class LinkInfo {
 private:
 int src;
 int dest;
 LambdaCap lCap;
 double met;
 public:
 // default constructor
 LinkInfo() : lCap() {
 src = UNDEF;
 dest = UNDEF;
 met = INF;
 }
 // constructor
 LinkInfo(int a, int b) : lCap() {
 src = a;
 dest = b;
 met = 0.0001;
 }
 // copy constructor
 LinkInfo(const LinkInfo &right) {
 src = right.src;
 dest = right.dest;
 lCap = right.lCap;
 met = right.met;
 }
 // copy assignment operator
 LinkInfo &operator=(LinkInfo &right) {
 if (&right != this) {
 src = right.srcAddress();
 dest = right.destAddress();
 lCap = right.lC();
 met = right.metric();
 }
 return *this;
 }
 int srcAddress() { return src; }
 int destAddress() { return dest; }
 LambdaCap &lC() { return lCap; }

MECSE-20-2003: "Routing and Wavelength Assignment in GMPLS-baased DWDM ...", LC. Cieutat and L.N. Binh

81

 double metric() { return met; }
 void setMetric(double value) { met = value; }
 void setSrcAddress(int value) { src = value; }
 void setDestAddress(int value) { dest = value; }
 void print() {
 cout << " " << "Link source address = " << src << endl
 << " " << "Link dest address = " << dest << endl
 << " " << "Lambda capability = ";
 lCap.print();
 cout << endl
 <<" " << "Metric = ";
 if (met != INF)
 cout << met << endl;
 else
 cout << "Infinity " << endl;
 }
};

class Node {
 private:
 int add;
 bool toExt;
 public:
 Node(int a, bool b) {
 add = a;
 toExt = b;
 }
 bool toBeExtracted() { return toExt; }
 int address() { return add; }
 void print() {
 cout << " " << "Node Address: "
 << add << (toExt == false ? " is NOT" : " is")
 << " to be extracted" << endl;
 }
};

class ExplicitRoute {
 private:
 int expRte[maxNodes];
 int nodes;
 public:
 // defaut constructor
 ExplicitRoute() {
 nodes = 0;
 for (int i=0 ; i<maxNodes ; i++) {
 expRte[i] = UNDEF;
 }
 }
 // copy constructor
 ExplicitRoute(ExplicitRoute &init) {
 nodes = init.numberNodes();
 for (int i=0 ; i<init.numberNodes() ; i++) {
 expRte[i] = init.expRte[i];
 }
 }
 // copy assignment operator
 const ExplicitRoute &operator=(const ExplicitRoute &right) {
 nodes = right.nodes;
 for (int i=0 ; i<right.nodes ; i++) {
 expRte[i] = right.expRte[i];
 }
 return *this;
 }
 // compare equal operator
 bool operator==(ExplicitRoute &er) {
 for (int i=0 ; i<er.numberNodes() ; i++) {
 if (expRte[i] != er.expRte[i])
 return false;
 }
 return true;
 }
 // overloaded subscript operator
 int &operator[](int index) {
 return expRte[index];
 }
 ~ExplicitRoute() {}
 // add a node at the end of the explicit route
 void addNode(int value) {
 expRte[nodes] = value;
 nodes++;
 }

MECSE-20-2003: "Routing and Wavelength Assignment in GMPLS-baased DWDM ...", LC. Cieutat and L.N. Binh

82

 int numberNodes() { return nodes; }
 // Print function
 void print() {
 cout << "'";
 for (int i=0 ; i<nodes ; i++)
 cout << expRte[i] << " ";
 cout << "'";
 }
};

class NodeInfo {
 private:
 int nod; // a destination node in the graph
 double cos; // the lowest cost to the destination
 int beforeNod; // the last node before reaching the destination node
 LambdaCap lambdas; // Available lambdas (explicit route)
 ExplicitRoute rte; // Explicit route
 public:
 // default constructor
 NodeInfo() : lambdas(), rte() {
 nod = UNDEF;
 cos = INF;
 beforeNod = UNDEF;
 }
 NodeInfo(int n, double c, int bn) : lambdas(), rte() {
 nod = n;
 cos = c;
 beforeNod = bn;
 }
 // copy constructor
 NodeInfo(const NodeInfo &init) {
 nod = init.nod;
 cos = init.cos;
 beforeNod = init.beforeNod;
 lambdas = init.lambdas;
 rte = init.rte;
 }
 // copy assignment operator
 NodeInfo &operator=(NodeInfo &right) {
 if (&right != this) {
 nod = right.node();
 cos = right.cost();
 beforeNod = right.beforeNode();
 lambdas = right.e2eAvailableLambdas();
 rte = right.explicitRoute();
 }
 return *this;
 }
 // overloaded less than operator
 bool operator<(const NodeInfo &right) const {
 if (cos <= right.cos) {
 if (cos == right.cos) {
 if (nod < right.nod) {
 return true;
 }
 else {
 return false;
 }
 }
 else {
 return true;
 }
 }
 else {
 return false;
 }
 }
 // getters
 int node() { return nod; }
 double cost() { return cos; }
 int beforeNode() { return beforeNod; }
 LambdaCap &e2eAvailableLambdas() { return lambdas; }
 ExplicitRoute &explicitRoute() { return rte; }
 int explicitRoute(int i) {
 return rte[i];
 }
 // setters
 void setNode(int value) { nod = value; }
 void setCost(double value) { cos = value; }
 void setBeforeNode(int value) { beforeNod = value; }

MECSE-20-2003: "Routing and Wavelength Assignment in GMPLS-baased DWDM ...", LC. Cieutat and L.N. Binh

83

 // print
 void print() {
 cout << " " << "Node address dest = ";
 if (nod == UNDEF)
 cout << "Not defined" << endl;
 else
 cout << nod << endl;
 cout << " " << "Lowest cost to dest = ";
 if (cos == INF)
 cout << "Infinity" << endl;
 else
 cout << cos << endl;
 cout << " " << "Node before dest = ";
 if (beforeNod == UNDEF)
 cout << "Not defined" << endl;
 else
 cout << beforeNod << endl;
 cout << " " << "Lambda capacity = ";
 lambdas.print();
 cout << endl
 << " " << "Explicit route = ";
 rte.print();
 cout << endl;
 }
};

10.1.6. ABILENE.NED

// ABILENE NETWORK (US Universities backbone network)
// - 12 nodes
// - Degree between 1 and 4

channel wan_link

endchannel

//---
// generator --
// generates lightpaths requests to a random node
//---

simple Generator
 parameters:
 num_endnodes : numeric,
 totalNumberLambdas : numeric,
 address : numeric,
 degree : numeric,
 delta : numeric;
 gates:
 out: out;
endsimple

//--
// Sink --
// Creates statistics
//---
simple Sink
 parameters:
 num_endnodes : numeric,
 totalNumberLambdas : numeric,
 address : numeric,
 degree : numeric;
 gates:
 in: in;
endsimple

//---
// Router
//
//--

simple GmplsRouter
 parameters:
 totalNumberLambdas : numeric,
 degree: numeric,
 metricType : numeric,
 waType : numeric,
 address : numeric;
 gates:

MECSE-20-2003: "Routing and Wavelength Assignment in GMPLS-baased DWDM ...", LC. Cieutat and L.N. Binh

84

 in: from_gen[];
 in: in[];
 out: to_sink[];
 out: out[];
endsimple

//---
// endsystem = generator + sink
//---

module EndSystem
 gates:
 out: out;
 in: in;
 submodules:
 gen: Generator;
 parameters:
 num_endnodes = ref ancestor num_endnodes,
 totalNumberLambdas = ref ancestor totalNumberLambdas,
 address = input,
 degree = input,
 delta = ref ancestor delta;
 display: "b=40,24;p=139,35";
 sink: Sink;
 parameters:
 num_endnodes = ref ancestor num_endnodes,
 totalNumberLambdas = ref ancestor totalNumberLambdas,
 address = input,
 degree = input;
 display: "b=40,24;p=183,35";
 connections:
 sink.in <-- in;
 gen.out --> out;
endmodule

//---
// Network =
// endsystems + routers
// --

module Net
 parameters:
 totalNumberLambdas: const,
 delta : const,
 num_endnodes : const,
 metricType : const,
 waType : const;
 submodules:
 // End systems
 endsystem1: EndSystem;

 display: "b=32,32;p=45,115";
 endsystem2: EndSystem;

 display: "b=32,32;p=45,251";
 endsystem3: EndSystem;

 display: "b=32,32;p=65,39";
 endsystem4: EndSystem;

 display: "b=32,32;p=216,103";
 endsystem5: EndSystem;

 display: "b=32,32;p=301,131";
 endsystem6: EndSystem;

 display: "b=32,32;p=256,335";
 endsystem7: EndSystem;

 display: "b=32,32;p=384,55";
 endsystem8: EndSystem;

 display: "b=32,32;p=456,111";
 endsystem9: EndSystem;

 display: "b=32,32;p=432,343";
 endsystem10: EndSystem;

 display: "b=32,32;p=528,63";
 endsystem11: EndSystem;

MECSE-20-2003: "Routing and Wavelength Assignment in GMPLS-baased DWDM ...", LC. Cieutat and L.N. Binh

85

 display: "b=32,32;p=632,215";
 endsystem12: EndSystem;

 display: "b=32,32;p=616,87";
 // routers
 Sunnyvale: GmplsRouter; //
 parameters:
 totalNumberLambdas = totalNumberLambdas,
 degree = input,
 metricType = metricType,
 waType = waType,
 address = input;
 gatesizes:
 in[3],
 out[3],
 from_gen[1],
 to_sink[1];
 display: "p=81,179;b=32,32";
 LosAngeles: GmplsRouter;
 parameters:
 totalNumberLambdas = totalNumberLambdas,
 degree = input,
 metricType = metricType,
 waType = waType,
 address = input;
 gatesizes:
 in[2],
 out[2],
 from_gen[1],
 to_sink[1];
 display: "p=121,259;b=32,32";
 Seattle: GmplsRouter;
 parameters:
 totalNumberLambdas = totalNumberLambdas,
 degree = input,
 metricType = metricType,
 waType = waType,
 address = input;
 gatesizes:
 in[2],
 out[2],
 from_gen[1],
 to_sink[1];
 display: "p=121,47;b=32,32";
 Denver: GmplsRouter;
 parameters:
 totalNumberLambdas = totalNumberLambdas,
 degree = input,
 metricType = metricType,
 waType = waType,
 address = input;
 gatesizes:
 in[3],
 out[3],
 from_gen[1],
 to_sink[1];
 display: "p=201,171;b=32,32";
 KansasCity: GmplsRouter;
 parameters:
 totalNumberLambdas = totalNumberLambdas,
 degree = input,
 metricType = metricType,
 waType = waType,
 address = input;
 gatesizes:
 in[3],
 out[3],
 from_gen[1],
 to_sink[1];
 display: "p=294,193;b=34,34";
 Houston: GmplsRouter;
 parameters:
 totalNumberLambdas = totalNumberLambdas,
 degree = input,
 metricType = metricType,
 waType = waType,
 address = input;
 gatesizes:
 in[3],
 out[3],

MECSE-20-2003: "Routing and Wavelength Assignment in GMPLS-baased DWDM ...", LC. Cieutat and L.N. Binh

86

 from_gen[1],
 to_sink[1];
 display: "p=317,314;b=32,32";
 Chicago: GmplsRouter;
 parameters:
 totalNumberLambdas = totalNumberLambdas,
 degree = input,
 metricType = metricType,
 waType = waType,
 address = input;
 gatesizes:
 in[1],
 out[1],
 from_gen[1],
 to_sink[1];
 display: "p=389,106;b=32,32";
 Indianapolis: GmplsRouter;
 parameters:
 totalNumberLambdas = totalNumberLambdas,
 degree = input,
 metricType = metricType,
 waType = waType,
 address = input;
 gatesizes:
 in[4],
 out[4],
 from_gen[1],
 to_sink[1];
 display: "p=453,186;b=32,32";
 Atlanta: GmplsRouter;
 parameters:
 totalNumberLambdas = totalNumberLambdas,
 degree = input,
 metricType = metricType,
 waType = waType,
 address = input;
 gatesizes:
 in[3],
 out[3],
 from_gen[1],
 to_sink[1];
 display: "p=485,298;b=32,32";
 Cleveland: GmplsRouter;
 parameters:
 totalNumberLambdas = totalNumberLambdas,
 degree = input,
 metricType = metricType,
 waType = waType,
 address = input;
 gatesizes:
 in[2],
 out[2],
 from_gen[1],
 to_sink[1];
 display: "p=533,122;b=32,32";
 WashingtonDC: GmplsRouter;
 parameters:
 totalNumberLambdas = totalNumberLambdas,
 degree = input,
 metricType = metricType,
 waType = waType,
 address = input;
 gatesizes:
 in[2],
 out[2],
 from_gen[1],
 to_sink[1];
 display: "p=573,234;b=32,32";
 NewYork: GmplsRouter;
 parameters:
 totalNumberLambdas = totalNumberLambdas,
 degree = input,
 metricType = metricType,
 waType = waType,
 address = input;
 gatesizes:
 in[2],
 out[2],
 from_gen[1],
 to_sink[1];
 display: "p=605,146;b=32,32";

MECSE-20-2003: "Routing and Wavelength Assignment in GMPLS-baased DWDM ...", LC. Cieutat and L.N. Binh

87

 connections:
 endsystem1.out --> Sunnyvale.from_gen[0];
 endsystem1.in <-- Sunnyvale.to_sink[0];
 endsystem2.out --> LosAngeles.from_gen[0];
 endsystem2.in <-- LosAngeles.to_sink[0];
 endsystem3.out --> Seattle.from_gen[0];
 endsystem3.in <-- Seattle.to_sink[0];
 endsystem4.out --> Denver.from_gen[0];
 endsystem4.in <-- Denver.to_sink[0];
 endsystem5.out --> KansasCity.from_gen[0];
 endsystem5.in <-- KansasCity.to_sink[0];
 endsystem6.out --> Houston.from_gen[0];
 endsystem6.in <-- Houston.to_sink[0];
 endsystem7.out --> Chicago.from_gen[0];
 endsystem7.in <-- Chicago.to_sink[0];
 endsystem8.out --> Indianapolis.from_gen[0];
 endsystem8.in <-- Indianapolis.to_sink[0];
 endsystem9.out --> Atlanta.from_gen[0];
 endsystem9.in <-- Atlanta.to_sink[0];
 endsystem10.out --> Cleveland.from_gen[0];
 endsystem10.in <-- Cleveland.to_sink[0];
 endsystem11.out --> WashingtonDC.from_gen[0];
 endsystem11.in <-- WashingtonDC.to_sink[0];
 endsystem12.out --> NewYork.from_gen[0];
 endsystem12.in <-- NewYork.to_sink[0] display "m=,100,0,100,0";

 Sunnyvale.in[0] <-- wan_link <-- LosAngeles.out[0];
 Sunnyvale.out[0] --> wan_link --> LosAngeles.in[0];
 Sunnyvale.in[1] <-- wan_link <-- Seattle.out[0];
 Sunnyvale.out[1] --> wan_link --> Seattle.in[0];
 Sunnyvale.in[2] <-- wan_link <-- Denver.out[0];
 Sunnyvale.out[2] --> wan_link --> Denver.in[0];

 LosAngeles.in[1] <-- wan_link <-- Houston.out[0];
 LosAngeles.out[1] --> wan_link --> Houston.in[0];

 Seattle.in[1] <-- wan_link <-- Denver.out[1];
 Seattle.out[1] --> wan_link --> Denver.in[1];

 Denver.in[2] <-- wan_link <-- KansasCity.out[0];
 Denver.out[2] --> wan_link --> KansasCity.in[0];

 KansasCity.in[1] <-- wan_link <-- Indianapolis.out[0];
 KansasCity.out[1] --> wan_link --> Indianapolis.in[0];
 KansasCity.in[2] <-- wan_link <-- Houston.out[1];
 KansasCity.out[2] --> wan_link --> Houston.in[1];

 Houston.in[2] <-- wan_link <-- Atlanta.out[0];
 Houston.out[2] --> wan_link --> Atlanta.in[0];

 Chicago.in[0] <-- wan_link <-- Indianapolis.out[1];
 Chicago.out[0] --> wan_link --> Indianapolis.in[1];

 Indianapolis.in[2] <-- wan_link <-- Cleveland.out[0];
 Indianapolis.out[2] --> wan_link --> Cleveland.in[0];
 Indianapolis.in[3] <-- wan_link <-- Atlanta.out[1];
 Indianapolis.out[3] --> wan_link --> Atlanta.in[1] display "m=,100,0";

 Atlanta.in[2] <-- wan_link <-- WashingtonDC.out[0];
 Atlanta.out[2] --> wan_link --> WashingtonDC.in[0];

 Cleveland.in[1] <-- wan_link <-- NewYork.out[1];
 Cleveland.out[1] --> wan_link --> NewYork.in[1];

 WashingtonDC.in[1] <-- wan_link <-- NewYork.out[0];
 WashingtonDC.out[1] --> wan_link --> NewYork.in[0];
 display: "p=10,18;b=713,475";
endmodule

// ********* Network parameters **********************
// Metric type TAW1 2 OK
// TAW2 3 OK
//
// WA type FirstFit 1 OK
// Random 2 OK
// ***/

network net : Net
 parameters:
 totalNumberLambdas = 24,
 delta = 60s,

MECSE-20-2003: "Routing and Wavelength Assignment in GMPLS-baased DWDM ...", LC. Cieutat and L.N. Binh

88

 num_endnodes = 12,
 metricType = 3,
 waType = 2;
endnetwork

10.1.7. OMNETPP.INI

[General]
network = net
include parameters.ini
ini-warnings = no
warnings= no

[Cmdenv]
module-messages = no
verbose-simulation = no
extra-stack = 72768

[Tkenv]
default-run=1
use-mainwindow = no
print-banners = yes

[Parameters]

net.endsystem1.gen.degree = 3
net.endsystem1.gen.address = 1
net.endsystem1.sink.degree = 3
net.endsystem1.sink.address = 1

net.endsystem2.gen.degree = 2
net.endsystem2.gen.address = 2
net.endsystem2.sink.degree = 2
net.endsystem2.sink.address = 2

net.endsystem3.gen.degree = 2
net.endsystem3.gen.address = 3
net.endsystem3.sink.degree = 2
net.endsystem3.sink.address = 3

net.endsystem4.gen.degree = 3
net.endsystem4.gen.address = 4
net.endsystem4.sink.degree = 3
net.endsystem4.sink.address = 4

net.endsystem5.gen.degree = 3
net.endsystem5.gen.address = 5
net.endsystem5.sink.degree = 3
net.endsystem5.sink.address = 5

net.endsystem6.gen.degree = 3
net.endsystem6.gen.address = 6
net.endsystem6.sink.degree = 3
net.endsystem6.sink.address = 6

net.endsystem7.gen.degree = 1
net.endsystem7.gen.address = 7
net.endsystem7.sink.degree = 1
net.endsystem7.sink.address = 7

net.endsystem8.gen.degree = 4
net.endsystem8.gen.address = 8
net.endsystem8.sink.degree = 4
net.endsystem8.sink.address = 8

net.endsystem9.gen.degree = 3
net.endsystem9.gen.address = 9
net.endsystem9.sink.degree = 3
net.endsystem9.sink.address = 9

net.endsystem10.gen.degree = 2
net.endsystem10.gen.address = 10
net.endsystem10.sink.degree = 2
net.endsystem10.sink.address = 10

net.endsystem11.gen.degree = 2
net.endsystem11.gen.address = 11
net.endsystem11.sink.degree = 2

MECSE-20-2003: "Routing and Wavelength Assignment in GMPLS-baased DWDM ...", LC. Cieutat and L.N. Binh

89

net.endsystem11.sink.address = 11

net.endsystem12.gen.degree = 2
net.endsystem12.gen.address = 12
net.endsystem12.sink.degree = 2
net.endsystem12.sink.address = 12

net.Sunnyvale.address = 1;
net.Sunnyvale.degree = 3;

net.LosAngeles.address = 2;
net.LosAngeles.degree = 2;

net.Seattle.address = 3;
net.Seattle.degree = 2;

net.Denver.address = 4;
net.Denver.degree = 3;

net.KansasCity.address = 5;
net.KansasCity.degree = 3;

net.Houston.address = 6;
net.Houston.degree = 3;

net.Chicago.address = 7;
net.Chicago.degree = 1;

net.Indianapolis.address = 8;
net.Indianapolis.degree = 4;

net.Atlanta.address = 9;
net.Atlanta.degree = 3;

net.Cleveland.address = 10;
net.Cleveland.degree = 2;

net.WashingtonDC.address = 11;
net.WashingtonDC.degree = 2;

net.NewYork.address = 12;
net.NewYork.degree = 2;

10.2. RESULTS PROCESSING

The following C shell script is run in order to process raw data accumulated in cOutVector .vec
files. This script must be run in the directory where all the output vectors are located. The script
calls a.out, the executable of a short C++ program. The a.out executable must be also present in
the same directory.

#!/bin/csh
foreach vector(*.vec)
 cat $vector >> data
end
awk 'NF == 4 {print $4, $3}' data > result
./a.out

10.2.1. PROCESSING C++ PROGRAM

#include <iostream>
using std::cout;
using std::cin;
using std::ios;
using std::cerr;
using std::endl;
#include <fstream>
using std::ifstream;
#include <iomanip>
using std::setiosflags;
using std::resetiosflags;
using std::setw;
using std::setprecision;

MECSE-20-2003: "Routing and Wavelength Assignment in GMPLS-baased DWDM ...", LC. Cieutat and L.N. Binh

90

#include <cstdlib>
#include <vector>
#include <numeric>
#include <algorithm>

const double delta = 0.05;

int main(int argc, char *argv[]) {
 char nameInput[30];
 char nameOutput[30];
 int blocked;
 double util;
 double prob;
 double x=0;
 double average;
 int sum;
 int lines;

 cout << "Enter file name for data to be processed" << endl;
 cin >> nameInput;
 ifstream dataIn(nameInput, ios::in);

 if (!dataIn) {
 cerr << "File could not be opened\n";
 exit(1);
 }

 //cout << "Enter records interval" << endl;
 //cin >> delta;
 //delta = (double) argv[2];

 cout << "Enter file name for processed data" << endl;
 cin >> nameOutput;
 ofstream dataOut(nameOutput, ios::out);

 if (!dataOut) {
 cerr << "File could not be opened\n";
 exit(1);
 }

 while (x+delta <= 1.00) {
 dataIn.seekg(0);
 dataIn.clear();
 sum = 0;
 lines = 0;
 average = 0.00;
 while (dataIn >> util >> blocked) {
 if (util >= x && util < x+delta) {
 lines++;
 if (blocked == 1) {
 sum++;
 }
 }
 }
 if (lines != 0) {
 average = (double) sum/lines;
 //cout << "Made the aver of sum " << sum << " / lines " << lines << endl;
 dataOut << setprecision(2) << average << " " << x+delta/2 << "\n";
 }
 x += delta;
 }
 return 0;
}

MECSE-20-2003: "Routing and Wavelength Assignment in GMPLS-baased DWDM ...", LC. Cieutat and L.N. Binh

