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Abstract: 

Optical filters play a significant part in optical signal processing and communications 

systems. A systematic procedure for synthesising bandpass optical filters of 

Chebyshev types is described. Proposed structures for these filters in cascade or 

parallel forms are given using optical resonators exhibiting a single zero and single 

pole transfer function in the z-domain and a quasi all-pole and all-zero optical 

circuits are described for implementation of the synthesised filter functions. 

1 INTRODUCTION 

Recently optical filters and equalisers are attracting great interest due to the extension 

of the repeaterless transmission distance and their applications in wavelength division 

multiplexing systems and networks[1-2]. However only Butterworth-type optical 

filters have been considered[1][6].  

In filters design, the Chebyshev types are also very important because it would 

generate a better filter passband and much improved stability of the filtering systems. 

In practice it is very often that the filter characteristics are specified and the designer 

has to tailor the optical filters accordingly. Several works have been published on the 

analysis of a certain type of optical configurations and from the characteristics 

obtained, some filters are proposed[3-4]. Thus there is an urgent need to develop a 

systematic procedure to synthesise optical filters from practical devices which are 

available in research laboratory and implemented devices.  

This paper describes a synthesis for optical filters based on the digital filter technique 

following the requirement of a Chebyshev filter type. The problem background and an 

algorithm for synthesising the filters are given in Section 2. The transfer functions for 

these filters derived and described in Section 3 which are expressed in cascade and 

parallel forms as the fundamental structures for implementation of the filters. 

Essential optical components are analysed in Section 4 in which two optical 

resonators and an optical interferometer are described. In one resonator a 3x3 optical 
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directional coupler is employed with two feedback back paths, one direct connection 

and the other with single or multiple order optical delay to obtain an optical transfer 

function having non-zero roots in both its numerator and denominator. The other 

resonator employs two 2x2 optical directional couplers and only one feedback path[1] 

to obtain an optical transfer having non-zero roots in the denominator.   Optical 

implementation for the Chebyshev filters are proposed. in Section 5. Conclusions and 

properties of the Chebyshev filters are given in the last section. 

2 Chebyshev Optical filter specification and synthesis algorithm  
Optical filters can have the characteristics of all basic filter characteristics of several 

types such as low pass, high pass and band pass. The low pass filter is the 

fundamental filter and design algorithm is based on the design of this filter plus a 

further transformation such as bilinear transformation[5][7]. In this section the low 

pass type of Chebyshev filters is given then followed by an algorithm to develop band 

pass optical filters. 

2.1 Basic characteristics of Chebyshev lowpass filters 
Bandpass Chebyshev optical filters can be designed by transforming the 

characteristics of a low pass type which is given by [5]: 
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( )
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where ω is the optical frequency, Cn ( )ω  is the nth order Chebyshev polynomial and ε 

< 1 is a real constant and specifies the amplitude of the ripple of the transfer function 

in the passband. Thus the nth order Chebyshev polynomial is obtained as[5] 

  C nn ( ) cos( .cos )ω = ω−1  if |ω| < 1   (2) 

and    C nn ( ) cosh( .cosh )ω ω= −1  if |ω| > 1   (3) 

2.2 Chebyshev-type optical bandpass filter specification 
A typical specification for photonic bandpass filter in the wavelength domain is 

shown in Figure 1 where λc is the centre wavelength, λl is the lower wavelength, λu 

upper wavelength and λst  the stopband wavelength . Rp is the ripple of the pass band 

which is normally specified in dB. Rp corresponds to the parameter ε of (1) and Rs (in 

dB) is the overall transfer magnitude of the transfer function. Once the filter 
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characteristics are specified the following steps are used to obtain the filter transfer 

function in the z-domain so that the filter hardware can be implemented. The z-

domain is used for convenience in analysis and synthesis. Our algorithm is applicable 

in bot analog and digital domain. The z parameter is defined as usual as z = exp(jωT) 

= exp(jβL) where T in the sampling period and b is the propagation constant of the 

lightwaves and L is the optical delay length corresponding to T. 

• Step 1: Converting the optical wavelengths to frequency domain from the 

above specification. This can be achieved by using f = c/nλ with n ≈ 1.5 for optical 

silica fibre, c is the speed of light in vacuum. This would give the optical frequencies 

fc, fu, fl, fst corresponding to the optical wavelengths at the centre, upper, lower and 

stop band of the filter as specified above. 

• Step 2 : Choosing a sampling frequency to normalise and compute analog pre 

warped frequency. The Nyquist sampling rate is 2fc  for the narrow band-pass filter, 

then choosing sampling rate: fs=4fc to normalise for desired digital filter for each 

specified frequency by using θ = 2πf/fs , thus the pre warped analog frequencies θc, 

θl , θu , θst can be calculated. 

• Step 3: Converting pre warped band-pass frequencies to equivalent low-pass 

by using 

ω
ω ω

ωLp
Bp

BpB
=

−2
0

2

     (3) 

where the ωLP and ωBP denote the optical frequency for the lowpass and bandpass 

filters respectively. B is the optical 3-dB bandwidth of the transfer function and ωo is 

the centre optical frequency of the filter. The bandpass ripple is Rp ( in dB ), it thus 

corresponds to − . At the specified stopband if the maximum gain 

or loss is Rs (dB) we have 
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Since , from (1) we have ω ω= stLp 1〉
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(5) thus gives the order of the filter which is then chosen to be upper most nearest 

integer.  

• Step 4: Obtaining the lowpass prototype transfer function corresponding to the 

defined filter order n above. This transfer function is then normalised such that H(j0) 

= 1. Transforming this lowpass transfer function back to band-pass filter by using 

s s
Bs

=
+2

0
2ω  where s is defined as jω. We then obtain a 2n order Chebychev analog 

band-pass filter transfer function 

H s H sBp Lp s s
Bs

( ) ( )=
=

+2
0

2ω     (6) 

 • Step 5: Applying the bilinear transformation to obtain required digital filter 

transfer function 

H z H zBp Lp s z
z

( ) ( )=
=

−
+

1
1      (7) 

where the z variable denotes the z transform of the transfer function. After this 

process converting the digital response to the optical wave length domain. 

• Step 6: From this transfer function, the optical system consisting resonators 
using optical components, in particular resonators, interferometers, etc.[1]    

2.3 Illustration of a Chebyshev bandpass optical filter  
For sharper roll-off attenuation at stop band frequencies, one must require a higher 

order band pass filter or more hardware devices in implementation. In this work, an 

example is given for synthesising a sixth-order Chebychev band-pass filter ( that is, a 

third-order low-pass is designed in the first step) for an arbitrary centre frequency in 

the useful optical frequency range. In present silica based optical fibre 

communications then the second and third windows at 1300 and 1550 nm 

respectively, are the working regions. Supposing that we want to synthesise an optical 

Chebyshev bandpass filter with the following specification :  

Centre wave-length : 1310nm 
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Lower cut-off wave length : 1308nm 

Upper cut-off wave length : 1312nm 

Lower stop band wavelength : 1302nm 

with a passband ripple of 1.0 dB and a -40 dB stopband. 

It is can be shown easily by using equations (1) - (9) that for a sixth order Chebyshev 

bandpass filter the required transfer function is given by: 

 H z e z
z zBP ( ) . ( )

. . .
−

z

−

− −=
− − −

+ −+ +
1

2 3

2 4
6 792372 9 1

1 3 004723 3 009475 1 004752 6  (8) 

The magnitude and phase responses of the synthesised Chebyshev bandpass filter 

according to the above stringent specification is shown in Figure 2(a)-(b) and the 

poles and zeros positions are plotted in the z-plane as shown in Figure 2(c). This 

function can be decomposed into a sum of fractions or a multiplier of a number of 

subsystems which exhibit only a single root in the numerator or denominator. 

However if the roots are complex conjugate then the order of the subsystem can be 

quadratic. The partitioning of the transfer function is described in Section 5. In the 

Section 3 essential optical components for implementing this transfer function are 

given. 

3 OPTICAL COMPONENTS FOR DESIGNING CHEBYSHEV FILTERS 
Chebyshev filters can be implemented by using the single pole single zero resonator 

(SPSZR) which is formed by using a [3x3] optical directional coupler with a planar 

cross section and two optical feedback paths connecting two outputs to two inputs of 

the coupler. This type of resonator has been described in detail in another article[6], 

we outline very briefly its main characteristics for the sake of clarity. Further an all-

pole and an all-zero optical circuits (APOC and AZOC) which are required for 

implementation of the filters are described. 

3.1 The SPSZR 
For a planar [3x3] optical directional coupler whose schematic diagram and its signal 

flow graph are shown in Figures 3(a)-(b) respectively, with a direct (or the order of 

the delay path is zero) shunt feedback from output port 3 to input port 3, the output-

input transfer function is given as: 
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where E1(d) and E1(0) are the optical field of the lightwaves at the output and input 

ports respectively. t1k and t2k are the intensity transmission coefficients in paths 1 

and 2. φ1k and φ2k are the incorporated optical phase modulation in appropriate 

paths. The coefficients xij ( i,j = 1,2,3) in Figure 3(b) are the coupling coefficient of 

the 3x3 coupler matrix. It is assumed that the 3x3 coupler has a planar cross section[3] 

with  a coupling length d and a factor kd =π 2 2 /4.  

It can be easily seen that eqn.(9) has only one pole and one zero. Therefore the pole 

and zero can be independently adjusted by adjusting the coefficients tik and φik, i.e. 

attenuators, optical amplifiers or optical phase modulators incorporated in the 

feedback paths. In designing optical Chebyshev filters the transfer function (9) can 

provide an arbitrary pair of pole-zero denoted by (a,b) given by the roots of its 

numerator and denominator  as  

a t ek
j k=

1
2 1 1φ        (10) 

or t e ak
j k1 1 2φ =        (11) 

or alternatively  t e ab
ab

k
j k2

1

1
2

0 5
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−
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with this set of chosen parameters, the transfer function in (9) becomes  
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Again eqn.(13) clearly demonstrates that the resonator would exhibit only one pole 

and one zero which can be independently adjusted with each other. The gain of the 

transfer function is dependent on these values of the pole and zero. However this 

amplitude gain or loss can be compensated by an in-line optical amplifier. 

The circuit of Figure 3(a) can be observed to exhibit only one pole due to the fact that 

there is only one loop with a single delay line in the graph. According to Mason’s rule 
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the number of poles is the roots of the graph determinant. The graph determinant 

order is the order of delay of the optical loop. Thus there is only one delay in the loop 

there must be only one pole. 

The number of zeros of the resonator depends on the number of non-touching loops of 

the optical circuit. In this case there are two loops in this resonator and they are non 

touching, but only one unit delay in one loop, thus this ensures that the order of the 

numerator is one. It is therefore concluded that this identification of the double 

feedback optical resonator leads to implementation of an optical transfer function 

having a pole and zero pair. We can thus name this type of optical resonance circuit as 

the single-pole single zero resonator (SPSZR). 

Since the SPSZR is the core component for designing Chebyshev optical filters, it is 

necessary to examine closely the feasibility of a direct optical feedback from the 

output to the input of the [3x3] optical coupler. This type of delay is termed as the 

delay-free feedback and thus a delay-free loop is formed at the upper part of Figure 

3(a)-(b)[8]. It is stated in Ref.[8] that the necessary and sufficient condition for the 

signal flow graph of the structure to be computable for a digital filter is that there is 

no delay-free loop. We must make very clear here that the direct connecting shunt 

feedback path from the output port 3 to the input port 3 is extremely smaller than the 

delay of the other loop. Furthermore that direct connection loop is not operating under  

resonance at the operating wavelength. It is thus reasonable to assume that this loop 

does not have the same meaning as the delay-free loop defined in Ref.[8]. This 

ensures that our derivation for the transfer function (9) is valid. In practice, the delay 

path of the lower loop is much greater than that of the direct loop and that of the 

coupling length of the 3x3 directional coupler. 

3.2 The APOC  
Besides the SPSZR optical circuit described above, there must be optical circuits or 

components that exhibit a pole (or higher order multiple poles) characteristics so that 

it could form a set of optical components with the SPSZR to simulate the filter 

structure. The APOC is in fact an optical resonator using two 2x2 optical couplers 

with an optical feedback from the output of the second coupler to the input of the first 

coupler[1]. The schematic diagram of the APOC is given in Figures 4. The 
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transmission coefficients are denoted as tip (i =1,2) with p and z denoting the all-pole 

or all-zero, .and the phases of each optical paths as γ.  

The transfer function of the APOC with a first order delay in the feedback path can be 

obtained by using the graphical method[1] as : 

( )H (z )
E
E

(1 k )(1 k )t e
1 t t k k e zap

1 7

1

1 2 1z
j

1z 2z 1 2
j 1

1

21 11

−
+ −

= =
− −

+

ϕ

ϕ ϕ
    (14) 

Thus the transfer function has a zero at origin and a pole at 

( )z t t k k ez z
j= − +

1 2 1 2
1 2φ φ       (15) 

Thus this APOC is a quasi all-pole optical circuit, that is, the zero at the origin can be 

cancelled by an other optical circuit which would have a finite zero and a pole at the 

origin such as the AZOC to be considered next. 

3.3 The AZOC 
The AZOC is in fact an optical interferometer which has been studied in detail in [1]. 

The schematic diagram of the AZOC is shown in Figure . The transmission 

coefficients are denoted as tip  or tiz (i =1,2) with z denoting the all-zero type, .and 

the phases of each optical paths as γ and ψ. The transfer functions of the AZOC and 

its zero position are given in eqns.(16) and (17) respectively 

H z
E
E

z k k t e k k t eaz
p

p
p

j
p

j( ) ( ) ( )( )− −= = − − −1 7

1

1
1 2 1 1 2 2

11 1 1 2γ γ z −  (16) 

which has one pole at the origin, p = 0 and one zero at  

z
k k t

k k t
ep

p

j=
− −

−1 2 2

1 2 11 1
1 2

( )( )
(γ γ )      (17) 

Although the transfer function (16) of the AZOC contains a pole, it is at the origin in 

the z-plane. Thus the position of the zero can be changed to suit the needs for the 

design of optical systems. It is thus a quasi all-zero optical circuit. 

It is interesting to note that if an APOC and an AZOC of the same order are cascaded 

then the overall transfer function exhibit a numerator and denominator of the same 

pole and zero order because the poles and zeros at the origin cancel each other. This is 

considered for implementing the Chebyshev filters in the next section. 
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4 Realisation of the Chebyshev optical bandpass filters: 
In realising the optical filters of Chebyshev type there are two structures which can 

perform the same filtering functions, namely, the cascaded and the parallel types. The 

difference between these two types is that one is in tandem and one in parallel 

combination of each modular optical block. Ideally each modular optical block must 

have a single pole and single zero in its transfer function[8]. Two designs for the 

Chebyshev filters are considered in this section. One uses a combination of the 

SPSZRs and the APOC, called Chebyshev Optical Filter-type 1 (COF1) and the other 

combining the APOCs and AZOCs, called Chebyshev Optical Filter type 2 (COF2). 

4.1 The COF1 
4.1.1 Cascaded form Chebyshev filters 
From the transfer function obtained above the design system should provide the 

following system of poles and zeros : 

5 zeros at :  
z1 = -1.00567002 + j0.0000, z2 = -0.99716505 + j0.0048946, z3 = -0.99761605 -  

j0.0048946, z4 =  1.00339252 + j0.0000, z5 =  0.99830373 + j0.00294813, z6 =  

0.99830373 - j0.00294813 

and 6 poles at :  

p1 = -0.00000367 + j1.00118581, p2 = -0.00000367 - j1.00118581, p3 = 0.00231434 

+ j1.00059005, p4 = 0.00231434 - j1.00059005, p5 = -0.00232166 + j1.00059003, p6 

= -0.00232166 - j1.00059003. 

The poles are very closed to the unit circle, thus the system is marginally stable. 

However there are also equal number of zeros on the unit circle and clustered around 

the poles. This would generate a stable system as we can observed from the optical 

response in Figure 2(a). The poles and zeros of the systems are plotted in the z-plane 

as shown in Figure 2(c). The phase of the systems shown in Figure 2(b) indicate a 

quasi linear phase inside the optical passband. The poles and zeros are complex pole 

pairs. 

The filter with the above system of poles and zeros can be implemented by cascading 

six SPSZR with the chosen parameters shown in the Table 1 : 

SPSZR1 t11 = 
4.009492 

t21 = 
0.800381366 

φ11= 
1.570799992 

φ21 = 
0.463174471 

p = p1 z = -1 
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SPSZR2 t12 =  
4.009492 

t22 = 
0.800381366 

φ12 =  
-1.570799992 

φ22 = 
0.463174471 

p = p2 z = 1 

SPSZR3 t13 = 
4.004721 

t23 = 
0.798711128 

φ13 =  
1.568483356 

φ23 = 
0.462948918 

p = p3 z = -1 

SPSZR4 t14 = 
4.004721 

t24 =  
0.798711128 

φ14 = 
-1.568483356 

φ24 =  
0.462948918 

p = p4 z = 1 

SPSZR5 t15 =  
4.004743 

t25 = 
0.801677094 

φ14 = 
1.573116614 

φ25 =  
0.463873612 

p = p5 z = -1 

SPSZR6 t16 = 
4.004743 

t26 = 
0.801677094 

φ14 = 
-1.573116614 

φ26 =  
0.463873612 

p = p6 z = 1 

Table 1 : Chosen Parameters for Chebyshev bandpass optical filter 

The filter system thus has the following transfer function : 

H z z
z zBP ( ) . ( )

. . .
−
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− −=
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+ −+ +
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2 3

2 4
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1 3 004723 3 009475 1 004752 6   (18) 

5.1.1 Parallel Realisation 
For parallel realisation the transfer function of the Chebyshev bandpass filter (8) can 

be expressed as 
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6 7923 9 8 69874 9 1 272 8 3
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3 00551 4 1 3 9477
1 5 1 6

)

)
)

 (19) 

The system can be implemented by a parallel realisation as shown in the Figure 5. The 

sub systems H1, H2, H3 and H4 are implemented as followed: 

(i) Sub-system H1: The sub-system H1 is simply implemented by cascading one 

optical device with gain 6.7923e-9 and an optical phase modulator with a phase π. H1 

contribute to the system H1 = -6.7923e-9 

(ii) Sub-system H2 : This subsystem H2 should provide a system of poles and zeros as 

follows: 2 poles at p = p1 and p = p2 and 2 zeros z1 = 272.8e03 and z2 = 0. This 

subsystem can be implemented by cascading a SPSZR and an APOC. The chosen 

parameters for these elements are shown in Table 2. 

SPSZR1 t11= 
4.009492 

t21= 
0.0135526 

φ11= 
1.570799999 

φ21= 
4.712404286 

p = p1 z = 
272.8e03 

APOC1 k11=k21=0.5 t11 =t21 = 
2.00237 

φ11 = 
0 

φ21= 
-1.57079999 

p = p2 z =0 

Table 2 : Chosen parameters for subsystem H2 
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The two optical components in Table 2 are cascaded with an optical device with gain 

0.0122456e-06 and an optical phase modular with phase -0.7848  

(iii) Sub-system H3 : 

This subsystem H3 should provide a system of poles and zeros as follows : 2 poles at 

p = p3 and p = p4 and 2 zeros at z = 3.9499 and z = 0. This subsystem can be 

implemented by cascading a SPSZR and an APOC. The chosen parameters for these 

elements are shown in Table 3. 

SPSZR2 t12= 
4.004721 

t22= 
0.2009535 

φ12= 
1.568483356 

φ22= 
1.099537311 

p = p3 z = 
-3.9499 

APOC2 k12=k22=0.5 t12=t22= 
2.00118 

φ12= 
0 

φ22= 
-1.568483356 

p =p 4 z =0 

Table 3 : Chosen parameters for subsystem H3 

The two optical devices above are cascaded with an optical device with gain 1.254e-

04 and an optical phase modular with phase -0.37841  

(iv) Subsystem H4 : 

This subsystem H4 should provide a system of poles and zeros as follows : 2 poles at 

p = p5 and p = p6 and 2 zeros at z = -3.9477 and z = 0. This subsystem can be 

implemented by cascading a SPSZR and an AZOC as described in Ref.[1]. The 

chosen parameters for these elements are shown in Table 4.  

SPSZR3 t13= 
4.004743 

t23= 
0.1543989 

φ13= 
1.57311662 

φ23= 
1.205039363 

p = p5 z = 
-3.9477 

APOC3 k13=k23=0.5 t13=t23= 
2.0005926 

φ13= 
0 

φ23= 
-1.57311662 

p =p 6 z =0 

Table 4 : Chosen parameters for subsystem H4 

The two elements above are cascaded with an optical device with gain 1.152e-04 and 

an optical phase modular with a phase -0.379212  

5.2 The COF2 
5.2.1 Cascading Realisation 
The Chebychev band-pass transfer function with the numbers of poles and zeros given 

in Section 4.1.1 above can be realised in the cascade configuration from the 

combination of all-poles and all-zeros basic elements. The overall system transfer 

function eqn. (18) can be expressed in the more general form which separates the 

factors containing the poles and zeros as: 
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  H z H z H zBP azi api
i

m
( ) ( ) ( )= − −

=
∏ 1

1

1     (20) 

where each pole and each zero are realised from one basic element of the AZOC or 

APOC. The functions Hazi(z-1) and Hapi(z-1) are first order function of z-1 

numerator and denominator. The schematic diagram showing the cascade realisation 

for this transfer function is shown in Figure 6. 

It is noted that if the poles or zeros appear in conjugate pairs of either real or 

imaginary then the numbers of subsystems can be reduced by using more delay 

coefficients (d≥2) for higher order subsystem realisation. 

From eqns. (13) , (15) we obtain the required parameters with some arbitrary chosen 

values for each AZOC and APOC subsystems in the cascaded configuration in Figure 

6. They are showed in Table 4 with parameters Xpq  indicate p couplers and q 

subsystems. It is noted that the accuracy of parameters in the table is necessary and 

should not be rounded off. Additional amplifier gain may also be required to achieve 

a unity gain response. 

 

Subsystem Coupling  
coefficient 

Transmission 
coefficient 

Phase shift modulator 
 

Delay 
 d 

Poles or 
zeros 

Haz1 b11=b21 
=0.5 

t11=t21 
=1 

Φ11=0 Φ21=0 2 z = ±1 

Haz2  b12=b22 
=0.5 

t12=t22 
=1 

Φ12=0 Φ22=0 2 z = ±1 

Haz3 b13=b21 
=0.5 

t13=t23 
=1 

Φ13=0 Φ23=0 2 z = ±1 

Hap1 a11=a21 
=0.5 

t11=1 
t21= 
4.004743245 

Φ11=0 Φ21= 
-1.5684760  
 

1 p1 

Hap2
 

a12=a22 
=0.5 

t12=1 
t22= 
4.004743245 

Φ12=0 Φ22= 
1.56847603 

1 p2 

Hap3 a13=a23 
=0.5 

t13=1 
t23= 
4.004743245 

Φ13=0 Φ23= 
-1.5731092 

1 p3 

Hap4  a14=a24 
=0.5 

t14=1 
t24= 
4.004743245 

Φ14=0 Φ24= 
1.57310929 

1 p4 

Hap5 a15=a25 
=0.5 

t15=1 
t25= 
4.009492105 

Φ15=0 Φ25= 
-1.5707926 

1 p5 

Hap6 a16=a26 
=0.5 

t16=1 
t26= 
4.009492105 

Φ16=0 Φ26= 
1.57079266 

1 p6 

Table 4:  Chosen System Parameters for Cascade Realisation 
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5.2.2 4.2.2. Parallel Realisation : 
Using the transfer function for the Chebyshev bandpass filter given by (19)  the 

system can be implemented by a parallel realisation as shown in Figure 5. This 

structures for the sub systems H1 to H4 are given as follows: 

(i) Subsystem H1 

Subsystem H1 is simply implemented by cascading one optical device with gain 

6.7923e-9 and an optical phase modulator with phase biased at π. H1 contributes to 

the system H1 = -6.7923e-9 

(ii) Subsystem H2 : 

This subsystem H2 should provide a system of poles and zeros of two poles at p = p1 

and p = p2 and two zeros at z = 272.8e03 and z = 0. This subsystem can be 

implemented by cascading two APOCs and one AZOC with the chosen parameters 

shown in the Table 5 .An optical device with gain 1.5011e+6 is required to cascade 

with these optical components.  

 

Haz11 b11=b21= 
0.9996335 

t21= 1000 
t11= 0.1 

φ11 = 
0 

φ21= 
0 

z = 
272.8e3 

Hap11 a11=a21= 
0.5 

t11 =t21 = 
2.00237 

φ11 = 
0 

φ21= 
1.57079999 

p = p1 

Hap21 a12=a22= 
0.5 

t12 =t22 = 
2.00237 

φ12 = 
0 

φ22= 
-1.57079999 

p = p2 

Table 5  : Chosen parameters for subsytem H2 

(iii) Subsystem H3 : 

This subsystem H3 should provide a system of poles and zeros as follows: two poles 

at p = p3 and p = p4 and two zeros at z = -3.9499 and z = 0. This subsystem can be 

implemented by cascading two APOCs and one AZOC with the chosen parameters 

shown in the Table 6. These elements are cascaded with an optical device with gain 

1.7882e-3 and an optical phase modulator with phase π. 

Haz12  b11=b21= 
0.66385 

t21= 4 
t11= 1 

φ11 = 
π 

φ21= 
0 

z = 
-3.9499 

Hap12  a11=a21= 
0.5 

t11 =t21 = 
2.00237 

φ11 = 
0 

φ21= 
1.56848336 

p = p3 

Hap22  a12=a22= 
0.5 

t12 =t22 = 
2.00118 

φ12 = 
0 

φ22= 
-1.56848336 

p = p4 

Table 6 : Chosen parameters for subsytem H3 
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(iv) Subsystem H4 : 

Similarly the subsystem H4 should provide a system of poles and zeros as follows : 

two poles at p = p5 and p = p6 and two zeros at z = -3.9477 and z = 0. Again this 

subsystem can be implemented by cascading two all-pole and one all-zero subsystems 

with the chosen parameters shown in the Table 7. These elements are to be cascaded 

with an optical device with gain 1.787841e-3. 

Haz13 b11=b21= 
0.663735 

t21= 4 
t11= 1 

φ11 = 
π 

φ21= 
0 

z = 
-3.9477 

Hap13 a11=a21= 
0.5 

t11 =t21 = 
2.0005926 

φ11 = 
0 

φ21= 
1.57311662 

p = p5 

Hap23 a12=a22= 
0.5 

t12 =t22 = 
2.0005926 

φ12 = 
0 

φ22= 
-1.57311662 

p = p6 

  

Table 7 : Chosen Parameters for subsystem H4 

5.3 Discussions 
Although the use of the 3x3 optical directional coupler to form the SPSZR would 

reduce the required number of the couplers for structuring the filters type COF1, the 

direct feedback of the optical path delay restrict the operation frequency of the filter 

far below the resonance frequency range of the delay-free loop.  On the other hand the 

COF2 employs the all-poles and all-zeros optical circuits would allow better stability 

as well as a much wider range of operating frequency or much narrow range of the 

optical bandpass filters. These filters can be implemented in optical fibre or integrated 

optical configuration. A much better technology would be the use of in-line fibre 

gratings in forward or reflection modes. We are currently implementing a number of 

optical filters such the Butterworth or Chebyshev types using UV written fibre 

gratings or photorefractive gratings in lithium niobate diffused optical waveguides. 

6 CONCLUSIONS  
We have demonstrated the synthesising process for a narrow Chebyshev bandpass 

filter according to a given set of specification. It can be seen that in practice the 

hardware implementations of these kind of filters should be very accurate due to the 

effects of optical elements parameters and optical phase modulators values in the 

network. Because the filters we described here have a very narrow bandpass in a very 

high frequency region thus they are very sensitive to any small change of optical 

 14

MECSE-21-2003: "Synthesis of Optical Band-pass Chebyshev Filters", L.N. Binh



15 

elements. Care should be taken into account in these filters implementations. On the 

other hand this filter can be used as a sensitive optical sensor. 

The employment of the SPSZRs as well as the two quasi all-pole and all-zero optical 

circuits has been proven to be compact for the implementation of the filters and thus 

would reduce the required number of the optical couplers. The quasi all-pole and all-

zero optical circuits are also used and integrated into the optical systems for signal 

processing. We believe that these optical components described in this paper would 

find many applications in optical communications and signal processing networks. 

However, it is believed that the equalisation of optical signals in high-speed data 

transmission can be implemented using fibre-optic resonators with some specific 

configuration to be feasible in the near future[9]. 
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FIGURE CAPTIONS 

 

Figure 1 :    Bandpass optical filter specification 

 

Figure 2:  Responses of the Chebyshev bandpass filters (a)-(b) magnitude and phase 

responses  as a function of optical wavelength (c) poles and zeros positions 

in the z-plane.  

 

Figure 3:  The 3x3 optical coupler and optical feedback paths as the SPSZR (a) 

schematic diagram and (b) Graphical signal-flow representation 

 

Figure 4:     Optical resonance loop to obtain a quasi all-pole optical circuit (APOC). 

 

Figure 5 :   Hardware implementation diagram of Chebyshev filter  

 

Figure 6 :   Schematic Diagram showing Tandem all-pole and all-zero subsystems  
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Figure 1 : Bandpass optical filter specification 
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Figure 2: Responses of the Chebyshev bandpass filter 

(a)-(b) magnitude and phase responses  as a function of optical wavelength (c) poles 

and zeros positions in the z-plane.  
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Figure 3 

The 3x3 optical coupler and optical feedback paths as the SPSZR (a) schematic 

diagram and (b) Graphical signal-flow representation 
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Figure 4 Optical resonance loop to obtain a quasi all-pole optical circuit (APOC). 
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Figure 5 : Hardware implementation diagram of Chebyshev filter  
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Figure 6 :   Schematic Diagram showing Tandem all-pole and all-zero subsystems  
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