
Department of Electrical
and

Computer Systems Engineering

Technical Report
MECSE-29-2003

Increasing the step of the Newtonian Decomposition Method
for Support Vector Machines

D.Lai, N.Mani and M.Palaniswami

Increasing the step of the Newtonian
Decomposition Method for Support Vector

Machines
*D.Lai , *N.Mani, +M.Palaniswami

*Dept. of Electrical and Computer Systems Engineering
Monash University, Clayton, Vic. 3168, Australia.
+Dept. of Electrical and Electronic Engineering,

The University of Melbourne, Vic. 3010, Australia.
{daniel.lai,n.mani@eng.monash.edu.au, swami@ee.mu.oz}

 Abstract: The Newtonian method is a standard iterative method with quadratic convergence rates for solving large
optimization problems. The Support Vector Machine problem formulation requires the solution of large datasets,
which is ideal for the application of Newtonian methods. We point out that the Sequential Minimal Optimization
(SMO) algorithm is a Newtonian Decomposition Method that is popular due to its efficiency but unfortunately does
not scale too well with large data sets. The algorithm is an implementation of the decomposition method, which solves
a sequence of sub problems instead of the entire problem at once. In this report, we introduce an extrapolation
parameter to the SMO update method and investigate the effect on the rate of convergence of this algorithm. We first
show that the SMO update method is Newtonian and that extrapolation ensures the update is norm reducing on the
objective function. We also investigate the bounds of extrapolation and derive optimal estimates for this parameter. It
was observed that choosing the working set pair according to some partial order does result in slightly faster speedups
in algorithm performance.

I. INTRODUCTION
The Support Vector Machines (SVM) developed by Vapnik[1] and co-workers has been shown to be a powerful
supervised learning tool. The standard soft-margin Support Vector Machine is a binary classifier applied to
classify a data set defined as,

 (1)
1 1 2 2

i

={(,), (,)...(,)}

{1, 1}

Θ

∈
= −

l l
n

i

y y y

y

x x x

x R

The SVM formulation is essentially a regularized minimization problem leading to the use of Lagrange Theory
and quadratic programming techniques. The formulation defines a boundary separating two classes in the form
of a linear hyperplane in data space where the distance between the boundaries of the two classes and the
hyperplane is known as the margin of the hyperplane. This idea is further extended for data that is not linearly
separable; where it is first mapped via a nonlinear function to a higher dimension feature space. Maximizing the
margin of the hyperplane in either space is equivalent to maximizing the distance between the class boundaries.
Vapnik[1] suggests that the form of the hyperplane, () Ff x ∈ be chosen from family of functions with sufficient
capacity. In particular, F contains functions for the linearly and non-linearly separable hyperplanes;

 (2) ()
=

= ∑
1

l

i i
i

f x w x b+

+

m

 (3) () ()φ
=

= ∑
1

l

i i
i

f x w x b

The weight vector, w in (3) is no longer the same expansion as in the linearly separable case (2). In fact, the non-
linear mapping and :φ ⊂ ℜ →ℜnx [), 1,∈ ∞n m defines the mapping from data space to feature space. Hence

the weights in feature space will have a one to one correspondence with the elements of . Now for
separation in feature space, we would like to obtain the hyperplane with the following properties;

()φ x

MECSE-29-2003: "Increasing the step of the Newtonian Decomposition ...", D.Lai, N.Mani and M.Palaniswami

 (4)

()

()
()

1
()

0 : 1

0 : 1

ϕ
=

= +

> ∀ = +

< ∀ = −

∑
l

i i
i

i

i

f w b

f i

f i

x x

x

x

y

y



The conditions in (4) can be described by a strict linear discriminant function, so that for each element pair in

, we require that; Θ

 ()
l

i i i
i

y w bϕ
=

 + ≥
 
∑ x

1
1 (5)

The distance from the hyperplane to a support vector is 1
w

and the distance between the support vectors of one

class to the other class is simply 2
w

 by geometry. The soft-margin minimization problem relaxes the strict

discriminant in (5) by introducing slack variables, iξ and is formulated as;

() 2

1 1

i
1

1minimize =
2

P.1
 (()+) 1+

 subject to
1..

l l

i i
i i

l

i i i
i

w C

y w b

i l

ξ

ϕ

= =

=


ℑ +


 ≥  ∀ = 

∑ ∑

∑

w

x ξ
 (6)

We now apply Lagrange Theory to solve (6) giving us the Lagrange Primal problem of the following form;

() 2

1 1 1 1

2

1 1 1

1minimize w, = ((()) 1)
2

P.2

1 ((()) 1) 0
subject to 2

, 0 i=1..

l l l l

i i i j j i
i i j i

l l l

i i i j j i
i i j

i i

w y w x b

w y w x b

l

i iα α ϕ ξ

α ϕ ξ

α π

= = = =

= = =





ℑ + + − − +


   ∇ +∇ + − − =   
    
 ≥ ∀

π ξ∑ ∑ ∑ ∑

∑ ∑ ∑










 (7)

The following dual optimization of a cost function written in terms of Lagrange Multipliers alone is usually
implemented by incorporating the gradient condition into the cost function of P.2 and minimizing the following
Lagrange dual in terms of Lagrange multipliers, α alone;

() ()

, 1 i=1

i i
1

1min = ,
2

P.3
where 0 , 0, 1..

l

l l

i j i j i j i
i j

l

i
i

y y K x x

C y i

α

α α α

α α α

=∈ ⊂ℜ

=

 ℑ −



  = ≤ ≤ = ∀ =   

∑ ∑

∑

α

l


+ 

 (8)

The separating hyperplane surface in (4) can now be written in terms of Lagrange Multipliers;

 (9) () ()
1

,
l

i i i
i

f x sign y K x x bα
=


= 

 
∑

In this report, we point out that the SMO is in fact a Newton-method solving a different cost function than the
problem originally stated in [2]. It was postulated by Chang [3] that update rules using the steepest gradient

MECSE-29-2003: "Increasing the step of the Newtonian Decomposition ...", D.Lai, N.Mani and M.Palaniswami

direction might not give the optimal rate of convergence for a decomposition method. This leads us to
investigate applying a larger Newtonian step controlled by an extrapolation parameter, which we will introduce
in the following. We investigate applying our extrapolation parameter to the SMO update rule to increase the
size of the step towards the minimum of the cost function. We also introduce the notion of damping and
extrapolation regions to the SMO iteration by allowing our extrapolation parameter to vary and observe the
resulting algorithm performance. We note here that several modern implementations of SMO and SVMlight such
as [4] and LibSVM[5] are currently much faster than the original pseudocodes. However, the newer
implementations run a basic combination of the original update rules using several advance heuristics and more
efficient coding. Our work here investigates an improvement to the basic SMO update rule. We could apply this
technique to modern implementations and investigate their convergences rates further.

The outline of this paper is as follows; in the next section, we review the Sequential Minimal Optimization
algorithm and rewrite it in the familiar Newton update form. In Section 3, we try to justify the use of
extrapolation to increase the speed of a general Newton update rule and further investigate its use with the
bounded Newton form of SMO. The remaining sections will be left for our results and further discussions.

II. SEQUENTIAL MINIMAL OPTIMIZATION (SMO): A NEWTONIAN DECOMPOSITION METHOD

We review the update rule used in SMO[2] which we show to be a hybrid element-wise Newton method in a
decomposition algorithm setting. For the sake of simplicity, we will adopt the notations used by Platt in the
original implementation for this summary. The working set size in SMO is fixed to two in order to enforce the
equality constraint in (8) at every step of the iteration. We denote the working set as;

 (10) { }1 2 1 2, ,Wα α α α α= ∈ℜ

 Whenever we update the value of two multipliers, SMO maintains the equality constraint by ensuring;

 (11)
1 1 2 2

1 2 1 2

1 2 1 2

 if
where

 if

y y k
k y y
k y y

α α
α α
α α

+ =

+ = =
 − = ≠

We make use of (11) to express the following for some iterative step, t where ; 0t >

 1 2
1 1

1 2 1 2
t t t t

s y y

s sα α α α+ +

=

+ = + = γ

l

 (12)

Platt defines the error of a training point as where, iE

 (13) () 1..i i iE f x y i= − ∀ =

The minimum of the cost function (8) subject to the equality constraint is first found in the direction of an
arbitrary 2α while the other multiplier 1α is set to a value that maintains the equality constraint. We can derive the
update rule for SMO by writing the cost function in terms of the working set members;

 2 2
1 2 1 2 11 1 22 2 12 1 2 1 1 1 2 2 2

1 1(,)
2 2 constK K sK y v y vα α α α α α α α α αℑ = − − + + + + + + ℑ (14)

()

()

1 1 1 1 1 2
3

3 , 3

where

1 ,
2

l
t t

i j j ij i
j

l l

const i i j i j i j
i i j

v y K f x y K y K

y y K x x

α α

α α α

=

= =

= = − −

ℑ = − +

∑

∑ ∑

2
t

iα

Then, the objective function expressed in 2α entirely is,

MECSE-29-2003: "Increasing the step of the Newtonian Decomposition ...", D.Lai, N.Mani and M.Palaniswami

2 2
2 2 2 11 2 22 2 12

1 2 1 2 2 2

1 1() () ()
2 2

 () const

s K s K sK s

y s v y v

2 2α γ α α γ α α γ α α

γ α α

ℑ = − + − + − + + −

+ − + + ℑ
 (15)

The minimum of (15) can be found with respect to 2α , by taking the derivatives;

()2 11 2 22 2 12 2 12 2 2 2 2 1() () 1sK s K K sK s y v y v sα γ α α α γ α∇ℑ = − − + − − − + − + = 0

11

 (16)

()2 12 22() 2K K Kα∇ ∇ℑ = − − (17)

Expanding (16) and substituting for and s γ , we get

() ()
2 2

1
11 22 12 11 22 12 2 1 2 2 1(2) (2) (t t)K K K K K K y f x f x y yα α+ + − = + − + − + − (18)

Finally, after some rearranging we obtain the update rule,

2 2

1 1 2
2

11 22 12

()
(2

t t E E
y

)K K K
α α+ −

= +
+ −

 (19)

In order to ensure that 2α ∈ , we enforce the following;

 (20)

1
2

1 1 1
2 2 2

1
2

t

t t t

t

UB if UB
if LB UB

LB LB

α
α α α

α

+

+ + +

+

≥
= <
 ≤

<

y

y

where;

 (21)

()
()
()
()

1 2 1 2

2 1 1 2

1 2 1 2

2 1 1 2

min , if

min , if

max 0, if

max 0, if

C y
UB

C C y y

C y
LB

y y

α α

α α

α α

α α

+ == 
+ − ≠
+ − == 
− ≠

The update for 1α is then found by using (12);

 (22) 1

1 1 2 2(t t t t boundedsα α α α+ = + − 1,)+

It can be seen here that the equality constraint is enforced at each step of the iteration through the use of (22).
We now show that the update rule is Newtonian by first expanding (19);

() ()2 1 2 1 2 21 1 2

2 2 2 2
11 22 12 11 22 12

(1()
(2) (2)

t t t y f x y y y f xE E
y

K K K K K K
α α α+)− − +−

= + = +
+ − + − (23)

Now, we simplify (16),

()

()()
()()

()

2

11 2 22 2 12 2 12 2 2 2 2 1

11 1 2 2 22 2 12 2 12 1 2 2 2 2 1 1 12 2 2 22

2 1 1 1 11 1 2 21

1 11 22 2 12 2 1 12 2 2 1 12 2 22

() () 1

() ()

 1

sK s K K sK s y v y v s

sK s s K K sK s s y f x b y K y K

y f x b y K y K s

s K K K s K y f x s K K

α
γ α α α γ α

α α α α α α α α α α

α α

α α α α α α

∇ℑ

= − − + − − − + − +

= + − − + − + − − + − −

+ + − − − +

= − + − − + + + ()
() ()
() ()

2 1 1 11 2 21

2 1 2 2

2 1 1 2 2 2

1

1

1

y f x s K K s

y f x y f x s

y f x y y y f x

α α− + − +

= − − +

= − − +

MECSE-29-2003: "Increasing the step of the Newtonian Decomposition ...", D.Lai, N.Mani and M.Palaniswami

Then using (17) we get the required relationship;

() ()

()

2 1 2 1 2 21
2 2

11 22 12

2
2

2

(1
(2)

()

()

t t

t

y f x y y y f x
K K K

α α

α
α

α

+ − − +
= +

+ −
∇ℑ

→ −
∇ ∇ℑ

)

 (24)

Since 2α is arbitrary, we get the following relationship for 1α ;

 (25)

()
()

()

2 2 1 2

1 1 2 2 1

1 2 1

1

()

 = -
 ()

y E E

y y y E E

sy E E
s

α

α

∇ℑ = −

= − −

−

= − ∇ℑ

We note that (17) implies () ()2() ()1α α∇ ∇ℑ = ∇ ∇ℑ since 2α is arbitrary. Then, we have from (22) the
following result;

()

()

() ()

1 1,
1 1 2 2

2
1 2 2

2

2
1

2

2 11 1
1 1

1 1

()
()

 ()
()

()

()
() ()

() ()

t t t t bounded

t t t

t

t t

s

s

s

s

α α α α
α

α α α
α

α
α

α
α α

α α
α α

+ +

+

= + −
∇ℑ

= + − +
∇ ∇ℑ

∇ℑ
= +

∇ ∇ℑ

∇ℑ ∇ℑ
= − = − → ∈

∇ ∇ℑ ∇ ∇ℑ 1
tα

)

 (26)

Then the update rule on the working set members can be written as;

(

1 2
2 2

2

()
()

t t α
α α

α
+ ∇ℑ
= −

∇ ∇ℑ
 (27)

()

1 1
1 1

1

()
()

t t α
α α

α
+ ∇ℑ
= −

∇ ∇ℑ
 (28)

We note from (8) that 1 2,α α ∈ implies that the multipliers are bounded at each iterative stage to ensure that
they remain in the feasible region. Therefore, depending on the choice of , the updates are optimal in the
direction of the two multipliers on the feasible region. The standard Newton form[6] with the objective function
()F α is given by;

()
()

1
t

t t
t

F

F

α
α α

α
+ = −

∇
 (29)

By comparison, the forms of (27) and (28) seem to imply that from a Newtonian perspective, the objective
function is instead the derivative of (8) by setting () ()F α α= ∇ℑ . This is now similar to the problem solved by
Joachim’s and others (see [5, 7]) where the derivative of the Lagrange Dual is solved to make computations
easier and to avoid computing the quadratic function.

MECSE-29-2003: "Increasing the step of the Newtonian Decomposition ...", D.Lai, N.Mani and M.Palaniswami

III. EXTRAPOLATION: INCREASING THE STEP TOWARDS THE MINIMUM

A. Extrapolation on the general Newton Method

We now introduce an extrapolation parameterζ to the general Newton iteration form below;

 1 ()
 i>0

()
t t i

i i
i

F
F
α

α α ζ
α

+ = − ∀
∇

 (30)

We note here that when 1ζ = , we recover the normal Newton step as in (29). We will show that the introduction
of the extrapolation parameter to the general Newton method still ensures the iteration rule is norm reducing on
the cost function. We then show that this extrapolation parameter is bounded to an interval when applied to a
general Newton method. We first make use of a well-known result that we adapt in the following technical
lemma;
Lemma III.1 (Ortega[8])

Let the function be Gateux-differentiable (G-differentiable) on the convex set . Then
for any vector , we have the following;

: NF ⊂ℜ →ℜ
,x y∈

M N∈ℜ

 ()()

0 1
sup

t
Fy Fx F x t y x y x

≤ ≤
− ≤ ∇ + − − (31)

Proof:

First, assume that the supremum is bounded from above, i.e.

 ()()

0 1
sup

t
S F x t y x

≤ ≤
= ∇ + − < ∞

Then for an arbitrary 0ε > , we can choose a []0,1∈t such that

()() ()()()
()() ()()()

0 1
sup

t

F x t y x Fx t F x t y x y x t y x

F x t y x Fx t F x t y x y x t y x

St y x t y x

ε

ε

ε
≤ ≤

+ − − − ∇ + − − ≤ −

+ − − ≤ ∇ + − − + −

≤ − + −

Since F is G-differentiable on a convex set, it is also continuous in t so that for any γ the following holds,

 ()()F x y x Fx S y x yγ γ ε+ − − ≤ − + − xγ (32)

When 1γ = , we recover (31)

 ()()

()()
0 1

0 1

 sup

 sup
t

t

Fy Fx S y x y x

F x t y x y x y x

F x t y x y x

ε

ε
≤ ≤

≤ ≤

− ≤ − + −

≤ ∇ + − − + −

≤ ∇ + − −

Assume 1γ < and since F∇ exists everywhere on the convex set, there is a λ such that (,1)λ γ∈ and we have;

()() ()() ()()()() ()
()() ()() () ()() () ()

()()()()

F x y x F x y x F x y x y x y x

F x y x F x y x F x y x y x y

F x y x y x

λ γ λ λ γ ε λ γ

λ γ λ γ λ ε λ γ

λ ε λ γ

+ − − + − −∇ + − − − ≤ − −

→ + − − + − ≤ − ∇ + − − + − −

≤ ∇ + − + − −

x

MECSE-29-2003: "Increasing the step of the Newtonian Decomposition ...", D.Lai, N.Mani and M.Palaniswami

But from (32), we have;

 ()() ()()()F x y x Fx F x y x yλ λ+ − − ≤ ∇ + − + − xε γ

This implies that 1λ γ> > which contradicts our previous assumption of ,λ γ and so (31) must hold

The proof of Lemma III.1 makes use of the definition of G-differentiability of functions on a convex set, which
is defined in the Appendix. We now show that extrapolation ensures that the update rule is norm reducing in the
following theorem.

Theorem III.I

Let the function be G-differentiable at a point : NF ⊂ ℜ →ℜN x and ()F x∇ be invertible. Then there exists a

scalar 0ζ > such that for any vector
()
()

F x
 and y=x

F x
∈

∇
;

 ()F x y Fxζ− ≤ (33)

Proof:

Since F is G-differentiable, we have the following relationship;

 ()F x t y Fx t y Fxζ ψ ζ− − + ≤ ∇ (34)

Here is some linear operator and we get equality only at (,n mLψ ∈ ℜ ℜ) 0t = . We now define an arbitrary

norm on ℜ and rearranging (34) obtain the relationship; N

 ()F x t y Fx Fx t yζ ζ ψ− − −∇ ≤ −

Let and we now have for some 1t = 0ε > ;

() ()

()
F x y Fx F x y Fx y

F x y Fx y

ζ ζ εζ ψ

ζ εζ ψ

− − ≤ − − ≤ −

→ − ≤ −

Since ε is an arbitrary positive value, clearly (33) holds if and only if 0ζ > .

However, extrapolation is only norm-reducing provided that the parameter is positive which gives us a lower
bound on the range of possible values. We now compute the upper bound for this parameter, by showing in the
following theorem that the norm reduction property holds only if ζ lies in a bounded interval.

Theorem III.II

Let the function be G-differentiable at the points : NF ⊂ ℜ →ℜN ,x y∈ and suppose the following holds,

 () () [] t 0,1F x ty F x t yψ∇ − −∇ ≤ ∀ ∈ (35)

then (33) holds for all 20,
Fx

y
ζ

ψ

 
∈  
  

.

Proof:

Since F is G-differentiable, then (31) in Lemma III.1 gives the following for any []0,1∈t ;

MECSE-29-2003: "Increasing the step of the Newtonian Decomposition ...", D.Lai, N.Mani and M.Palaniswami

 () ()()
0 1
sup

t
F x y Fx t F x t x y x yζ ζ ζ

≤ ≤
− − ≤ ∇ − − − (36)

We have;

()() ()()()

()() ()()

()()

0 1 0 1

0 1

0 1

sup sup

 sup

 sup

t t

t

t

t F x t x y x y t F x t x y x y

t x F x t x y y F x t x y

t y F x t x y

ζ ζ ζ ζ

ζ ζ ζ

ζ ζ

≤ ≤ ≤ ≤

≤ ≤

≤ ≤

∇ − − − = ∇ − − −

= ∇ − − − ∇ − −

≤ ∇ − −

() ()
0 1

 sup
t

t y F x ty F txζ ζ
≤ ≤

≤ ∇ − −∇

Then from (36) and noting that 0ζ > , we have

() () ()

() ()
0 1

0 1

sup

 sup
t

t

F x y Fx t y F x ty F tx

t y F x ty F tx

ζ ζ ζ

ζ
≤ ≤

≤ ≤

− − ≤ ∇ − −∇

≤ ∇ − −∇
 (37)

Let , then if (33) holds, we have the following upper bound; 1t =

() () ()
2

2

F x y Fx y F x ty F x

y Fx

Fx

y

ζ ζ

ζψ

ζ
ψ

− − ≤ ∇ − −∇

≤ ≤

→ ≤

Thus for Theorem III.I to hold 2 is constrained to the interval 0,
Fx

y
ζ

ψ

 
 
  

. We define the linear operator ψ to

be identity matrix I when using the Euclidean norm, so that the element wise update rule is simplified. The

bounds for the extrapolation parameter ζ can now simplified to
2

0 Fx
Fx

ζ ∇
< <

The norm reducing theorems we derived above are in terms of minimization of the cost function and the domain
space where the update rule is a mapping on the entire domain. It is trivial to show that they hold verbatim for
maximizations of the cost function by simply replacing ()F x with its negative and rewriting them to show that
extrapolation is also norm maximizing. The theorems above show that extrapolation can increase the step to the
minimum of the cost function for a Newtonian method by ensuring the update is norm reducing. In the
following, we will test our proposed extrapolation on the standard SMO algorithm and measure the improvement
in performance over some benchmark datasets. The extrapolated SMO update rule for the updates of the working
set is now just;

1 2 1
1

1 11
1

2 1 22 2

()

()

t t
t
w t t

y E E

y E E

ζ
α α η

α
ζα α

η

+
+

+

− 
     = = −        −     
 




 (38)

IV. EXPERIMENTAL METHOD

In the series of experiments, a Pentium IV, 1.5 GHz computer with 256MB RAM was used. Our proposed idea
was implemented in the form of an extrapolated SMO on Visual C++ 6.0 with kernel caching. We recorded the
number of iterations and epochs required till convergence was established. Here iterations refer to the number of
successful updates on the Lagrange multipliers and epochs refer to the number of loops which the algorithm goes

MECSE-29-2003: "Increasing the step of the Newtonian Decomposition ...", D.Lai, N.Mani and M.Palaniswami

through in the main program. We have kept our algorithm consistent with the original SMO in order to test the
effect of our proposed extrapolation on the update rule. Thus, we need only to compare the number of iterations
and epochs to determine the effectiveness of our extrapolated SMO. The CPU times are different from Platt’s
report due to the different architecture, which this experiment is executed on. We ran our proposed SMO on the
UCI adult data set [9] and fish data set with a tolerance of 0.001. All results have been averaged out over 10 runs
in order to minimize the effects of random ordering imposed by SMO heuristics on the speed of the algorithm.

For the UCI datasets we set C=1 and applied a Gaussian kernel for separation. We investigated the algorithm
performance over the range 0.8 1.8ζ< < and report the results for the first 3 datasets in Fig 1. We also observed
the behavior of the objective function (8) comparing the effect of ζ on the number of epochs required till
algorithm termination. We then ran a series of experiments of UCI adult set 1-5 at a higher tolerance to
investigate the effect of extrapolation on the sensitivity of the algorithm to violating points. Next, we report the
results for training a SVM to classify the UCI web 1 and web 2 (Fig 5) data using a Gaussian kernel with C=5.

0

5000

10000

15000

20000

25000

30000

35000

0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8

Extrapolation

N
um

. I
te

ra
tio

ns

UCI 1 UCI 2 UCI 3

Fig 1: Number of iterations required for SMO across 3 datasets. Damped(ζ<1) and extrapolation(ζ>1) regions shown here.

400

500

600

E

O
bj

. f
un

ct
io

n

1.65

Fig 2: Behaviour of the Wolfe
termination for the algorithm an

Extrapolation UCI 1

0.8 131
0.9 117
1 126

1.1 113
1.2 95
1.3 98
1.4 85
1.5 81
1.6 89
1.7 115
1.8 120

Table 1: Number of iterations ti

MECSE-29-2003: "Increasing the step of the Newtonian Decomposition ...", D.Lai, N.Mani and M.Palaniswami
3001.5
0

100

200

1 18 35 52 69 86 10
3

12
0

13
7

15
4

17
1

18
8

20
5

22
2

23
9

25
6

27
3

29
0

30
7

32
4

34
1

35
8

pochs Exp=1 Exp=1.6 Exp=1.55

 objective function for classical SMO (1ζ =) and the extrapolated SMO. Arrows indicate the points of
d the respective extrapolation parameters.

UCI 2 UCI 3 UCI 4 UCI 5
12 22453 30980 52851 76868
26 22557 27208 46656 62693
21 21455 24258 40409 72384
40 17657 22439 37320 60704
67 19372 24455 38859 57713
18 15100 22183 35841 47314
14 17973 20462 35256 55683
51 15700 17209 32405 54063
44 17070 17400 33391 53454
37 18073 26704 36302 47912
37 15884 22370 38567 53838

ll convergence using extrapolation for UCI adult datasets 1-5 at a tolerance of 10-4

We then examined the effect of arranging or sorting the order of support vectors in the cache to be chosen for
update. This implicitly imposes some form of partial ordering on the working set. We sorted the Support Vectors
in order of increasing and decreasing magnitude and compare the resulting algorithm speed against the random
choice of maximal violators. The results are shown for number of iterations in Fig 3 while Fig 4 shows the best
improvement in speed when sorting the Support Vectors in decreasing order. We then tested the speed of the
algorithm across a range of C for an arbitrary UCI dataset; in this case we show the results for UCI 3 in Fig 6.

We also ran our fish dataset across a range of kernels since it was highly inseparable. We have found that C=1
produced an acceptable accuracy on the test set [10] when we tested this proposed algorithm using the Gaussian
and Linear Kernels. For the Gaussian kernel, when σ=10, we discovered that ζ lay in the range of 0.5< ζ<2.0
and ζ>2.0 caused the iteration to oscillate and not converge. Furthermore, we obtained a large improvement of
about 50% less iterations required using extrapolated SMO against the normal SMO for this kernel Fig 7. It was
noted by Lin[11] that SMO may be slow for linear kernels from the results of his co-workers. We thus applied a
linear kernel to the data and observed in Fig 8 an improvement of about 25% in the speed of the algorithm.

0

10000

20000

30000

40000

50000

60000

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9

extrapolation

N
um

. I
te

ra
tio

ns

Iterations(DEC)

Iterations (INC)
Iterations(RANDOM)

Fig 3: Number of sucessful updates for extrapolated and damped SMO using random, increasing, decreasing cache sorting on UCI 1.

4000

6000

8000

10000

12000

14000

16000

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9

extrapolation

Ite
ra

tio
ns

decreasing cache order

random cache order

Fig 4: Performance of SMO in extrapolation on UCI 1 for two cache modes.

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8
Extrapolation

Ite
ra

tio
ns

WEB 1 WEB 2

 Fig 5: Extrapolated SMO on UCI web1 (2477 examples) and web2(3470 examples)

MECSE-29-2003: "Increasing the step of the Newtonian Decomposition ...", D.Lai, N.Mani and M.Palaniswami

V. DISCUSSION
Platt inadvertently proposed a decomposition algorithm with a Newton iterate rule and solved the

problem of applying a Newton rule to large datasets without the memory constraint problem. However, we
believe that the rates of convergence of SMO are not quadratic like Newton methods due to the decomposition
aspect of the problem. In fact, a worse case convergence rate has been shown to be linear[12]. We have shown
that the update rule of SMO is simply just a bounded form of Newtonian iteration with clever heuristics besides
being related to Bergman methods as claimed by [2]. From Fig 3, we can observe that choosing values of 1ζ <
results in a damped SMO where the update rule is not optimal in a Newtonian sense. Empirical results show that
values of 1ζ < (larger damping constant) not too far away from unity do give faster rates of convergence.
However, if ζ is too small, the rate of convergence becomes very much slower and is no longer practical. We
say the algorithm is over-damped and convergence is very slow. We found that when testing on UCI datasets, at

0.1ζ = the algorithm took excessively long to converge and for smaller values it had not converged after 5
hours.

0

2000

4000

6000

8000

10000

12000

14000

0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8

extrapolation

 It
er

at
io

ns

C=0.001
C=0.01
C=0.1

Fig 6: Extrapolated-SMO against normal SMO(ζ=1) for UCI 3 data set over a range of C parameters.

1500

1700

1900

2100

2300

2500

2700

2900

0.5 1 1.5 2

extrapolation

Ite
ra

tio
ns

Gaussian

 Fig 7: Effect of extrapolation on fish data set for Gaussian kernel with σ=10

Overall, values of 1ζ > give better improvement to the speed of the algorithm. In this region, the
algorithm is in extrapolation and as long as ζ satisfies the upper bound the algorithm converges. We found that
for most cases 2ζ ≥ resulted in oscillation and non-convergence. In the case of the fish dataset, the upper bound
for ζ was around 1.95 for a Gaussian kernel with a kernel width of 10, before the algorithm stopped converging.
On closer inspection, we found that a kernel width of this size still resulted in a highly inseparable feature space
with many Lagrange multipliers at bound. This leads us to believe that extrapolation works better when the
optimal solution has more variables at the boundary. However, we have a problem of quantifying this due to the
random nature of the working set choice by Platt.

The introduction of the cache to store Support Vectors presents this randomness, which affects the

working set choice, and hence also our empirical results. In the original SMO algorithm, Platt stored the errors of
the training examples that had Lagrange Multipliers, which were Support Vectors. In our algorithm, our cache
imposes an ordering on the Support Vectors obtained at each epoch of the iteration. We observed from Fig 4
empirically that sorting the Support Vectors to be updated according to some criteria in SMO does vary the

MECSE-29-2003: "Increasing the step of the Newtonian Decomposition ...", D.Lai, N.Mani and M.Palaniswami

speed as compared to a random selection of Support Vectors. This result requires us to do several runs to average
out the effect imposed by sorting in the cache. We then ran a small experiment to remove the effect of this
random choice of working sets. This was done on the UCI adult 1 dataset over a range of C and the results are
reported in Fig 9-Fig 11. It can be seen that extrapolation works better for larger values of C. Geometrically, as C
increases the size of the feasible region increases while the Newtonian step remains the same. Hence during the
initial stages of the iteration, we would like to determine the variables at bound quickly and the addition of the
extrapolation parameter seems to boost the variables to the bound thus increasing the rate of convergence.
Further empirical evidence can also be seen by reexamining Fig 6 where extrapolation does not work too well
for small values of C. In fact, our view of extrapolation seems to be as a boost to the basic Newtonian step
similar to our previous work on linear stationary iterative methods [10].

2000
2200
2400
2600
2800
3000
3200
3400

0.5 0.7 0.9 1.1 1.3 1.5 1.7 1.9

extrapolation

Ite
ra

tio
ns

Linear Kernel

 Fig 8: Effect of extrapolation on fish data set for linear kernel

1500

2000

2500

3000

3500

4000

4500

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8

 Extrapolation

Ite
ra

tio
ns

UCI 1 : C=1

 Fig 9: Extrapolation on UCI 1 without random heuristics for Gaussian kernel with C=1

8000

8500

9000

9500

10000

10500

11000

11500

12000

12500

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8

Extrapolation

Ite
ra

tio
ns

UCI 1 : C=10

 Fig 10: Extrapolation on UCI 1 without random heuristics for Gaussian kernel with C=10

MECSE-29-2003: "Increasing the step of the Newtonian Decomposition ...", D.Lai, N.Mani and M.Palaniswami

30000

32000

34000

36000

38000

40000

42000

44000

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8

Extrapolation

Ite
ra

tio
ns

UCI 1 :
C=100

 Fig 11: Extrapolation on UCI 1 without random heuristics for Gaussian kernel with C=100

The results from the experiments on the sorting indicate that the sequence in which the variables are updated do
affect the rates of convergence of the decomposition algorithm. Certain orders give faster convergence while
others slow the algorithm down tremendously. However, unfortunately we have yet to understand this
observation clearly from a mathematical viewpoint or provide concrete justification for the optimal choice of
sorting order. We do know however that, if Platt used a fixed size cache for errors, not all the Support Vectors
were present in the cache at any one time, so indirectly the choice of points available for update was random and
restricted to the size of the cache. In our case, we have the full array of Support Vectors to choose from and this
presents some form of partial ordering on the domain of Lagrange Multipliers. We believe the analysis of the
dynamics of the SMO algorithm under the choice of updating pairs would be worthwhile and more involving in
order to increase its performance.

The analysis of the optimal value of extrapolation parameter ζ, is an ongoing research topic for us. In
all our benchmark tests, the use of ζ results in an average improvement of about 35% compared to the original
SMO without extrapolation. Intuitively, the largest value of ζ is 2, which geometrically means double the step
size and anything larger would result in us not taking a step to the minimum of the objective function. Finer
values of ζ were observed to give even better algorithm performance. This observation underscores the need for
a theory to define the optimal value of ζ and relate it in some way to the kernel matrix. We have given the
necessary condition for ζ to ensure that the iteration strictly reduces the objective function, however we do not
know for sure yet whether this condition is sufficient to ensure the convergence of the algorithm. We believe
however that the decomposition method is convergent as long as the basic update rule used is norm reducing on
the objective function. Lin [11] has given a convergence proof for [7] in terms of a counting method, but we
intend to relate the norm-reduction properties of the iteration to the convergence of the decomposition method.

It should be noted here that a consequence of the above observation is that we could use a different update rule
instead of the Newton rule and apply the decomposition method to it. We can then investigate the optimal update
rule in the decomposition setting with the dynamic determination of the threshold b. i.e. always maintaining the
validity of the equality constraint or apply it to formulations that do not require explicit preservation of the
equality constraint e.g.[10]. We believe that different working sets require different degrees or values of
extrapolation hence the possibility of an adaptive extrapolation algorithm. The problem with this is that
computing the optimal extrapolation parameter at each iterative step may add unnecessary overhead to the
iteration and degrade the algorithm speed instead. We plan to look into this possibility in the near future.

VI. CONCLUSION
We have proposed applying extrapolation and observed some improvement to the rates of convergence with
better improvements for difficult problems i.e. larger values of C. We believe that the speed of this algorithm can
be further improved if we apply newer methods that improve the computation of the threshold in SMO. Our
future work will concentrate on investigating the proper choice of working set pairs and the theoretical rates of
convergence using an extrapolated Newtonian update rule. In particular, we will investigate the relationship
between optimal values of the extrapolation parameter and the structure of the feasible region formed by the
constraint set.

MECSE-29-2003: "Increasing the step of the Newtonian Decomposition ...", D.Lai, N.Mani and M.Palaniswami

VII. APPENDIX

A. Gateux-differentiable functions
Definition VII.1 (Ortega[8])

A mapping : n mF D R R⊂ →

)m

is G-differentiable at an interior point of D if there is some linear operator,
(,nA L R∈ R so that for any , nh R∈

 ()()
0

1lim 0
t

F x th Fx tAh
t→

+ − − = •

REFERENCES
[1] V. N. Vapnik, The nature of statistical learning theory, 2nd ed. New York: Springer, 2000.
[2] J. Platt, "Fast Training of Support Vector Machines Using Sequential Minimal Optimization," in

Advances in Kernel Methods-Support Vector Learning, B. Schölkopf, C. J. C. Burges, and A. J. Smola,
Eds.: Cambridge MIT Press, 1998, pp. 185-208.

[3] C.-C. Chang, C.-W. Hsu, and C.-J. Lin, "The analysis of decomposition methods for support vector
machines," Neural Networks, IEEE Transactions on, vol. 11, pp. 1003-1008, 2000.

[4] S. K. S. S.S. Keerthi, C. Bhattacharyya and K.R.K. Murthy, "Improvements to Platt's SMO algorithm
for SVM classifier design,," Control Division, Dept. of Mechanical Engineering,National University of
Singapore CD-99-14, 1999.

[5] C.-J. Lin, "LIBSVM," http://www.csie.ntu.edu.tw/~cjlin/.
[6] L. A. Hageman and D. M. Young, Applied iterative methods. New York: Academic Press, 1981.
[7] T. Joachims, "Making Large Scale Support Vector Machine Learning Practical," in Advances in Kernel

Methods - Support Vector Learning, B. Schölkopf, C. J. C. Burges, and A. J. Smola, Eds.: Cambridge ,
MIT Press, 1998, pp. 169-184.

[8] J. M. Ortega and W. C. Rheinboldt, Iterative solution of nonlinear equations in several variables. New
York,: Academic Press, 1970.

[9] C. L. M. Blake, C.J., "UCI Repository of machine learning databases Irvine, CA," University of
California, Department of Information and Computer Science, 1998.

[10] D. Lai, M. Palaniswami, and N. Mani, "Fast linear stationary methods for automatically biased support
vector machines," presented at Neural Networks, 2003. Proceedings of the International Joint
Conference on, 2003.

[11] C.-J. Lin, "On the convergence of the decomposition method for support vector machines," Neural
Networks, IEEE Transactions on, vol. 12, pp. 1288-1298, 2001.

[12] C.-J. Lin, "Linear convergence for a decomposition method for Support Vector Machines," November
2001.

MECSE-29-2003: "Increasing the step of the Newtonian Decomposition ...", D.Lai, N.Mani and M.Palaniswami

http://www.csie.ntu.edu.tw/~cjlin/

	Introduction
	Sequential Minimal Optimization (SMO): A Newtonian Decomposition Method
	Extrapolation: Increasing the step towards the minimum
	Extrapolation on the general Newton Method

	Experimental Method
	Discussion
	Conclusion
	Appendix
	Gateux-differentiable functions

