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Abstract: We propose a new Support Vector Machine classifier formulation which 
allows for an automatic computation of the bias and eliminates the equality 
constraint. We also present a new training algorithm, which is capable of providing 
fast training for our automatically biased SVM. We then show that this method 
allows for the application of acceleration methods which further increases the rates 
of convergence. Comparisons between our agorithm to the well-known Sequential 
Minimal Optimization (SMO) algorithm are also made.   

 
1. INTRODUCTION 

 
In recent years, Support Vector Machines have gained increasing attention as a new 

supervised machine learning formulation. The difference between Support Vector 
Machines and existing machine learning methods such as Neural Networks (NN) is that 
instead of being based on the traditional Empirical Risk Minimization (ERM) principle, it 
performs Structural Risk Minimization (SRM). Since, the introduction of SVMs many 
researchers have applied it to non-linear problems with remarkable results. The 
formulation is well understood, but practical use for online implementations has not been 
widespread due to excessive training times. The optimization speed scales with the size of 
the dataset. Several iterative optimisation techniques have been employed which include 
methods such as gradient ascent/decent methods[1], Sequential Minimal 
Optimization(SMO)[6], Successive Over Relaxation(SOR)[8] and so on. Faster 
optimisation methods suffer from less than optimal solutions and more elegant methods 
require increased code complexity. 

 
In this report, we propose an automatically biased SVM formulation (ASVM), which 

eliminates the need to enforce an equality constraint at each optimization step. It has been 
shown that the main source of inefficiency in optimisation programs like the Sequential 
Minimal Optimization algorithm was the search for the second point to update[7]. This 
slow down was due to the algorithm maintaining a single threshold, b and getting 
confused. An improved SMO was proposed and it involved using two thresholds instead 
of one. We note that the problems observed due to the setting of the threshold is closely 
related to the strict enforcing of the equality in the dual formulation. We would like to 
remove this equality constraint from the problem but continue to retain the sparseness of 
our Support Vector solution. Our argument is that the removal of the equality constraint 
would allow the solution to be derived from solving a group of linear equations while 
enforcing only the inequality constraint. We employ a modified linear stationary method 
known as the Jacobi Method. We show how the optimisation speed can be further 
increased by correctly applying acceleration methods such as the extrapolation method. 
This document is divided into the following sections; section 2 will describe the pattern 
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recognition SVM formulation and our ASVM variant, section 3 will describe our iterative 
method and the remaining sections will be left for our experimental results and discussion.  

 
2. SUPPORT VECTOR MACHINE CLASSIFIER FORMULATION 

2.1 VAPNIK’S SUPPORT VECTOR MACHINE CLASSIFIER 
 

Given a training set, { } 1
, l

i i i
y

=
=D x  where xi is an attribute vector and  yi  is the 

corresponding class marker, the task is then to train a machine to learn the non-linear 
relationship between the attributes and their respective markers. i.e. y = ƒ(x).The X vector 
space is referred to as the input space and consists of the attribute vectors of dimension, N 
meaning that we are including N different measurements of the specific problem. This 
means that the input space is of dimension N or ℜN. The Y vector consists of scalars, yi 
that are usually +1 or –1 and referred to as labels or markers. Thereafter the dataset is 
defined as, 
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If our training set is not linearly separable, as is the case in most real life applications, 

we define a non-linear mapping from input space to some higher dimensional feature 
space, denoted by ϕ : ℜN → ℜM , so that  the points in feature space map via, xF  : x → ϕ 
(x). We then construct a linear discriminant function in feature space so that, 
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The hyperplane that separates the two classes is the decision surface defined by, 

 

             
1

( ) 0
l

i i
i

w bϕ
=

+ =∑ x                                                                           (1.3) 

 
where w is a vector space of weights and x is the corresponding input space vector. The 
bias, b determines the position of the hyperplane in feature space. Fig 2.0 is a simple toy 
example of data containing two attributes plotted in a R2 dimensioned input space.  The 
separating hyperplane is the line ( ) 0f x = . It can be seen that there are an infinite number 
of such separating hyperplanes.   

 
It turns out that only the points closest to the separating hyperplane are important, and 

these points are referred to as Support Vectors. The distance from the hyperplane to a 

support vector is 1
w

and the distance between the support vectors of one class to the other 
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class is simply 2
w

 by simple geometry. The task is then to derive the best possible 

hyperplane with the maximum possible margin between the classes. The SVM classifier 
problem is then, 
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                Fig 1. 1 Separating hyperplane in R  space with support vectors shown 2

 
 

                  minimize   21
2

w   

                  subject to: 

                                                                          (1.4) i
1

 (( ( )+  ) > 1       1..
l

i i
i

y w b iϕ
=

∀ =∑ x l

 
In practice, even separation in feature space is not perfect. It is possible to account for 

this by introducing a penalizing term to the problem to allow for misclassified data. We do 
this by introducing slack variables, ξ to relax the equality constraint in (1.4) giving the 
following problem to be solved; 

 

                      minimize      21
2

TC+w 1 ξ  

                      subject to:  

                     i
1

 (( ( )+  ) > 1-        1.. 0
l

i i i i
i

y w b i lϕ ξ
=

ξ∀ =∑ x >                                        (1.5) 

 
The parameter C is a regularizer which controls the tradeoff between generalization 

capability and number of misclassifications. Large C reduces the number of classification 
errors but gives poorer generalization capabilities. Lagrange Theory describes how 
optimization of an objective function subject to equality and inequality constraints is to be 
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done. Given an objective function, f(w), equality constraints g(w) and inequality 
constraints h(w), the Lagrange function is defined as 

 

                                                          (1.6) i=1 j=1
L (  ,  ,  ) = (w)+ ( ) ( )

, Lagrange Multipliers

l l

i i j jb f g w h wβ α
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+
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With that in mind, we note the inequality constraint in (1.5) and write the Lagrange 

Primal problem, 
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The primal form of (1.7) offers a dual representation, found by differentiating (1.7) 

with respect to the variables and finding the stationary conditions, 
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Then substituting them back into (1.7), we obtain    
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By taking the negative of (1.12), we obtain the more commonly used Wolfe dual 
representation, 

              maximize  i=1 , 1
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                                                                                               (1.13)                              
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Using Mercer’s Theorem, we can compute the inner products of the vectors ( )ϕ x  

using a   kernel function that is, 
 

                             ( , ) ( ), ( )i j i jK ϕ ϕ=x x x x                                                                          (1.14) 
 

This kernel trick is a powerful method, which implicitly computes the inner product 
of the vectors without the need to explicitly define the mapping ( )ϕx x of inputs to 
higher dimensional space, which usually is of infinite dimension. After optimization, 
substituting for w into (1.11) gives the decision function as, 

 

                        
1

( ) sign( ( , ) )
l
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i
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x b= +∑                                                                 (1.15) 

 
It should be noted that the solution is sparse, meaning that a lot of 0iα =  and the 

decision function, ( )f x  could be represented solely by the Support Vectors, (i.e. 0iα ≠ ). 
 

2.2 PROPOSED AUTOMATICALLY BIASED SUPPORT VECTOR 
MACHINES 

 
It has been shown in (1.2) that we can define a feature space via a non-linear 

mapping, ( )xφ . We propose to remove the bias, b by defining an augmented feature 
mapping ϕA: ℜN → ℜM+1, where ϕA={ϕj: ℜN → ℜM+1| 0 ≤ j ≤ M}. The resulting 
augmented feature space is identical to the original feature space defined previously with 
the restriction that ϕ0 = β. Then, we can define a similar decision surface as, 
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with the hyperplane now defined by: 

                      
 ( ) 0A iϕ =w x                                                                                                                                                       (1.17) 

where setting :            

 A

b
    =    β

 
 
 
  

w
w

                                                                                                    (1.18) 

              
Instead of having a bias,b in the estimator form of our hyperplane, we include the bias as a 

weighted sum by setting  0
bw
β

=  and the number of weights for our l sample space is 

increased to l+1. 
 
The classification problem is then simply, 
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Applying the same steps as before, we obtain; 
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The dual of this form could be written in the form of the augmented kernel function, 
KA(xi , xj) where; 
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The resulting decision surface for the classifier formulation is then: 
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 In (1.22), we can see that the bias term, b in (1.15) has been incorporated into the 

kernel function and does not require to be computed separately as suggested by. 
Optimization of this form will automatically bias the hyperplane in feature space and 
avoid the unnecessary extra computation for the threshold. The quadratic programming 
problem now does not require the enforcing of the equality constraint in (1.12). 

 
We note that for the given training set, D the maximization of the dual Lagrange form 

is implicitly formulated in equation and the problem is then to find the α vector such that 
for all training examples the following is satisfied within a tolerance δ, 
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We note that the automatically biased SVM form does not have the equality 
constraint and for a training set, we can write the conditions (1.23) in matrix form, 

 
  
                                δ= +Y 1Gu                                                                                                    (1.24) 
 

, 1

1 2

1 2 s

where       { (  ,   )} 

                  { , ...  } 
                  { y ,y ....y }
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K

α α α
==

=
=

G x x

u
Y

 

    
We will show in next section, how this form is suitable for application of our iterative 

method, with the addition of enforcing at each step: 
 
                      C                  if    ui t+1 > C  
    ui t+1 =       ui t+1              if    0  <  ui t+1 <C    
                      0                   if    ui t+1 < 0  
 
 

We point out that the optimal solution will be in the form (1.22) and it is a trivial 
matter to obtain (1.15) by substitution. However, we show next that this is not required for 
we can control the sparseness of our solution by the parameter β2.        

 
2.3 EFFECT OF THE PARAMETER β2 

 
We present below a simple analysis of the effect of the parameter 2β  by recomputing 

the threshold b. We note that it is possible to give a graphical interpretation of this 
parameter as well as a rigourous statistical analysis of its effect on the optimal estimator 

( )f x , however we will leave that for a later discussion. 
 
Consider the optimal decision function ( )g y ,  
 

 *

1
( ) ( , )

n

i i A i
i

g y Kα
=

=∑y x y                                                                                           (1.25) 

 
  

where α* denotes an optimal solution within a tolerance range, δ 
 

We ignore points that are well classified and concentrate on points that are closest to 
the hyperplane, or the Support Vectors. In fact it has been shown that (1.25) can be written 
entirely in terms of Support Vectors only,  

 

 *( ) ( , )i i A i
i SV

g y Kα
∈

= ∑y x y                                                                                           (1.26) 

 
Then, for every Support Vector xsv, the following holds, 

 
 ( ) -  1  i svy g δ<x  
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Expanding we get, 
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which holds for a particular value of  β2 . 
 
 
We make a substitution for K( xi , xsv) = τi β2     
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At a fixed tolerance, δ and after some algebra we get,            
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Note that the contribution of the rightmost term decreases due to  
 
            τi =   K( xi , xsv)    
                         β2     

 

and we would expect   ∑ α*iyi τi   ≈ 0 as  β2   becomes larger so that (1.27) 
approximately becomes 
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Differentiating with respect to β2, we derive the approximate gradient at large β2 
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We can determine the approximate range of β2 to use for optimal solution by setting 

the gradient to be less than a small threshold parameter, η. 
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Lemma 1: The ASVM formulation becomes the standard SVM classifier formulation when 

 and ∑ . 2β →∞
1

0
l

i i
i

yα
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Proof : Expanding (1.19)  and using (1.18), we obtain the maximization problem as 
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1 1
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Tb C
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It is easy to see then that as , the problem just reduces to (1.5)  2β →∞
 
 
3. ITERATIVE LINEAR STATIONARY METHODS 

 
The basic iterative linear stationary method of first degree is applicable to a system of 

q linear equations written in the following matrix form, 
                  
          Hu                                                                                                     (1.29) = F
                                                     

                       
1 2

1 2

where:
  matrix

{ , ..... }

{ , .... }
q

q

qxq
u u u

f f f

=
=

=

H
u

F

 

 
The vector u consists of the unknowns while F is usually the boundary values or 

equation values. The matrix H contains the coefficients of the linear equations. We note 
here that this form is identical to (1.24) and hence allows us to apply it directly to solve the 
SVM optimization problem. 

 
The specific updates can be written in the following form,  
                      
  u B                                                                                         (1.30) 1=  + t t+ u k
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Proposition 1: There exists a solution, u* to the related system of real equations expressed 
as, ( I – B )u = k , if and only if it is unique to u* = H-1F. 

 
Proof: Let B = I – Q-1H and k=Q-1F where Q is some non-singular matrix, then 

substituting into the equation above, we get 

               
1 1

1

(  -  (  -   ))   
                                 

− −

−

=

=

I I Q H u Q
u H

F
F

q

If both H and F are real then it is simple to see that u must also be real and unique.  
 
3.1 The Basic Jacobi Method 
 
We utilize the basic Jacobi method to demonstrate its effectiveness in obtaining a fast 

solution for the Support Vector Machine problem. This technique is a matrix splitting 
method. The method is applicable to a system of equations partitioned in the following 
form, 

 
  

 
1 111 1

1

q

q qq q

u FH H

H H u F

  
  

=  
  
  

…  
 
 
 
 

 

                                                                            (1.31) 

  
where sub matrix with the condition      ij i jH n x n=
  

                
1

q

i
i

n q
=

=∑  

 
For our SVM problem, we choose Hij= 1 x 1 matrix or a scalar value. This is 

sometimes referred to as the Jacobi point form. The matrix H can then be expressed as a 
sum, 

 
                                                                                          (1.32)     T= + +H D L L

 
Where D is a diagonal matrix containing the diagonal elements of H and L is a 

strictly lower triangle matrix containing the lower elements of H.  
 

              

11 0 0
0

0 qq

H

D

H

 
 
 =  
  
 

 

              21

1 1

0 0 0

0q qq

H
L

H H −

 
 
 =  
  
 

 
 
The iterates of the Jacobi Method are then given by the following update rule  
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 This can be rewritten in matrix form as  
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-
+
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u D L L u D

                                                               (1.34) 
F 

 

q

 

                                                     (1.35) -1 T -1

-1

where:
               =- ( + ) = (  -  )
               =

B D L L I D H
k D F

 
Then the general update for the basic Jacobi method becomes:  
    

                                                                  (1.36) 1

1

        1...  
i

q
t t

ij j i
j

u B u k i+

=

= + ∀ =∑
               
However, we propose a modification to this by using every new update of u 1t

i
+  

immediately after it is computed to give an overall faster increase in the objective. 
 

                                                  (1.37) [ ]
1

1 1

1

       1,  
i
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t t t

ij j ij j i
j j t
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−

+ +

= =

= + + ∀ ∈∑ ∑ q

 
 

3.2 EXTRAPOLATION METHOD 
 
It is possible to further increase the speed of convergence by using an extrapolation 

technique, which is convergent whenever the basic method (1.30) is symmetrizable. 
 

Definition 1 : The basic method is symmetrizable if for some non-singular matrix A, 
the matrix  is symmetric and positive definite. Otherwise, the method is 
non-symmetrizable. 

( ) 1−−A I B A

 
Preposition 2: The formulation of the SVM problem using the basic point Jacobi 

Method is symmetrizable if and only if the kernel matrix, G is symmetric and positive 
definite.  

 
Proof:  
 
Let ATA= D and substituting for (1.35), 
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1 1
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(( ) )T

−
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= − −

=

=

A I B A

A I I D H A
A A A H A
A HA

 
Since H is the kernel matrix, for our point Jacobi form then A-1H A-1 is symmetric 

and positive definite (SPD) if and only if H is symmetric and positive definite and by 
definition 1, the method is symmetrizable.  
 
We will also state the following theorem without proof [3],  

 
Theorem 1. If the basic method is symmetrizable then, a) the largest eigenvalue of B, ϖ(B) is less 
than unity, b) the eigenvalues of B are real, c) the set of eigenvectors of B forms a basis of B . 

 
 
The extrapolation method is then defined by; 
 
                                                                 (1.38) 1   (   )  ( 1-   )t tγ+ = + +u Bu k tγ u

q

 
For a single iterate this can be expanded and written as, 
 

                             (1.39) 
1

1 1

1
-u +u         1...  

i

qt
t t t t t

ij j ij j i i i
j j t

u B u B u k iγ
−

+ +

= =

 
= + + ∀ = 

 
∑ ∑

 
The factor γ is referred to as the extrapolation factor and the optimum value is given 

by;  
 
  

 
max min

2* = 
(2- ( ) - ( ) )

γ
λ λB B

                                                                            (1.40) 

 
where max ( )λ B  = largest eigenvalue of  B 
           min ( )λ B  = smallest eigenvalue of B 
 
The eigenvalues of B are usually unknown prior, however we propose to make use of 

estimated eigenvalues instead. This would not give the optimal performance of the method 
but an estimated optimal performance. Then we have as before, 

 

 ' '
max min

2 = 
(2- ( ) - ( ) )Eγ λ λB B

                                                                            (1.41) 

 
where = estimated largest eigenvalue of  B '

max ( )λ B

           = estimated smallest eigenvalue of B '
min ( )λ B

 
It is easy to see from (1.41), that γE is constrained to lie in the interval 1< γE <2 due to 

Theorem 1. 
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3.3 CONSISTENCY AND CONVERGENCE 
 
The iterative method is said to be completely consistent, if the solution, u* of (1.37) is 

also the solution for (1.29). This implies that for a sequence of iterates, {u(t)}=u* for some 
t and ut+1=ut+2=…u* or the final solution u* is static and does not change further. 

 
The method is convergent, if the sequence of iterates u(1) , u(2) .. converges to u*. A 

necessary and sufficient condition of convergence [3] is that 
 
                                                                                                     (1.42) S( )< 1B
 
S(B) is the spectral radius of the qxq matrix B and is defined as, 
             
 ( ) max i1 i q

B λ
≤ ≤

=S                                                                                         (1.43) 

 
Then from Preposition 2 and Theorem 1, the basic method applied to the SVM 

problem and the extrapolation method is convergent. Preposition 2 states that the basic 
method for our SVM problem is symmetrizable and Theorem 1 states that if the method is 
symmetrizable, the largest eigenvalue of B is less than unity and (1.42) is satisfied. 

 
3.4 TRAINING LARGE DATASETS  
 
For large datasets, it would be impossible to store all training vectors in fast memory, 

let alone cache the whole Gram matrix into memory. For example, a training set consisting 
of 5000 vectors with each vector a 4-byte integer would require 5000x5000x4 or 100 MB 
of fast memory. The calculations would have to be done ad hoc for each point. We note 
that the computation of our update requires the inverse of the diagonal of H, and we would 
have to compute the entire inverse manually. We first review our iterative method and 
write the updates in term of the respective matrix elements.  

 
Consider the matrices from the basic update rule,   
  

                                                                                                     (1.44) 
1

1=

= -

-

B (I - D H

k D Y

)




            
 
In matrix form, we get 
 
 

1
11 111

1

1 0 0

0 1 0

q

qq q qq

H HH

H H H

−
   
  = −   

         

B

……
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                                                     (1.45) 

1 1 1
11 11 11 12 11 1

1
22 21

1 1
1

1

   

1

q

qq q qq qq

D H D H D H

D H

D H D H

− − −

−

− −

 − − −
 
 −

= 
 
  − − 




t k

}

                                   
 
We can now write our general update for ui

t+1 in terms of D and H, 
 

                                           (1.46) 
1

1 1 1 1 1

1 1

(1 )
qi

t t t
i ii ii i ii ij i ii ij i i

j j i

u D H u D H u D H u
−

+ − − + −

= = +

= − − − +∑ ∑
                           
From (1.24) and (1.29), H is the augmented kernel matrix, KA 
 
  
                                                                                         (1.47) { 2

, 1
( , )

n
i j i j

x x β
=

= +H K

                                                
Then it is easy to see that the elements of the diagonal of H can simply be written as, 
 
             { }2

1
( , )

n
ii i i i

D x x β
=

= +K                                                                             (1.48) 

                                     
 
Lemma 2: The inverse of a square n x n diagonal matrix is also a square diagonal 
matrix with elements that are reciprocals of the elements of the original diagonal 
matrix.  
 
Proof: 
 
Let 
 

11 0

0 nn

D

D

 
 =  
 
 

D
…

 

 
Let the inverse of D be Z, namely Z=D-1 
 

11 1

1

n

n n

Z Z

Z Z

 
 =  
 
 

Z
…

n

 

 
Then by properties of the matrices and inverses we have 
 
DZ I=   
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11 11 1

1

0 1 0

0 0

n

nn n nn

D Z Z

D Z Z

    
    =    

   
   

… …

1
 

11 11 0 1 0

0 0
by inspection we note;

1
1

nn nn

ii ii

ii
ii

D Z

D Z

D Z

Z
D

  
  =  
  
  

=

=

…

1







 

 
which is the formula for the diagonal elements of Z or the inverse of D . 
 
Then by Lemma 1, we replace (1.37) with 
      

1
1 1

1 1

(1 )
qi

ij ijt t tii
i i i

ii ii iij j i

H HH
u u u

D D D

−
+ +

= = +

= − − − +∑ ∑ t
i iu k                      

 

   
1

1

1 1

qi
ij ijt

i
ii iij j i

H H
u

D D

−
+

= = +

= − − +∑ ∑ t
i iu k                                                                             (1.49) 

                                       
 
In terms of the support vector formulation, this becomes; 
 

2 21
1 1

2 2
1 1

( , ) ( , )

( , ) ( , ) ( , )

qi
i j i jt t t i

i i i
i i i i i ij j i

K x x K x x Y
u u u

K x x K x x K x x

β β
2β β β

−
+ +

= = +

+ +
= − − +

+ +∑ ∑ +
                            (1.50) 

              
 
The general formula for extrapolation is then simply; 
 

2 21
1 1

2 2 2
1 1

( , ) ( , )
(1 )

( , ) ( , ) ( , )

qi
i j i jt t t i

i i i
i i i i i ij j i

K x x K x x Y
u u u

K x x K x x K x x

β β t
iuγ γ

β β β

−
+ +

= = +

 + +
 = − + − + −
 + + + 
∑ ∑             (1.51) 

   
 

3.4.1 Special Case when using a Gaussian Kernel 
 
We show that if we use a Gaussian kernel of the following form, we can simplify 

(1.50) 
              

 
2

22( , )K e σ
−

=
x y

x y                                                                                         (1.52) 
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From (1.48), it can be easily deduced that no matter what the value of σ , the diagonal 
of H is always, 

 
 

2

2

1 0

0 1

β

β

 +
 

=  
 + 

D
…

 

 
2(1 )β= +D I                                                      

 
   

1
2

1
(1 )β

− =
+

D I                                                                                                     (1.53) 

                                                    
Then substituting into (1.50), the general update becomes, 
 
 

 

( ) ( )

2 21
1 1

2 2
1 1

1
2 1 2

2
1 1

( , ) ( , )

1 1 1

1 ( , ) ( , )
1

qi
i j i jt t t i

i i i
j j i

qi
t t

i j i i j i i
j j i

K x x K x x Y
u u u 2

K x x u K x x u Y

β β

β β

β β
β

−
+ +

= = +

−
+

= = +

+ +
= − − +

+ + +

 
 = − + + + −
 +  

∑ ∑

∑ ∑

β
                (1.54) 

 
 
For extrapolation, the updates become simply 
 
  

 ( ) ( )
1

1 2 1 2
2

1 1

( , ) ( , ) (1 )
1

qi
t t
i i j i i j i i

j j i

u K x x u K x x u Yγ t t
iuβ β

β

−
+ +

= = +

 
 = − + + + − + −
 +  
∑ ∑ γ              (1.55) 

                                                                                                                             
It is easily seen, that in the case of the Gaussian kernel, the number of kernel 

computations for the updates can be reduced since the diagonal element is a constant 
value. 
 

 
4. EXPERIMENTAL METHODOLOGY 

 
In order to verify our proposed model, we implemented the algorithms in Section 3 on 

Matlab 5.0 and ran it on the UCI adult datasets[10] and a real life image recognition 
application[9]. The pseudocode is provided at the end of this document. All our 
experiments are done on a Pentium 4, 1.6Ghz machine with 256MB RAM. We cached the 
kernel matrix for all experiments. 

 
We first ran a series of experiments to investigate the effect of 2β  against the 

recomputed value of the bias,b. This was followed by a series of experiments designed to 
investigate the speed of our iterative algorithm and the effectiveness of acceleration 
methods, in this case the extrapolation method. We finally compare our ASVM model 
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against the original SVM model for a real life image recognition application. For the 
original SVM formulation, we utilize the the efficient Sequential Minimal Optimization 
(SMO)[6] to obtain the solution. This allows us to also compare our proposed iterative 
method against SMO. 

 
Experiment I: Effect of 2β on the recomputed bias 
 

We ran our algorithm on the first three UCI datasets and recomputed the threshold,b 

and the equality constraint as we varied 
2β . We used a Gaussian kernel and fixed C=1 

with a tolerance 0.001δ = . The trends can be seen in Fig 1. 2 and Fig 1. 3.  
 
Experiment II:  Sorting of Support Vectors according to change of magnitude 

 
We applied our iterative update rules while retaining J. Platt’s method of sweeping 

through all data points first and then through only the support vectors until all the 
conditions are satisfied within a certain tolerance. We note that we can also keep a cache of 
Support Vectors in memory instead of having to store the entire alpha vector, but this is 
unnecessary for the purpose of our experiments. We also propose a new metric to cache 
the Support Vectors in order to increase the speed of convergence.  

 
We note that in J. Platt’s algorithm, the sweep through Support Vectors is done 

randomly. In Mangasarian’s work[8], the support vectors are sorted according to 
magnitude before sweeping through them in descending order. However, we hypothesize 
that this is still some random form of sweeping through the Support Vectors. Instead, at 
each pass through the data points or Support Vectors, we compute the magnitude of 
change, εi for each new Support Vector, 

 
          εi (n+1) = |  αi

n+1 - αi
n  |         i ∈SV                                                             (1.56) 

 
We then sort the Support Vectors in descending order of the magnitudes of εi, so that 

on the next pass, the Support Vector with the largest εi is updated first. We ran our 
algorithm on the UCI adult dataset 1 which contains 1605 training examples. We use β2=1 
and δ=0.001 for all experiments. The experiments are done to compare between no 
sorting, sorting according to magnitude of Support Vectors (sorting 1) and sorting 
according to our proposed method, (sorting 2) and with extrapolation (sorting 2 with exp). 
The results are presented in Fig 1. 4.  

 
Experiment III : Comparison of basic method and acceleration with extrapolation 

 
We next applied the extrapolation method to the basic iterative method. We 

investigate the effect of choosing an estimate of the extrapolation factor, γ by varying the 
range of  γ through a series of evenly spaced values. For γ =1, we see from (1.39) that the 
extrapolation method reduces to the basic iterative method of (1.37). We ran the 
experiment on the first adult dataset, UCI 1, using β=1 and β=100. The results are 
presented in the trend for δ=10-3 in Fig 1. 5 and Fig 1. 6 

 
Experiment IV: Comparison between SMO and ASVM, an application to image 
recognition 
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 In this experiment, we were interested in comparing the optimization speed of our 
algorithm against the SMO.We applied both algorithms to a practical image recognition 
problem that is electronic monitoring of fishways. The complete experimental setup is 
found in [9]. Our dataset consists of 5 different fish species with 4 representatives each. 
Each representative had 70 images giving a total of 1400 images. We extracted 10 
attributes, which gave the best results from each image, such as fish dimensions. For 
comparison, we ran SMO and our algorithm using δ=10-3.  We obtained a flop count and 
real computation times. In addition, we used 5-fold cross validation in all cases to 
investigate the generalization capabilities. The kernel matrix was cached for both 
algorithms since there was enough memory available. We ran experiments on various 
kernels such as the Gaussian kernel, linear kernel and polynomial kernel. The results can 
be found in Fig 1. 7-Fig 1. 12 

 
5. DISCUSSION 

 
We first present empirical proof of Lemma 1 by the results of the recomputed 

threshold while varying the parameter β2. Fig 1. 2 shows the asymptotic behavior of the 
threshold b when β2 is varied. Fig 1. 3 indicates the behavior of the KKT condition 

1

l

i i
i

yα
=
∑  with the variation of β2. It can be seen that the recomputed threshold approaches 

an asymptotic value as β2 increases. From Lemma 1, the optimal solution is found at β2 = 
∞ and larger β2 gives solutions closer to the original SVM formulation. However, care has 
to be taken when increasing β2 with respect to the kernel function, K(x,y)in our augmented 
KA( x , y). Too large a β2 causes,  

 
        KA( x , y)   ≈    β2 
 

This implicitly maps all training points to one point in feature space and makes the 
problem inseparable. 
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Fig 1. 2 Recomputed threshold b against β2 for UCI 1-3                 
datasets 
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Fig 1. 3 Reomputed equality constraint i iyα∑  against  β2 
for UCI 1-3 datasets 
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Fig 1. 4 Optimization speed for sorting and no sorting over a range of β2 for UCI dataset 

 
The advantage of our ASVM formulation is that it lends itself to the application of 

linear stationary iterative methods, which are easy to implement. Furthermore, several 
polynomial acceleration techniques exist which can be used to accelerate the rate of 
convergence further during the training phase. The elimination of the equality constraint 
causes a major speedup in optimization techniques since all we have to do is enforce the 
inequality constraint at each optimization step. However the generalization capabilities 
of this formulation will be a subject of further investigation. It is still unknown whether 
the ASVM model is an approximate solution to the original SVM model or should be 
treated as a different family of estimators. 

 
From equation (1.54) and (1.55), the update 1t

iu +  depends entirely on other values 
of u and can be seen as simply computing the update as an unknown in the decision  
function to achieve the required output. The advantages are many such as, easy 
implementation with possible extension to other polynomial acceleration methods to 
further increase the rate of convergence and no long searches for an update to be 
made. A more comprehensive study on the impact of sorting the Support Vectors 
could be undertaken to provide a proper understanding of the factors governing the 
speed of convergence using these family of iterative methods. 
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 Fig 1. 5 Extrapolation on UCI 1 with β2=1 
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Fig 1. 6 Extrapolation on UCI 1 with β2=100 
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Fig 1. 7 Generalization on a Gaussian kernel 
with 10σ =  
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Fig 1. 8 Generalization on a linear kernel 

 
We have demonstrate the validity of our hypothesis when sorting the Support 

Vectors according to the magnitudes of change. A significant increase in performance 
is observed when sorting the Support Vectors according to our method then compared 
to non-sorting. Against Mangasarian’s method, we record a 15% increase in 
optimization speed for the basic iterative method when sorting using our proposed 
method. We achieved a further increase in performance when the extrapolation 
method was applied to the basic method. 

 
Fig 1. 5 and Fig 1. 6 demonstrate that extrapolation can be applied for significant 

increase in the rates of convergence. In this document, we only demonstrate the 
capabilities of the extrapolation method, and we note that if we are to use them 
effectively, we should try to obtain good eigenvalues estimates to give optimal 
performance. From Fig. 4.2, we can see that the optimal value of γ is around 1.55 
while in Fig 4.3, γ=1.9 is optimal. The true eigenvalues could be obtained using 
decomposition methods like Singular Value Decomposition and so on. However, they 
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Fig 1. 9 Optimization time(s) on a Gaussian 
kernel with 10σ =  
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Fig 1. 10 Computational complexity on a 
Gaussian kernel with 10σ =  
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will require additional computational time and complexity and hence it is sufficient to 
use the estimated values. Overall, the extrapolation method gives us an increase of 
almost an order of magnitude in performance compared to just the basic method. 

 
Against the SMO algorithm, we discovered that at 2 20β = , our algorithm was 

comparable to SMO in terms of computation intensity. We note however, that with 
our formulation, we are maximizing a margin in l 1+  dimensions and in the limit as 

, we will maximize a margin in  dimensions as the standard Support Vector 
Machine. We could increase the speed of our algorithm if we choose a lower value of 

2β →∞

2

l

β , but we initially believed that this might compromise in terms of the 
generalization capability of our Support Vector Machine. However, in our fish 
experiment, this notion proved to be unfounded by empirical study as seen from Fig 1. 
7 and Fig 1. 8. The generalization of our model was comparable to that achieved by 
SMO in the original classification formulation even when using a low value of . 
For higher values of C, our ASVM model performed better than the original 
classification model instead. We attribute this to the distribution of the data but as of 
now; we have yet to prove concretely the observed phenomena. 

2 1β =

 
We also show from Fig 1. 9-Fig 1. 12 that our algorithm is capable of achieving a 

much faster optimization compared to SMO. For small values of C, we found that our 
algorithm was more efficient than SMO, requiring lesser floating point operations 
(flops). However, we observed that the method became less efficient at higher values 
of C. This is of little concern since at higher values of C, the trained SVM’s 
generalization capabilities (Fig 1. 7-Fig 1. 8) become unacceptable and we would not 
be using those values. Thus in the acceptable region, we have demonstrated that our 
algorithm is much faster and more computationally efficient than the SMO.    
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Fig 1. 11 Computational complexity on a 
linear kernel 
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Fig 1. 12 Optimization time(s) on a linear 
kernel 
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6. CONCLUSION 
 
We have presented a new formulation namely the Automatically biased Support 

Vector Machine classifier, which removes the equality constraint from the optimization 
problem. In this simple modification, we have implicitly allowed for the automatic 
calculation of the bias, though we stress that in our formulation, the bias b no longer has 
any meaning. Instead we have shown that our model can be controlled by the parameter 

2β . We have presented empirical results to investigate the effect of our introduced 
parameter, 2β . We further show that this formulation allows for the application of a 
modified iterative method. We showed that the basic method could be accelerated with 
extrapolation and note that this method can be further extended to other polynomial 
acceleration methods. Future research will concentrate on extending this formulation to 
the regression and density estimation Support Vector formulations. 

 
Pseudocode for Matlab 
 
function TrainASVM ()  

 
Initialize alpha vector to zero; 
Initialize Error Cache to zero; 
Initialize f(x) Cache to zero; 
Choose C, tol, eps, gamma, beta;  
NumChanged=0; 
ExamineAll=1; 
 
while ( NumChanged>0 | | ExamineAll==1) 
   %sweep thru whole data set and update the KKT violaters 
    if ( examineAll==1) 
           for all i1 in n 
             numChanged=numChanged+a1pha_up(i1);     
           end 
           up_cache;   sort values in Error Cache in decending order 
    else 
     %sweep thru non bound alphas or Support Vectors in the Error Cache  
           for all i1 in Error Cache 
              numChanged=numChanged+alpha_up(i1);  
           end  
           up_cache;  sort values in Error Cache in decending order 
   end   
      if  ( examineAll==1)  examineAll=0; 
   else  
       if (numChanged==0)  examineAll=1;     
   end 
end  %end while        
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function alpha_up(i1) 
 
   y1 =  Label of X(i1); 
   E1 = f(i1) – y1 ( if i1!=SV compute E1 else obtain f(i1) from Error Cache); 
   R1 = E1*y1; 
 
if ( (R1<-tol & Alpha(i1)<C) | ( r1>tol & Alpha(i1)>0 ) ) 
 
 %update alpha rule 
 Bu=fx(i1)-(beta+1)*Alpha(i1); 
 U_new=-gamma/(beta+1)*(Bu-y1)+(1-gamma)*Alpha(i1); 
  
 Alpha_new=U_new*y1; 
    
 %clip alpha 
  if ( Alpha_new>C )  then Alpha_new=C; 
  else       
     if (Alpha_new<0) then Alpha_new=0; 
  end  
   
 U_new=Alpha_new*y1; 
  
 %admit specific tolerance 
 if( abs(U_new-Alpha(id))<eps ) 
     return 0; 
 end     
  
%Add to cache if support vector 
   
if( Alpha_new >0 & Alpha_new < C ) 
  new_change= abs(Alpha_new-Alpha(id)*Train(id,Cols));  
 Cache_Temp( x , 1 ) = i1 ; 
 Cache_Temp( x,  2 ) =new_change;  
end     
     
update f(x) for support vectors  
Alpha(i1)=U_new; %store new value of alpha 
    return 1; 
else 
    return 0; 
end 
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