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Abstract: Illumination effects, including 
shadows and varying lighting, makes the 
problem of face recognition challenging. 
Experimental and theoretical results show that 
the face images under different illumination 
conditions lie in a low-dimensional subspace, 
hence principal component analysis (PCA) or 
low-dimensional subspace techniques have been 
used. Following this spirit, we propose new 
techniques for the face recognition problem, 
including an outlier detection strategy (mainly 
for those points not following the Lambertian 
reflectance model), and a new Bayesian-based 
error criterion for the recognition algorithm. 
Experiments using the Yale-B face database 
show the effectiveness of the new strategies. 
Keywords: Face recognition, Linear subspace, 
Principal component analysis, Illumination 
effect. 
 

1. Introduction 
Illumination effects make the problem of 

face recognition very challenging [4, 5, 9, 10, 13, 
21]. It has been observed that “the variations 
between the images of the same face due to 
illumination and viewing direction are almost 
larger than image variations due to change in 
face identity”[15]. A robust recognition approach 
should be able to overcome this difficulty.  

In order to tackle this issue [23], PCA has 
been utilized to model the lighting variation in 
images. It has been proved, experimentally [8, 
12, 16, 17, 18] and theoretically [1, 2, 19, 20], 
that the possible images approximately 
concentrate in a low-dimensional subspace. 
although the dimension of the image set for an 
object is actually “equal to the number of distinct 
surface normals” [5]. Experimental observations 
[8, 12, 25] have helped firmly establish that the 
images of the same face, produced under 
different lighting conditions, approximately lie in 
a low-dimensional subspace. Another influential 
example of the power of such an approach was 
the SLAM system [16, 17, 18], which captured 
the variations due to pose and illumination by a 
20-dimensional or less subspace – extending the 
applications to object recognition and pose 
determination etc. Recently, it was proved, by 
using spherical harmonics, that “all Lambertian 

reflectance functions obtained with arbitrary 
distant sources lie in close to a 9D linear 
subspace”: Basri and Jacobs [1, 2] and 
Ramamoorthi and Hanrahan [19, 20]. 

Another variant of PCA-based face 
recognition is the linear subspace approach 
(section 2). For a Lambertian object, its images 
approximately lie in a 3D linear subspace if there 
is neither attached shadow nor cast shadow. This 
fact implies that, given three images for a 
Lambertian object, its any image can be a linear 
combination of these three generic images. This 
is the well-known photometric stereo method 
[21]. Moreover, it also suggests a simple, but 
effective, approach to the problem of face 
recognition. This subspace-based approach 
consists of two steps: the off-line training stage 
and the on-line recognition stage [4, 9]. In the 
training stage, obtain three basis images from 
three or more images; and in the recognition 
stage, simply compute the distance of the new 
image to each face basis and choose the identity 
that has the minimal distance. 

In addition to the traditional work on the 
PCA-based face recognition [8, 12, 23], two 
other studies should be noted: those involving 
the illumination cone [5, 9, 10] and the related 
theoretical development [1, 2, 19, 20]. The 
illumination cone has been proved to be effective 
in modeling the lighting and pose effect, on the 
Yale-B face database. The theory of the low-
dimensional subspace of the Lambertian objects 
not only explains the observed phenomenon [1, 
2, 19, 20], but also provides new insights on the 
problem of face recognition [14].  

The contributions of this paper are: (1) in 
section 3, we propose a new Bayesian distance 
for the subspace-based recognition problem, this 
is based on a new theory about the subspace’s 
learning capacity [7]. (2), in order to remove 
points not following the reflectance model, we 
employ the iterative reweighted least square 
(IRLS) technique (section 4) to detect the pixels 
that do not obey the dimension-3 constraint, such 
as eyeballs. The experiments on the Yale-B face 
database show the effectiveness of the new 
techniques. 
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2. Lambertian Reflection 
2.1. Lambertian reflectance and 3-
dimensional subspace 

The images of a Lambertian object can be 
approximately modeled by a 3-dimensional 
subspace if the light source lies at infinity and 
there is neither attached shadow nor cast shadow 
[9, 21]. Following [5], for any point p on a 
Lambertian surface, illuminated by an infinite 
light source, its intensity can be described by  
 sbsn TT pppapI )()()()( ==  (1) 
where a(p) (a scalar) is the albedo at position p, 
n(p) (a 3-vector) is the inward normal of the 
surface at position p, and s (a 3-vector) is the 
direction of the light. Let 3,nR∈B  be a matrix 
where each row is Tp)(b . The illumination 
subspace can be generated by: 
 },|{ 3RxxL ∈∀== sBs  (2) 

The images without shadows are a subset 
of L. The set of all images, the non-negative 
orthant, is defined as: 
 }),0,max(|{ 3

0 RxxL ∈∀== sBs  (3) 
A general subspace-based algorithm for 

the face recognition is [9]: 
(a) Training stage. Arrange the training samples 
as the training matrix, each column of which is 
an image. By SVD [11], the 3 basis images are 
calculated as the 3 singular vectors that 
correspond to the 3 largest singular values. 
(b) Recognition stage. Calculate the distance of 
the test image to the 3-dimensional subspace that 
is spanned by the 3 basis images. The target is 
selected as that who has the shortest distance. 
 
2.2. Attached shadow and low-
dimensional subspace 

The 3-dimensional constraint does not 
hold when there is a shadow. Intrinsically, the 
dimension of the image set for an object is 
“equal to the number of distinct surface 
normals”. However, it has been proved, 
experimentally and theoretically, that the image 
set approximately lies in a low-dimensional 
subspace [8, 12, 23]. 

However, an important theoretical proof 
exists that shows that the images of a Lambertian 
object can be approximately modeled by a 9-
dimensional subspace if there is no cast shadow 
[1, 2, 19, 20]. Moreover, it has been 
experimentally proved that images with shadow 
can be approximately modeled by 5±2 
eigenimages [8]. Based on this 9-dimension 

theory, 9 points of light for face recognition were 
optimally determined [14]. 

 
2.3. Generation of the image basis from 
synthetic images 

One does not want to use more images 
then necessary in constructing a training set. It 
has been shown [14] that for a single face 
approximately 9 well-chosen lighting directions 
are optimal. However, the result in [14] was not 
good enough in practice. A reliable approach to 
obtain the image basis is to calculate them from a 
large amount of training images, for example 80-
120 training images [9]. Although a large set of 
images is unwieldy, a possible solution to this 
problem is to use the synthetic images, as in [9]. 
In this paper, we also employ this strategy to 
obtain the image basis. 

The procedure of generating the image 
basis in the training stage is (taking the Yale-B 
face database as an example): 
(a). Obtain the illumination subspace L in (2) 
from more than 2 images that have no shadow. 
Here, we use the 7 images in “subset 1” as the 
training samples. 
(b). Generate the synthetic images that are 
illuminated by a light at infinity, as in (3). 
(c). Calculate the approximate low-dimensional 
subspace from the simulated images, by SVD 
[11]. 

As an important variation, we employ the 
iterative least squares procedure as an “outlier” 
detection strategy when we calculate the 
illumination subspace in sub-step (a), because 
not all the pixels of a face can be approximately 
Lambertian, for example the eyeballs and 
eyebrows. This outlier detection strategy will be 
presented in section 4. 

In the simulation of the possible images in 
sub-step (b), we only consider the effect of the 
attached shadow, as the “Cones-attached” in [9]. 
However, we don’t need to reconstruct the face 
to a generalized Bas-Relief (GBR) 
transformation [3]. Instead, we “randomly” 
generate the synthetic images, because an 
arbitrary “linear” combination of the three basis 
images can be an image, illuminated by a light 
with unknown direction [9]. It should be noted 
that the negative pixels in the synthetic images 
have to be set as zeroes. The attached shadow 
can be modeled this way, while the cast shadow 
cannot be modeled. Although the direction of the 
light s is randomly generated, we set the energy 
of first basis image is half as that of the other two 
basis images, in order to model the shadow effect 
better.  
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In calculating the basis images in sub-step 
(c), which accounts for the attached shadow, we 
find that the 7-dimensional subspace performs 
slightly better than the 9-dimensional subspace. 
Crucially, in our approach, the “outliers” 
detected in sub-step (a) are not included in 
calculating the distances of the test image to the 
7-dimensional subspaces. Consequently, we 
compare the angles between the test image and 
the 7-dimensional subspaces, because different 
identities have different outliers. 

 
3. Learning capacity of low-
dimensional subspace and a new 

Bayesian distance 
Few people have properly estimated 

where the noise in the learning and recognition 
processes reside. In [7], based on the matrix 
perturbation theory [22, 24], the learning 
capacity of the low-dimensional linear subspace 
has been studied. The theory states that the 
distance of a new test vector to the estimated 
low-dimensional subspace comes from two 
sources: one is from the learning samples and 
another from the test vector. More formally, it is 
described by the following result [7]. 

Result (Learning capacity of LSA): For a 
rank-r LSA-based recognition system, the "error 
measure" (the SSD) comes from two independent 
sources: the noise in the basis images (eg. 
quantization and model error) and the noise in 
the test image. Specifically, the SSD is (see eq. 
38, [7]): 
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where m is the dimension of the object, tσ  and 

lσ  are the noise levels for the test image and the 
learning samples respectively, and iκ  )1( ri ≤≤  
is the ith singular value of the training matrix and 

if  )1( ri ≤≤  is the magnitude of the ith 
component of the test image. 

From the result, we can see that some 
error is introduced by the noise in the training 
samples. Thus, this part of the error in (4) should 
be subtracted in the recognition stage. More 
formally, suppose the new test image has a 
distance of d to the r-dimensional subspace. 
From (4), we take the following distance as the 
criterion for the classification: 
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The estimation of the noise level lσ  in the 
learning samples will be discussed in section 4. 
 

4. Non-Lambertian pixel detection 
Although the human faces can be 

approximately modeled as Lambertian, some part 
are obviously non-Lambertian, for example the 
eyeballs and eyebrows. Moreover, some parts of 
the true training samples that are in the shadow 
don’t obey the 3-dimension constraint. In order 
to obtain an accurate 3-dimensional illumination 
subspace, we should exclude these abnormal 
pixels. 

Here, we employ a variant of the iterative 
reweighted least square (IRLS) as the “outlier” 
detection strategy: the weight is either 1 or 0. 
More specifically, we retain those data whose 
residual is less than 3 times of the noise scale and 
prune the other data. Thus, a general 1/0 IRLS 
iteratively works this way: 
(i) to estimate the scale from the residual of the 
retained data.  
(ii) if there is some “outliers”, whose residual is 
larger than 3 times of the scale, to prune these 
data and go to sub-step (i); else, terminate the 
iteration. 

Because we work on low-dimensional 
subspaces, the general 1/0 IRLS can not be 
directly applied to detect the non-Lambertian 
pixels. Particularly, we have to define the 
residual for a pixel, which in fact is a n-
dimensional vector if we work on n training 
images.  

Suppose an m×n training matrix consists 
of n training images, each of which has m pixels. 
First, calculate the r-dimensional subspace by 
SVD [11]. Second, calculate the residual matrix, 
by subtracting the r largest components from 
each column. Third, calculate the 2-norm of all 
row vectors and regard them as the residual for 
the corresponding pixels. The scale can be 
estimated as the root mean square of the 
residuals of the retained pixels. The detected 
mask for the non-Lambertian pixels are 
displayed in fig 3, where the black pixels denote 
the non-Lambertian ones. 

 
4.1. Noise level estimation  

In this section, we explain how to 
estimate the noise level lσ  in (5). In our 
synthetic generation of the image basis, we have 
to first estimate the noise level in the actual 
images. Then, to use these estimates to calculate 
the estimates for the noise levels in the synthetic 
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images (generated by a linear combination of 
basis images, as per (b) step in section 2.3).  

From [6], the maximal likelihood (ML) 
estimate of the noise level in an r-dimensional 
illumination subspace is as follows: 

 ∑
+=
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ri
irmm

1

2
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1 κ   (6) 

where iκ  is the ith singular value of the actual 
training matrix. It should be noted that the 
estimate in (6) is calculated from the outlier-
detected training matrix. 

We calculate the total noise energy of the 
synthetic training matrix and regard the root 
mean of the energy as the noise level. 

 
5. Experimental results 

In this section, we report our results, 
comparing with that in [9, 14]. As in [9], we also 
do the face recognition experiments on the Yale-
B face database, which consists of 10 people. We 

follow [9] in cropping, centering and resizing the 
images. The 10 people are shown in fig. 1. 

Here, we only study the illumination 
effect on the recognition problem. Thus, only the 
frontal pose, at which 64 pictures were taken for 
each people, is used. These 64 images are 
divided into 5 subsets of 7/12/12/14/19 pictures. 
Two images are shown in fig. 2 for each subset.  
From “subset 1” to “subset 5”, there is more and 
more shadow the pictures. In fact, the pictures in 
“subset 5” are almost indiscernible, as shown in 
fig, and no result has been reported on this 
subset. By employing the new strategies, we 
obtain a good performance on this subset, up to 
92.1% of correct rate.  

It should be noted that, the 
misclassification rate of 9PL [14] for "subset 4" 
of the database was 5.6%. Because 7 training 
images were from "subset 4", we should not 
include these 7 images in the test image set when 
we calculate the misclassification rate.

 
 

Table 1: Comparison of the error classification rate on Yale-B face database. 
Method Subset 1-3 Subset 4 Subset 5 

Linear subspace [9] 0 15 / 
Cones-attached [9] 0 8.6 / 

Cones-cast [9] 0 0 / 
9PL [14] 0 2.8(5.6) / 
Proposed 0 0 7.9 
 

 

     
 

     
Figure 1: 10 people in Yale-B face database. 
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                     (a)                             (b)                                (c)                               (d)                              (e) 

     
                     (f)                              (g)                                (h)                               (i)                              (j) 

Figure 2: Different images under different illumination conditions, for people 7 in fig 1. (a) and (b) from 
subset 1; (c) and (d) from subset 2; (e) and (f) from subset 3; (g) and (h) from subset 4; and (i) and (j) from 
subset 5. 
 

     
                     (a)                             (b)                                (c)                               (d)                              (e) 

     
                     (f)                              (g)                                (h)                               (i)                              (j) 

Figure 3: Mask for the outliers, which do not obey the 3-dimensional constraint. The black pixels denote 
the outliers. From (a) to (j), the masks correspond to people 1 to people 10 in fig. 1. 

 
6. Conclusion 

In this paper, we introduce two new 
techniques into the subspace-based face 
recognition: outlier detection and a new distance-
based criterion for the classification. Without 
constructing 3D scene, the standard subspace 
approach, augmented with the new techniques 
described here, proves to be comparable to 
Cones-cast, where the cast shadow has to be 
detected and consequently demands the GBR 
reconstruction [3]. Moreover, by the new 
techniques, a good performance can be obtained 

on “subset 5”, which is the most challenging in 
the Yale-B face database and on which no 
performance has been reported.  
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