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Abstract: Linear subspace analysis (LSA) has become rather ubiquitous in the solution of 

a wide range of problems arising in pattern recognition and computer vision. The essence 

of these approaches is that certain structures are intrinsically (or approximately) low 

dimensional: for example, the factorization approach to the problem of structure from 

motion (SFM) and principal component analysis (PCA)-based approach to face 

recognition. In LSA, the singular value decomposition (SVD) is usually the basic 

mathematical tool. However, researchers have rather blindly used a SVD, without 

knowing the essential characteristics of its performance in the noise-corrupted 

environment. With the help of matrix perturbation theory, we present such an analysis 

here. First, the “denoising capacity” of the SVD is analysed. Second, we study the 

“learning capacity” of the LSA-based recognition system in a noise-corrupted 

environment. These results should help one to design more optimal systems in computer 

vision, particularly in tasks, such as SFM and face recognition.  

A direct application is that we clarify some issues regarding an optimal learning strategy 

for face recognition. Our analysis agrees with certain observed phenomenon, and these 

observations, together with our simulations, verify the correctness of our theory. 

 

Index terms: Singular value decomposition, Linear subspaces, Principal component 

analysis, Structure from motion, Face recognition, Matrix perturbation, First-order 

perturbation, Multiple eigenvalue/singular value. 
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1. Introduction 

Linear subspace analysis has found application in many problems in computer 

vision and pattern recognition, where the high-dimensional representations of certain 

structures are intrinsically (or approximately) low dimensional. In this paper we focus on 

two very prominent problems:  Structure from Motion (SFM), and PCA-based face 

recognition, although a whole host of other computer vision and pattern recognition tasks 

fall within the framework of our analysis.  

1.1 Applications of Linear Subspace Analysis 

In the SFM context, and in related multi-view analysis tasks, one extracts from the 

image sequence the coordinates of various tracked points (or other geometric features 

such a lines). These coordinates may be assembled into a measurement matrix, which is 

essentially low dimensional despite the matrix (itself) usually being physically huge. For 

example, under the affine models, the measurements are generally restricted to a rank-4 

subspace [13,14,16,17,23,32]. (Although the registered measurement matrix can be of 

rank 3 [16,17,23,32].) Another example is that the homographies of multiple planes 

between two views reside in a rank-4 subspace [36,37]. Similarly, the homographies 

between two planes over multiple (>2) views lie in a rank-4 subspace [29]. Moreover, the 

rank-4 constraint also holds for the case of multiple-planes-over-multiple-views [36,37]. 

Exploitation of this low rank constraint is essential to solving for the quantities of interest 

(e.g., the 3-D structure of the scene being imaged). 
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Another particularly active area of computer vision research, also employing 

subspace analysis, is that of PCA-based face recognition* [6,10,33]. A human face, in 

typical applications, must be recognised despite illumination changes between the target 

image (to be recognised) and the database of candidate images. It has been observed that: 

“the variations between the images of the same face due to illumination and viewing 

direction are almost larger than image variations due to change in face identity” [19]. The 

issue of large illumination effects makes the problem of face recognition challenging 

[3,4,7,8,15,28]. In order to tackle this issue, PCA has been utilized to model the lighting 

variation in images; because it has been proved, experimentally [20-22,6,10,35] and 

theoretically [1,2,25,26], that the possible images of the same Lambertian object, under 

different lighting conditions, approximately concentrate in a low-dimensional subspace, 

although the dimension of the image set for an object is “equal to the number of distinct 

surface normals” [4]. Experimental observations [6,10,35] have also helped firmly 

establish that the images of the same face, produced under different lighting conditions, 

also approximately lie in a low-dimensional subspace. Similar approaches can be used in 

general object recognition and pose determination systems. A particularly influential 

example of such was the SLAM system [20-22], which captured the variations due to 

pose and illumination by a 20-dimensional (or less) subspace.  Recently, it was proved, by 
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* Here, we have to clarify the difference between the common PCA [6,10,33] and linear subspace analysis 
[1-3]. In face recognition and related applications, several terminologies, like PCA [33], eigenface [33] and 
eigenimage [6,10], have been used for such dimensionality reduction techniques. PCA [6,10,33] works on 
the correlation matrix, where the mean of the images was first subtracted. While, in linear subspace 
analysis, we work directly on the original data [1-3], without subtracting their mean. Recently, some 
theoretical analysis [1,2,25,26] and experimental result [3] prove that better performance can be obtained 
directly by using the linear subspace analysis, without subtracting the mean. In section 5, we analyze the 
performance of the linear subspace analysis, without subtracting the mean, as in [26]. 
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using spherical harmonics, that “all Lambertian reflectance functions obtained with 

arbitrary distant sources lie in close to a 9D linear subspace”: Basri and Jacobs [1,2] and 

Ramamoorthi and Hanrahan [25,26]. 

1.2 Noise Effects 

Despite such a plethora of applications where one expects, in principle, the 

measurements to be of low rank; it is widely understood that noise is inevitably 

introduced in the data. In the presence of noise, the matrix in question quickly becomes 

full rank. Thus, the matrix has to be fitted to its closest low-rank approximation. The SVD 

gives the best solution to this problem [9], measured by the Frobenius norm and 2-norm. 

The result is guaranteed to be optimal [24] if the noise is i.i.d. Gaussian. Not surprisingly, 

therefore, the SVD has become a widely used tool. For example, the factorization method 

[23,32] achieves a Maximum Likelihood affine reconstruction from multiple (>2) views, 

as pointed out in [11,27].  

From a related point of view, the low-rank approximation can be regarded as a 

“denoising” tool, where we refer to the measure of the sum of squared difference (SSD)* 

between the noise-corrupted matrix (or the “denoised” matrix) and the noise-free matrix. 

Compared with a noisy matrix that is always of full rank, its low-rank approximation 

matrix, obtained by SVD, is always closer to the noise-free matrix, i.e. the underlying 

ground truth. For example, the multiview subspace constraint was utilized to improve the 

accuracy of recovered homographies, especially for those that have small regions [36,37].  
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* In image denoising, we usually use the terminology of mean square error (MSE). 
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Thus, linear subspace approximation is sometimes a model simplification and 

sometimes a denoising process (and often both, simultaneously). 

1.3 Performance Questions 

1.3.1 Denoising capacity of SVD 

Although SVD is widely employed to fit a large matrix to its low-dimensional 

subspace, little work has been done to analyze the performance of SVD in such noise-

corrupted cases. It is well known [9] that one can, by SVD, obtain the best solution to the 

low-rank approximation, measured by 2-norm or Frobenius-norm. However, the 

optimality is against the noise-corrupted matrix: the rank-r approximation matrix, 

obtained by SVD, is the closest rank-r matrix to the noise-corrupted matrix. However, we 

don't know its capacity of separating the signal from the noise. Supposing the noise level 

is small enough, how much signal is retained by keeping the largest r components? Or, 

how much noise has been reduced by discarding the other components? In this sense, we 

are blindly using SVD, without knowing its denoising capacity: how close is the low-rank 

approximation matrix to the noise-free matrix, or how close is the SVD-based subspace to 

the ground-truth subspace. The lack of such performance analysis impedes the careful 

design of optimal systems. A natural issue arising is to characterise the achieved accuracy 

with the growth in data (in the SFM context, this can be either through a growth in the 

number of frames analysed, or by a growth in the number of features tracked). In the 

factorization approach to SFM, it is widely accepted that more frames produce more 

accurate result than a few ("few" typically being little more than 3) frames. It was even 

claimed [31] that the 3D scene could be reconstructed to arbitrary accuracy given enough 

frames.  
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However, what is the gain of adding the data from one extra frame to a very large 

measurement matrix? What happens as the number of the frames approaches infinity? 

Can the 3D scene be truly reconstructed with arbitrary accuracy? Can such arbitrary 

accuracy only be achieved by the increase of the frames (while the number features don’t 

increase)? Is an increase in the number of frames the most efficient way to obtain an 

increase in accuracy?  

In the example of SFM, as suggested above we can also possibly augment the 

number of feature points, or we can augment the number frames, or we can do both: i.e., 

both the row and the column of the matrix can grow towards the infinite in size. However, 

in a related problem, the matrix consisting of the homographies over two views, is 

restricted to a class of m×9 matrices [36,37]. Such a matrix can only "grow" in one 

dimension, not both. We introduce some terminology to describe this difference: We call 

the matrix potentially-double-infinite if it has infinite rows and columns, and potentially-

single-infinite for those who has constant rows (columns) and infinite columns (rows). 

This raises another question: What is the difference between these two types of matrices in 

terms of the precision that can be achieved?  

In summary, the first aims of this paper are to analyze the denoising capacity 

of SVD, i.e., to identify the error that still resides in the low-rank approximation 

matrix and how this error relates to the growth of additional data. 

1.3.2 Learning capacity of linear subspace analysis 

Different questions, to those posed above, arise from the face recognition 

applications (including the object recognition and pose determination, and related 

applications). In the PCA-based face recognition approach, the eigenimage representation 
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relies on a compact approximation of the large image database (or "training" set), by 

spanning this set (approximately) with a few orthogonal basis images. Such an approach 

attempts to capture and characterise the essential object or face features, and their 

variations in appearance under lighting and pose changes. Although the “illumination 

cone” [4] (see also [38]) can be obtained by as little as three images, the result is usually 

not accurate enough. Firstly, there is inevitably some noise in the images, like 

quantization error. Secondly, it is difficult to satisfy the conditions in proposition 3 in that 

paper ([4]). Even if we can have three distinct light sources that can shed light on all the 

points of the surface, we can’t, in practice, exclude other light sources that cause attached 

or cast shadows on the subject. These considerations, plus general noise, have generally 

resulting in researchers trying to "learn" the eigenimages by a data reduction step applied 

to many "learning samples". Thus, many learning samples were needed to produce a good 

basis, for example, 66 images were used for one object [3]. What is the relationship 

between the learning capacity and the size of the learning samples? Note, the learning 

process will be explained in section 5, and a more detailed description of such learning 

processes can be found in [33,10,3]. 

Understanding the error, still residing in the basis images, will hopefully help to 

design the recognition system. Accurate basis images are desired because the recognition 

algorithm relies in projecting the test image, to be identified, on the basis images. Note 

that the test image itself contains noise. Thus the noise in the LSA-based recognition 

system comes from two sources: one from the basis and the other from the test image. Do 

these two types of noise interfere with each other?  

 

 

7

MECSE-6-2003 : "An Analysis of Linear Subspace Approaches for Computer Vision ...", P. Chen and D. Suter



The second aim of this paper is to present some theoretical analysis of the 

learning capacity of LSA-based recognition systems. Specifically, the error 

(measured by the sum of squared differences – SSD) of the LSA-based recognition 

system can be separated into two parts: one from the basis and the other from the 

test image, and we obtain some analytical results about their effects on the 

performance of the recognition system. We show that it is possible, theoretically, to 

design the optimal recognition system if we know the expectation of the test images.  

In this paper, we answer the above questions by analyzing the performance of 

SVD in a noise-corrupted environment using the major tool of the matrix perturbation 

theory. In section 2, we first present our results. In section 3, some preliminary knowledge 

concerning the SVD and matrix perturbation theory is summarised. In sections 4 and 5, 

the justification of our results is developed, with the help of the matrix perturbation 

theory. In section 6, some simulation results are presented to testify to the correctness of 

our results and we explain some phenomena, observed by other researchers.  

2. Major results 

2.1 Notation 

In the following, a matrix will be denoted by a bold capital letter, like M, and a 

bold lowercase letter represents a vector, e.g. x.  denotes the iiM th column of M. A scalar 

entry in a vector or in a matrix will respectively be denoted by, for example,  or . 

 denotes the  identity matrix, and  for a 

1x 2,1M

nI nn× nm,0 nm×  zero-matrix. e  is the ii
th column 

of . M , a notation from Matlab, denotes for the submatrix of M: the intersection of nI lkji :,:
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the i-to-j rows and the k-to-l columns.  A matrix U, , is said to be orthonormal, 

iff . The set of m  orthonormal matrices is denoted by O . An orthonormal 

matrix will always be denoted by U or V. Two matrices, M and N, with same sizes, are 

said to be orthogonal to each other iff 

nmR ,∈U

n
T IUU = n× nm,

1|||| =FM , 1|||| =FN , and 0,, =∑ jiji NM . The 

Frobenius norm of a matrix M (or a vector) will be denoted as 
F

M , where 

∑=
ji

F
,

jiM 2
,M .  denotes the closest rank-r approximation of rM nmR ,∈M , where 

r≤min(m,n), as will be explained in section 3.1. The symbol “≈” means the first order 

perturbation, explained in appendix A. And, “≅” means the equality, in the sense of 

statistical expectation.  

nm,R∈

r

mn
rn 2) −+mrAB ji

r
ji ,,

(|| =− σE

2.2 Major results 

Here, we present the major results of this paper, by which we can answer the 

questions in the introduction. The justification of these results will be deferred until 

section 4 and section 5. 

Result 1 (Denoising capacity of SVD): Suppose a matrix A  lies in a low-

dimensional, r, subspace. It is corrupted by i.i.d. Gaussian noise producing another matrix 

B, which is directly observed. Then, the error that still resides in the rank-r approximation 

matrix, B , is 

                                       (1) 
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if the noise level σ , compared with the signal level, is small enough. Specially, as 

, the rank-r approximation of B approaches A, i.e. B ; and if ∞→nm, A→r kn ≡  

( k ) and , r≥ ∞→m

k
rABE ji

r
ji σ→− || ,,                                                 (2) 

Result 2 (Learning capacity of LSA): For a rank-r LSA-based recognition system, the 

"error measure" (the SSD) comes from two independent sources: the noise in the basis 

images and the noise in the test image. Specifically, the expectation of the SSD, over the 

learning samples, is: 

n
rrmrm l

t

2
2 )()( σσ −+−                                                (3) 

where m is the dimension of the object, n is the number of learning samples, tσ  and lσ  

are the noise levels, for the test image and the learning samples respectively (Supposing 

both tσ  and lσ  are small enough, compared with the signal level sσ ). Moreover, for a 

random test image set, (3) is optimal among the size-n learning sets; and the size-n 

learning set is optimal iff it has r equal singular values. 

Result 1 and result 2 will be motivated in section 4 and section 5 respectively. 

3. Preliminary knowledge: SVD and perturbation theory 

3.1 Singular value decomposition 

The principle behind the SVD [9] states that any matrix, nmR ,∈M , can be 

decomposed into 

TVUΣM =                                                           (4) 
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where ,  and , with  and mmO ,∈U

2 ≥≥

nnO ,∈V

0≥p

nm
p Rdiag ,

21 ),,,( ∈= σσσ LΣ ),min( nmp =

1 ≥ σσσ L . Without loss of generality, suppose m .  

are the eigenvalues of , or the first n largest eigenvalues of MM . The first n left 

singular vectors of M are {

n≥ }, n,2,1|{ 2 ii L=σ

TM

i

MT

},,2,1 ni L| =U

iV

, where  is the eigenvector, corresponding 

to the eigenvalue of , of . Similarly, the right singular vectors of M are 

, where  is the eigenvector, corresponding to the eigenvalue of , of 

. Another important fact [9], is that one can easily construct , the closest rank k 

approximation of M, measured by 2-norm or Frobenius-norm, by: 

iU

TMM2
iλ

}|{ iiV

MMT

,,2,1 nL= 2
iλ

kM

∑
=

=
k

i

T
iii

k

1
VUM σ                                                     (5) 

Specifically,  

12 +=− k
k σMM                                                      (6) 

∑
+=

=−
n

kj
jF

k

1

2σMM                                                 (7) 

3.2 Perturbation theory 

Only the perturbation theory concerning singular values/vectors is needed in this 

paper. However, we also include the perturbation theory concerning the 

eigenvalues/eigenvectors as a useful way to arrive at our results. With our objective, 

though, we need only consider symmetric matrices where the eigenvalues/eigenvectors are 
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concerned. To our best knowledge*, the perturbation expansion of the 

eigenvectors/singular-vectors is available only for those that correspond to a simple 

eigenvalue or singular value [30,34]. In this section, we review such theory, and present, 

in the next section, our new results for those that correspond to a multiple eigenvalue or 

singular value. In order to have a complete description of the perturbation theory, we give 

all the proofs, including those available in the textbooks [30,34], plus those within our 

new results. Detailed proofs are arranged in appendix A. 

Theory 1 [34]: Consider a symmetric matrix, mmR ,∈M . Suppose M has m distinct 

eigenvalues, },,2,1|{ mii L=λ  and the corresponding eigenvectors are 

. If M is perturbed by a matrix N, the eigenvalues and the eigenvectors 

of  are {

}m

},,2,1| mii L=′

,,2,1|{ ii L=x

NM + λ  and { },,2 mL,1| ii =′x  respectively. Supposing every 

entry in N is small enough, the first-order perturbations of eigenvalues and eigenvectors 

are: 

iiii ,βλλ +=′                                                          (8) 

∑
≠ −

+=′
ij

j
ji

ij
ii xxx

λλ
β ,                                                (9) 

where . j
T
iji Nxx=,β

Theorem 2 [30]: Suppose A (not necessarily symmetric) is corrupted with N and we 

observe B: . According to SVD, we have , where , NAB +=

},,2 m

TVUA Σ= mmO ×∈U

,{ 1diag κκκ L=Σ , . Define C .  Suppose mmO ×∈V NVU T= iκ  is a simple non-

                                                 

* Here, we’d like to express our appreciation to Prof. G. W. Stewart [32], who, by private correspondence, 
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zero singular value of A. Then, the first order perturbations of the singular values iλ , the 

right singular vector , and the left singular vector , of B are respectively  ix iy

j

iC
2λ

λ

j

jC
2λ

λ

iiii C ,+= κλ                                                         (10) 

∑
≠ −

+
+=

ij
j

i

jiijj
ii

C
VVx

2
,,

λ

λ
                                      (11) 

∑
≠ −

+
+=

ij
j

i

jiiji
ii

C
UUy 2

,,

λ

λ
                                      (12) 

The perturbation theory above, concerning the singular values/vectors, holds only 

for positive (and significantly large) singular values [30] (Note: singular values have to be 

non-negative.) In this paper, only LSA-based applications are of concern. In these rank-r 

problems, only the first r largest singular values are needed, where r<<m. Thus, we don’t 

have to consider the behavior of the perturbation for the zero (or near zero) singular 

values.  

3.3 New perturbation theory, corresponding to a multiple eigenvalue/ 

singular value 

In this section, we present our result concerning the perturbation expansions, 

corresponding to the case where the matrix has at least one multiple eigenvalue/singular 

value.  

First, we want to shed some light on the perturbation expansions concerning 

singular vectors that correspond to a multiple singular value. We do this by considering 

the perturbation expansions of the eigenvectors of a symmetric square matrix:  

                                                                                                                                                  

 pointed this out to us. 
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Theorem 3: Suppose mmR ,∈M , TMM = , and it has m eigenvalues { }iλ  and m 

eigenvalues , which are orthogonal to each other*. Without loss of generality, 

suppose the first k eigenvalues of M are same, 

}{ ix

λλ =i  for i k,,2,1 L= . M is corrupted 

with N, which, compared with M, is small enough. Define Q . 

Then, the first-order perturbation of the first k eigenvalues and eigenvectors of M+N are: 

],] m
T xL,[ 1xN,,[ 1 mxx L=

ii δλλ +=′                                                           (13) 

 ∑∑
+== −

′
+=′

m

kj
j

j

ij
k

j
jiji

Q
S

1

,

1
, xxx

λλ
                                       (14) 

where iδ  (supposing ji δδ ≠  if ji ≠ ) and  are the eigenvalues 

and eigenvectors of  respectively, i.e.  and 

. Define Q . The other m-k 

eigenvalues/eigenvectors can be obtained as in theorem 1. 

T
ikiii SSS ],,,[ ,,2,1 L=S

:1,:1 {= SQ kk diag














−− kmkm I
S

Q
I

kk :1,:1Q 1
1 },, −Skδδ L

],,[ 2 kSSS L= ,1 S 


 −S 1

=′

Following the same notation as used in theorem 2, we consider the perturbation 

expansion, where the matrix has at least one multiple singular value. 

Theorem 4: A, B, C and  are defined as those in theorem 2. Define Σ ΣC+=Ω . 

Without loss of generality, suppose the first k singular values of A are the same: 
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* For an r-ple multiple eigenvalue, we, first, have its r eigenvectors, { },,1| rii L=x , which may not be 
orthogonal. Then, the r orthogonal eigenvectors can be obtained by applying Schmidt orthogonalization on 

. },,1|{ rii L=x
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},,1|{ kii L==κκ . By SVD, Ω . Let 

, , and . 

T
k

T
kk SSdiag EFFSE },,{ 1:1,:1 L==

VU ′Ω′= T

T)() VVU ′Ω′′

}i









=′

−kmI
F

U ′V 







=

−kmI
E

Ω′

(U

λ′

}iy ′ i≤ Ω′

iii Si =Ω′=′ ,

∑
= + −

Ω′+Ω′
=′ix

m

kj
j

j

jiijj

1
22

,, e
κκ

κκ

∑
= + −

Ω′+Ω′
=′iy

m

kj
j

j

jijij

1
22

,, e
κκ

κκ

}iλ′

}{ ix y }ixVV ′′ yUU ′

B =                                                  (15) 

The first order perturbation of the singular values, { , right singular vectors { , and 

left singular vectors {  for 

}ix′

k≤0 , of  are respectively  

λ                                                        (16) 

+ie                                       (17) 

+ie                                       (18) 

From (15), {  are also the first k singular values of B, and, the right singular vectors 

 and left singular vectors {  of B are respectively: {}i  and { . The 

perturbations, corresponding to other non-zero simple singular values, can be obtained 

as in theorem 2. 

}i′

4. Denoising capacity of SVD 

In this and subsequent sections, we analyze the performance of SVD-related 

applications, as promised and sketched in the introduction and in section 2.2: (a) the 

denoising capacity of SVD; (b) and the learning capacity of LSA-based recognition 

system. We motivate our analysis by the perturbation theory concerning singular values 

and singular vectors, as outlined in section 3.2 and section 3.3.  
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4.1 Case of distinct singular values 

First, we consider the simplest case: a square matrix with a few distinct non-zero 

singular values. A, B, C, and  are defined as in theorem 2: A is the signal matrix, N is 

the i.i.d. Gaussian noise matrix (with zero mean and  variance), B=A+N,  

and . Note C is still an i.i.d. Gaussian noise matrix (with zero mean and  

variance). Further, define Ω

Σ

C

2σ TVUA Σ=

2σNVUC T=

Σ+= . Then,  

TVUΩB =                                                          (19) 

}{ ix  and , defined as (11) and (12), are respectively the right and the left singular 

vectors of B; {  and , defined as (A.4) and (A.5) in appendix A,  are respectively 

the right and the left singular vectors of . Obviously, from (19),  

}{ iy

}ix′ }{ iy ′

Ω

ii yUy ′=  and ii xVx ′=                                                 (20)  

And, also from (19), the singular values of B, }{ iλ , are same as the corresponding 

singular values of , {Ω }iλ′ . 

Suppose that the noise-free matrix A should have a rank of r, i.e. . 

Combining (5), (19) and (20), the closest rank-r approximation of B is  

∑
=

=
r

i

T
iii

1
VUA κ

TrT
r

i

T
iii

r

i

T
iii

r VUVxyUxyB Ω=′′′== ∑∑
==

)(
11
λλ                             (21) 

Then 

2

,
,,

2 )(||||
Fji

T
jiji

r
jiF

r ∑ Λ−Ω=− VUAB                                    (22) 
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 where mmR ,∈Λ ,  if 0, =Λ ji )},(,),2,2(),1,1{(),( rrji L∉  and iii κ=Λ ,  for . 

Due to the mutual orthonormality among any , we have the following formula: 

),,1( ri L=

T
ji VU

22||||
F

r
F

r ΛΩAB −=−                                              (23) 

According to the perturbation theory in section 3.2, the first order perturbation of 

 (to see the definition of {T
iii xy ′′′λ }iλ′ , { }ix′  and }{ iy ′  in (A.3-A.5), in appendix A), for 

example , is: T
111 xy ′′′λ








 +
≈








′

′′
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higher-order terms have been dropped. Similarly, the first-order perturbations of , 

for ( , can be obtained. 
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By combining such results as (24), it is easy to obtain 
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m
rrmABE ji

r
ji

2

,,
2|| −

=− σ                                           (27) 

Obviously, (27) is a special case of (1) for square matrices, where n=m. 

4.2 Case of multiple singular value 

As in the theorem 4, suppose the first k (k≤r) singular values of A are same. 

Following the notation in theorem 4, we similarly have, as done in section 4.1: 
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By the same techniques as in section 4.1, the first-order perturbation of Ω  has the 

following form (please note the similar form between (17, 18) and (A.4, A.5) and the fact 

that the up-left k×k submatrix of 

r′

Ω′ , kk :1,:1Ω′ , is a diagonal matrix.): 
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Then, 
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where  and Y are same as those in (25), and E and F are defined in theorem 4. 

Obviously, the same result, as (27), has been obtained. 

Λ

4.3 Extension to the rectangular matrix 

As stated in section 3.2, we only have to consider the first r largest singular 

values. Thus, in the cases of rectangular matrices, the perturbation theory concerning the 

singular values/vectors still holds and the performance analysis, in section 4.1 and section 

4.2, can be easily extended to the rectangular matrices. Here, we only present the final 

result, omitting the tedious mathematical deduction, which is almost same as that in 

section 4.1 and section 4.2. Suppose the signal matrix, A, and noise matrix, N, lie in kmR ,  

. Other conditions stay same as in section 4.1. ),( rkm ≥

YΛΩ =−r  
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where  
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mk
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r
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2

,, || −+
=− σ                                          (31) 

which is the same as (1). As ∞→m , while k is a constant, 
k
rABE ji

r
ji σ→− || ,, , a non-

zero constant. As suggested by (2), it is impossible to reconstruct 3D scene to arbitrary 

accuracy by the factorization method using an affine camera model, by only increasing 

the number of the frames (while keeping the number of the feature points unchanged). 

This contrasts with the claim that 3D scene could be reconstructed to arbitrary accuracy 

given enough frames [31]. However, we recognise the need for caution, our setting is not 

exactly the same as that of [31], where the perspective model was adopted. 

5. Learning capacity of LSA-based recognition system 

In this section, we analyze the performance of LSA-based recognition systems 

when the test image is correctly identified. Under such an assumption, there is still some 

error, as stated in the introduction, because of the noise in the basis images and the noise 

in the test image. In the following, we analyze the effect of this noise on the recognition 

system (also by the means of first-order perturbation theory). 
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Before we motivate the performance analysis of the LSA-based recognition 

system, we present a simple description of the LSA-based face recognition algorithm 

[3,7,8]. It consists of two steps: the off-line learning stage and the on-line recognition 

stage. In the learning stage, the image basis is obtained in this way: a set of learning 

images for one face is arranged as a learning matrix A so that each image is regarded as 

one column of the learning matrix A. Suppose the face image has a dimension of m, and n 

learning samples are collected. nmR ,∈A . The r (r<<m and nr ≤ ) basis images can be 

obtained as the first r left singular vectors of A, which correspond to the r largest singular 

values. In the on-line recognition stage, a test image is projected on the r basis images and 

its distance to the image basis is used for recognition. 

5.1 Perturbation of the basis images 

First, we analyze the learning stage, by using the matrix perturbation theory in 

sections 3.2 and 3.3. By SVD, the low-dimension subspaces,  and 

, as defined in theorem 2, are obtained. In some cases, such as in 

face recognition, the consequent step is contingent on an accurate basis. Here, we only 

consider the subspace : U , where 

],,,[ 21 r
r yyyU L=′

],,,[ 21 r
r xxxV L=′

rU′ UH=′ r
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Note: From (32), we can roughly see that, for different singular vectors { , their 

perturbations  have been corrupted, to a different extent, which depends on their 

strength (more formally, on their corresponding singular values). If m>>r, the corruption 

comes mostly from { . Obviously, the corruption in 

}iU

}{ iy

)}(| rii >U )( rii ≤y  is approximately 

inversely proportional to its corresponding singular value, iκ . Thus,  can be considered 

cleanest, while  the dirtiest. In section 5.2, we will return to this point when the 

projection error is analyzed. 

1y

ry

Furthermore, to decompose H into: GFEH ++= , where E  
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5.2 Projection of a new test image on the basis images 

The underlying noise-free subspace . Suppose a noise 

corrupted test image p, to be identified, is observed, and the underlying truth is q: q

UE
0

I
UU =








=

×− rrm

rr

)(

Uf=  

and . Because q , only the first r components of f are possibly non-

zeroes, i.e. . In practice, the noise-corrupted test image has to 

be projected on the noise-corrupted basis in the recognition system because the noise free 

basis is always unknown. More formally, the projection error of p on  is used: 

)( gfUp +=

f[=f

rU∈

r 0,,0, L Tff ],,, 21 L

r′U
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where  has same components as g, except its first r zeroes, i.e. 

. And f . Note, in (35), the 2-order and 

higher-order terms have been dropped: F, G, and g can possibly approach 0. From (35), 

g′

,L T
mr gg ],,,0,0,0[ 1 L+=′g T

rfff ],,,[ 21 L=′

TT
r

Trr ],1][,,,,[ 21 hCCCgUpUUp −′′′′=′′− L                              (36) 

F

TT
r

F

Trr ],1][,,,,[ 21 hCCCgpUUp −′′′′=′′− L                           (37) 

where C  and .  T
imiriri CCC ],,,,0,,0[ ,,2,1 LL ++=′ T

rrff ]/,,/[ 11 κκ L=h

We suppose the basis is obtained from n learning samples, i.e., the learning matrix 

is nmR ,∈A

1
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i mg σ≅

, and each entry of A has energy of , and is corrupted with i.i.d. Gaussian 

noise with energy of . It is also assumed that the test image has energy of  and is 

corrupted with noise of . , , , and 
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Obviously, from (38), the projection error is contingent on the relationship 

between {  and {}if }iκ . From G in (34), and (38), it can be concluded that the basis  

that corresponds to the largest singular value is the cleanest, and that the basis y  that 

corresponds to the least singular value is the dirtiest. The cleanness of the j

1y

jy

r

th basis , 

here, is measured by the projection error, in (38), which is introduced by the jth unit-norm 

basis image. For a random test image, the best and worst performance is: 

2
1

2

22
2

2
1

1

2

22 )()()()(
r

r

i
i

lt
F

Trr

r

i
i

lt

f
rmrm

f
rmrm

κ
σσ

κ
σσ

∑∑
== −+−≤′′−≤−+− pUUp    (40) 

2

2
22

2

2
1

2
22 )()()()(

r

s
lt

F

Trrs
lt

m
rmrm

m
rmrm

κ
σ

σσ
κ
σ

σσ −+−≤′′−≤−+− pUUp      (41) 

where 2
1

2
2 κ

σ
κ ≤≤

r
mn s

r . Define, furthermore, : 22
sii mnc σκ =

22
2

2

1

2 )()( l
r

t
F

Trr
lt nc

rmrm
nc

rmrm σσσσ −
+−≤′′−≤

−
+− pUUp                (42) 

5.3 Performance analysis over the learning samples 

We have given the best and the worst performance analysis of the recognition 

system. Next, we want to analyze the average performance of the system when we test the 

basis on the whole learning examples, i.e. all the images that are used to obtain the basis 

images. 
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From (5),  
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It can be easily proved that n
rrmrm l

t

2
2 )()( σσ −+−

2
iEf

 is the expectation for any 

test sets when the r largest singular values of the learning matrix A are equivalent. 

Moreover, from (48), this is also the best expectation performance over a random sample 

set, where the randomness means that  in (38) should be statistically equivalent.  

From this formula, (45), we can see clearly the effects of all the parameters in the 

recognition system. Given that the noise in the learning samples and in the test image, 

compared with the signal, is small, the performance can be regarded to be independent of 

the signal level. As m approaches a very large number, compared with r, the SSD is 

almost linearly dependent on m. As the number of the learning samples, n, increases, the 

recognition system improves: the error from the basis images decreases, and as n 

approaches infinite, the error from the basis images approaches zero. However, the error 

from the test image can’t be reduced except by having a cleaner image. 

Another measure, used in the recognition system, is the angle between the test 

image and the basis images: 
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Supposing m>>r, the angle is independent of the size of the object, and depends 

on the energy level of the signal and the noise (in the learning samples and in the test 

image). As the size of the learning samples, n, increases, the system improves: the error 

from the basis images approaches zero and the error from the test image gradually 

dominates in the total error. 

5.4 The optimal learning set 

Suppose that the expectation of the test images, i.e. { , in (38), is known. How 

should we design the recognition system: specifically, how to select the learning samples, 

so that the system, concerning the expectation, has the best performance?  Obviously, 

only the second term in (38) is dependent on the learning samples. The problem is: 

}2
if

∑ 2

2

min
i

if
κ

, subject to Ci =∑ 2κ                                      (47) 

Ci =∑ 2κ  means that, when the dimension, m, and the size, n, of the learning samples is 

large enough, the signal energy, ∑ 2
iκ , should be approximately . By using a 

Lagrange multiplier, the minimum can be obtained iff 

2
smnσ

Consf

i

i ≡2κ
                                                         (48) 

From (48), we can draw such a conclusion, however it is a little surprising that the 

basis images, obtained from the n samples of A are not optimal when the test image set is 

also . The reason is that, the basis, corresponding to the largest singular value, is }{ iA
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overlearned in the learning process: from (48), the optimal learning ability, , should 

be proportional to , while  is actually proportional to , as in (44). 

2
iκ

if

*)3

2
iκ

,3

2
if

,

 

 6. Simulation results 

Here, we have to note that it is very difficult to have real data with high precision 

ground truth. Thus, in this section, we present some simulations to verify result 1 and 

result 2*. 

6.1 Simulation of the denoising capacity of SVD 

In a recent paper, an experimental result related the SVD’s denoising performance 

has been reported [5]. In that example, noise with amplitude of 1.5/40=0.037 still resides 

in the approximation matrix: where the noise-free 40×40 matrix, with a rank of 3, had 

been corrupted with zero-mean-and-0.01-variance Gaussian noise. From result 1 we have 

derived, the value should be 0.038. That this is pretty close to the result in [5], confirming 

the theory present here.  

To provide further evidence, we have carried out our own simulations. Here, we 

work on a set of rank-3 matrices. For square matrices, the size of the matrices increases 

from 3 to 200; while for rectangular matrices, the number of the columns remains 

unchanged, staying at 40. The noise level is 0.1. In Matlab notation, 

)(*1.0)(,( columnsrowsrandncolumnsrandnrowsrandn +=M  is the noise-

corrupted matrix. Fig. 1 shows the simulation results of SVD’s denoising performance, 

compared with the expectation from result 1. It can be easily observed that the expected 
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curve almost coincides with the simulation result. In contrast with fig. 1(d-f) (rectangular 

matrices), the curves in fig. 1(a-c) (square matrices) can be observed to continue towards 

zero error, while the error for the rectangular matrices changes little after the number of 

the rows increases to 20 or 40.  
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Fig. 1: The average error that still resides in the approximation matrix. The abscissa denotes the number of the rows of 
the matrices, and the error is on the ordinate. (a-c) are for the square matrices, and (d-f) are for the rectangular 
matrices, who have a constant, 40, columns. There are three curves in every sub-figure: the (approximately) straight 
curve in the upper part denotes the original noise in the noise corrupted matrix, and the smooth/unsmooth curves are 
the expectation/actual error in the approximation matrix respectively. In (a) and (d), the signal and the noise are  
randomly generated. In (b) and (e), the noise levels are normalized, so that the average energy in each entry of the 
matrices is 0.01. In (c) and (f), the signal matrices have 3 equivalent singular values, while the energy level remains 
same. 
 

6.2 Simulation of the learning capacity for LSA-based recognition  

In this section, we present some simulation results concerning the SSD 

performance of the LSA-based recognition system, as stated in section 5. Suppose we 

work on a set of rank 3 subspaces but in a dimension of 100. In this section, the 
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parameters are set as follows: m=100, r=3, 100=sσ , and 1== tl σσ . First, the SSD 

performance of a set of basis images is analyzed, over two test sets: the learning set, from 

which the basis images are obtained, and another random set where its 3 singular values 

have been artificially equalized. Obviously, as the learning sample size approaches 

infinite, the SSD, over two sets, approaches a stable value, as shown in fig. 2-a. Over the 

learning set, the performance, denoted by solid curve, almost coincides with the 

expectation, denoted by dashed curve. Over the random set, the performance is denoted 

by dotted curve. Because the 3 singular values of the random test set have been artificially 

equalized, the best performance over this random set can be obtained only if the learning 

set has 3 equal singular values, from (48). However, the random learning set always has 3 

distinct singular values. Thus, the performance over the random test set is worse than the 

optimal curve, denoted by dashed curve, especially for the small-size learning samples; in 

fact, the performance for the recognition system is very bad, at 5,771.6, 788.1 and 588.1 

respectively, when the learning sample sizes are only 3, 4 and 5; in order to make the 

curves clear, these points have been omitted in fig. 2-a. 

Conversely, next, we first have a random test set, and show the performance of 

different learning sets (different basis images): an optimal learning set, which complies 

with (48), and a random learning set, who has 3 equal singular values. For the random 

learning set, with 3 equal singular values, its performance, denoted by the solid curve, can 

be expected to coincide with the expectation (45), denoted by the dashed curve, as shown 

in fig. 2-b. Obviously, the optimal learning set, complying with (48), has a better 

performance than the random learning set, especially for small learning sizes. Note, if the 

learning set is truly randomly generated, it probably has a very bad SSD performance, 
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especially for a small-size learning set. For example, the rth basis image may be very 

dirty, because the rth singular value of the learning set is comparatively small; while most 

of the energy of the test image comes from this basis image. In such cases, the error from 

the basis images, especially from the rth basis image, will dominate the total error, as can 

be seen from (38). 
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Fig. 2, The dependency of SSD on the size of learning samples.(a) for a learning set, over two test sets: (solid) the 
learning set from which the basis images are obtained, and (dotted) another random set that has 3 equal singular 
values; (b) for a test set, by two learning sets: (dotted) the optimal learning set and (solid) another random learning set 
that has 3 equal singular values. In both subfigures, the dashed curves denote the expectation from (45).  

 

In fig. 3, we show the effects of the three parameters in (45), the size of the 

learning samples, n, the noise level in the learning set, lσ , and the noise level in the test 

set, tσ ; on SSD when the recognition system works over the learning samples. Fig. 3 (a) 

shows the performance of SSD when the noise level in test image is 0.5 (very small). It 

can be easily observed: the square dependency on the noise level in the learning set and 

the decreased effects of the noise in the learning set as the learning size increases. Fig. 3 

(b) shows the performance of SSD when the noise level in learning samples is 0.5 (very 

small). It can be easily observed: the square dependency on the noise level in the test set 
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and its effect is almost independent of the learning size. Fig 3 (c) and (d) show the effect 

of the noise levels of the learning set and the test set when the learning sizes are 3 and 125 

respectively. When the learning size is 3, the noise in learning set has almost a same 

effect on SSD as the noise in test set; when the learning size is 125 (>>3), the noise in 

learning set can be almost neglected if the level is not much higher than that in the test set. 

 
                                          (a)                                                                                           (b) 
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Fig. 3: The effects of three parameters in (43) on SSD. To see the description in the text. 

 

6.3 Relationship with some experimental observations 

Here, we can explain such phenomena previously reported in the computer vision 

literature, by using the analysis in section 4 and section 5. For example, in SFM, the root-

mean-square error of the recovered shape with respect to the true shape was reported in 
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[18]. Fig. 6 in that paper [18] shows that the error approaches a constant value after the 

number of the frames increases to 20 or 40, as almost coincides with the result 1, in 

section 2.2 or the fig. 1 in section 6.1. 

Another two observations are related to result 2, in section 2.2. In [2], it was 

reported that no significant deterioration of the performance was found for LSA-based 

face recognition, if the images were subsampled by 16×16 squares, which means that, m, 

the number of the rows of A, decreases by 1/256. However, the reduced m is still very 

large, about 1000 (>>4 or 9). We can find the explanation from (46): the performance, 

measured by the angel between the test image and the basis images, is almost independent 

of m if m>>r. 

The last, but not the least, (maybe even the most important), observation was that 

“recognition of an object under a particular lighting and pose can be performed reliably 

provided the object has been previously seen under similar circumstances” [8]. A very 

reliable explanation can be found from (38) and (48). For a test image, if it or its similar 

cases have been observed in the learning samples, its {  will probably have a good 

relationship with { , i.e., for a larger ,  is also larger, and vice versa. More 

formally, if (48) holds, the recognition system has a best performance. However, for a test 

image, which is produced under very different lighting conditions from those in the 

learning set, its {  probably has very bad relationship with { . If most of its energy 

comes from the dirtiest basis, which corresponds to the r

}2
if

}2
iκ

}2
if

2
iκ

2
if

}2
iκ

th singular value of the learning 

matrix, from (38), the recognition error is probably very large. This not only explains the 

drawback of PCA-based face recognition, pointed out in [8], but also gives a possible 
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solution, as suggested by (48). For a random test set, the best learning samples should be 

selected this way: to equalize the first r largest singular values as possible. However, we 

do not present any specific strategies for this open, and probably promising, issue. 

6. Conclusion 

The main contribution of this paper is the presentation of a theoretical analysis of 

SVD-based low rank projections: specifically the denoising capacity of SVD (where we 

characterized the error that still resides in the SVD-denoised matrix) and the learning 

capacity of LSA-based recognition systems (where we showed that the projection error 

can be decomposed into two independent sources, one from the test image and the other 

from the basis image). Another contribution of this paper is to fill an apparent gap in the 

literature: the perturbation theory concerning multiple eigenvalues (singular values). 

Appendix A 

In this appendix, we present the proofs of theorem 1-4. Here, we do not follow the 

notation in [34], where an arbitrarily small positive number, ε , was introduced. Because 

we only consider the first-order perturbation, a simpler and straightforward form is used. 

Suppose M has a simple eigenvalue λ , and the corresponding eigenvector is x. If M is 

corrupted with  and  is small enough, the first-order perturbations of the 

eigenvalue and the eigenvector, denoted as 

M∆ M∆

λ∆  and x∆  respectively, will be small 

enough, from Ostrowski’s continuity theorem [34]. Suppose their higher-order terms are 

δλ  and xδ , respectively. From ))())(( xxxxxMM (x δδλλλδ +∆++∆+=+∆+∆+ , we 

have the first-order perturbation, by dropping the higher-order terms:  

xxxxMxMxM ⋅∆+∆⋅+⋅≈⋅∆+∆⋅+⋅ λλλ                             (A.1) 
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Of course, this first-order perturbation is same as that in [34], despite the difference in 

notation. 

A.1 Proof of theorem 1 

Proof: Suppose  and ∑
≠

+=′
ij

jijii c xxx , iii b+=′ λλ . From the first-order perturbation, 

we have iiiii b xxMx ++
ij

jiji c x+i
ij

jijc NxxM ≈+ ∑∑
≠

,
≠

,λλ , and  

iii
ij

jijij bc xNxx =+−∑
≠

)(, λλ                                   (A.2) 

Because M is symmetric and has m distinct eigenvalues, {  are orthogonal to each 

other. Pre-multiplying (A.2) by , we obtain . Pre-multiplying , we 

have 

}ix

ii,βT
ix i

T
iib == Nxx T

jx

ji

ij
ijc

λλ
β
−

= ,
, . 

A.2 Proof of theorem 2 

Proof: Suppose . Obviously, {CΣΩ += }jκ  and {  are respectively the singular 

values and the right/left singular vectors of . First, about 

}je

Σ Ω , we prove the first order 

perturbations of the singular values, iλ′ , the right singular vectors ix′ , and the left singular 

vectors  are respectively iy′

iiii C ,+=′ κλ                                                       (A.3) 

∑
≠ −

+
+=′

ij
j

ji

jiiijj
ii

CC
eex 22

,,

κκ
κκ

                                       (A.4) 

∑
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j

ji

jijiji
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eey 22
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κκ
κκ

                                       (A.5) 
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Suppose iii κκλ ∆+=′ , ∑
≠

+=′
ij

jijii f eex , , and ∑
≠

+=′
ij

jijii g ee ,y  

According the property of SVD, we have iii yx ′′=′Ω λ  and Ω .  Equating their 

first order, we have: 

iii
T xy ′′=′ λ

∑∑
≠≠

+∆+≈Σ++Σ
ij

jijiiiii
ij

jijii gf eeeeCee ,, κκκ                         (A.6) 
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ij

jijiiiii
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jij
T
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T

i
T fg eeeeeCe ,, κκκ                      (A.7) 

Then 

∑∑
≠≠

+∆=+
ij

jijiii
ij

jijji gf eeeCe ,, κκκ                                  (A.8) 

∑∑
≠≠

+∆=+
ij

jijiii
ij

jijji
T fg eeeeC ,, κκκ                                 (A.9) 

First, by equating e , we have i iii C ,=∆κ . And from e  (j )ij ≠ , 
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                                 (A.11) 

So far, (A.3-A.5) have been proved. From 

TT
mmm

T diag VxxyyUVUB ],}[,,{],,[ 111 ′′′′′′≈Ω= LLL λλ                 (A.12) 

B has iλ′ , , and  respectively as its singular values, right and left singular vectors. ixV ′ iyU ′

A.3 Proof of theorem 3 

Proof: From the perturbation expansion about the eigenvectors corresponding to a 

multiple eigenvalue [34], we can suppose  and ∑∑
+==

+=′
m

kj
jij

k

j
jiji fc

1
,

1
, xxx ii λλλ ∆+=′ . 
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Note:  are different from .  can possibly take any value within [0,1], while  

approach zeroes if N is small enough.  

ijc , ijf , ijc ,

M

ijf ,

(

∑
=

k

j
c

1

m,xL

∑
=

k

j 1

i

+j N

1,[x

:1Q k×

iλ∆ ),m

} iy ′′

}iy ′′

k

iii xxN ′′=′+ λ)                                                 (A.13) 

Equating the first order: 
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Then 

∑∑∑
=+=+=

∆+≈+
k

j
jiji

m

kj
jijikm

m

kj
jijj cff

1
,

1
,:1,:1

1
, ] xxcQx λλλ             (A.15) 

where c . Equating the coefficients of  for (T
ikii ccc ],,,[ ,,2,1 L= jx ),,1 kj L= , we have 

iiikk ccQ λ∆=:1,:1                                                 (A.16) 

where  is the left-up  submatrix of Q. If  has k distinct eigenvalues, the 

solution of 

kk :1, k kk :1,:1Q

iλ∆  and c  is unique, as (A.16). Obviously, c is same as S, as defined in the 

theorem. After substituting 

i

 and c  in (A.14), the equality of  for  

produces the first order perturbations of  as in the theorem.  

i jx ,1( kj L+=

ijf ,

A.4 Proof of theorem 4 

Proof: Let Ω  has { }iλ ′′ , {  and {ix ′′ } as its first k singular values, right singular vectors 

and left singular vectors respectively. For , ki > }{ iλ ′′ , { }ix ′′  and { }iy ′′  can be obtained as 

in theorem 2. Thus, we concentrate on the first-order perturbation of { }iλ ′′ , {  and {}ix ′′ , 

for i . ≤
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First, we only consider one singular value and the corresponding singular vector. 

Combining the techniques in the proof of theorem 2 and theorem 3, we assume that the 

first-order perturbations of the right and the left singular vectors, x ′′  and y  respectively, 

have the following forms: 

′′

∑∑
+==

+=′′
m

ki
ii

k

i
ii qp

11
eex                                             (A.17) 

∑∑
+==

+=′′
m
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ii

k

i
ii gf

11
eey                                             (A.18) 

Note:  and  can possibly take any value within [0,1], while  and  approach 

zeroes if N is small enough. Because the singular values of the matrix, M, are the square 

roots of the eigenvalues of . From the continuity of the eigenvalues of MM , the 

singular values of  also obey Ostrowski’s continuity rule. Supposing the corresponding 

singular value is 

ip if iq ig

TMM T

M

κκλ ∆+=′′ , equality of the first order of y ′′xΩ ′′=′′ λ  and  

produces: 

x ′′′′λy =′′ΩT

∑∑∑∑∑
+===+==

+∆+=++
m

ki
ii

k

i
ii

k

i
ii

m

ki
iii

k

i
ii gfpqp

11111
)( eeCee κκκκκ              (A.19) 

∑∑∑∑∑
+===+==

+∆+=++
m

ki
ii

k

i
ii

k

i
i

T
i

m

ki
iii

k

i
ii qpfgf

11111
)()( eeCee κκκκκ           (A.20) 

From (A.19) and (A.20), we have, by equating  (for se ks ,,1L= ): 

s

k

i
isis fCpp )(

1
, κκκ ∆+=+∑

=

                                       (A.21) 

s

k

i
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1
, κκκ ∆+=+∑

=

                                        (A.22) 

In matrix form, they are: 
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fpIC )()( κκκ ∆+=+×kk                                           (A.23) 

pfIC )()( κκκ ∆+=+
×

T
kk

                                          (A.24) 

where  is the left-up k by k submatrix of C, and 

. Obviously, 

kk×C

f ,2 L

T
kppp ],,,[ 21 L=p  

T
kff ],,[ 1=f  κκ ∆+ , p and f are respectively the singular value, the 

right and the left singular vectors of IC κ+×kk

I

; and p and f correspond to the columns of 

E and F in the theorem. C κ+×kk

i

 just has k singular values, right and left singular 

vectors, which correspond to { }λ ′′ , { }ix ′′  and { }iy ′′ , for i k≤ , of Ω . 

Equating the e  in (A.19) and (A.20), for t , we have t k>

ttt

k

l
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Note for t>k and ,  and Ckl ≤ ltltC ,, Ω= tltl ,, Ω= . And, suppose we work on the ith (for 

) singular value: ki ≤≤1

it
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j
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Combining (A.23-24) and (A.27-28),  
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are respectively the right and left singular vectors of Ω . After the system transformation 

as (15), the first k left/right singular vectors of Ω′  are as defined in (17, 18). 
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