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Abstract: In this paper, we investigate solving the constrained quadratic program for Support 
Vector Machine classification formulation by solving a constrained set of linear equations written 
in matrix form. We have applied this form in our previous work and have observed its validity 
through empirical results. Several other researchers have proposed optimization algorithms, 
which solved a linear minimization form similar in nature. We first derive this linear form 
through the use of convex mathematical programming and rewrite it in matrix form. We attempt 
to reconcile our form with that which has been popularly used. 
 

I. INTRODUCTION 
The Support Vector Machine(SVM) formulation is a supervised learning formulation introduced 

by Vapnik[1] for pattern recognition. This formulation embodies the Structural Risk Minimization 
principle proposed by Vapnik in his pioneering of statistical learning theory where the performance of 
the SVM binary classifier is determined by controlling its capacity and minimizing the training error on 
the data set. The SVM classifier problem is generally treated using mathematical programming 
methods which results in a constrained quadratic program obtained from Lagrange Theory. The 
constrained Lagrange for the SVM classifier is a quadratic program that generally requires the use of 
interior point methods, activesets or some form of chunking[2] which are somewhat complex to 
implement for first time users of Support Vector Machines. Furthermore, the standard Lagrange Dual 
results in an objective function subject to an equality constraint and bounded Lagrange Multipliers 
which require enforcement at each stage of the iteration.  

 
Several researchers have proposed optimization algorithms[3-5] that solve a linear program 

instead. They have partioned their data into subsets and iterated on individual subsets. This amounts to 
solving a decomposed problem, hence the apt name of decomposition methods. The convergence of the 
decomposition methods have been examined by[6]. For now, this method seems to be popular and easy 
to implement with comparable optimization times. 

 
In this paper, we proceed further by showing that this linear progam can be written as a set of 

linear equations which surprisingly results in minimizing the training error on a data set. Futhermore 
we show this is equivalent to obtaining the solution to SVM classification which also enforces 
Structural Risk Minimization. We first attempt to explore the duality properties of the SVM quadratic 
program. We then show that solving a constrained minimization of training errors directly satisfies the 
optimal solution requirements for the dual Lagrange program. The resulting minimization program is a 
linear program with implicit maximization of the margin of the hyperplane. Our linear program 
constitutes solving a set of linear equations which can be written in matrix form and allows simple 
iterative algorithms to obtain the solution. We give a geometrical interpretation of the feasible region of 
solutions resulting from the mathematical programs in the hope of providing a better understanding of 
the underlying mechanics of optimization algorithms. The geometrical view is specific to the set of 
solutions and is different from previous work [7] which examines the construction of the classifier 
based on the geometric distribution of data.  

 
This paper is divided in to sections as follows; section 2 will review the Support Vector Machine 
classifier from a mathematical programming perspective and draw attention to the geometric properties 
resulting from the constraints on the resulting objective functions. Section 3 is devoted to the derivation 
of the linear program and the matrix form while Section 4 will investigate the solution set further. The 
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remainder of the paper will be devoted to a discussion on the possibilities of the matrix form and future 
directions for research. 

II. SUPPORT VECTOR MACHINE CLASSIFICATION 

A. Overview of the Support Vector Classification Formulation  
 

In binary classification, we are given a set of training data which have been labelled according to 
two classes. For historical reasons and the ease of modelling, the labels are choosen to be +1 and -1. 
The data to be classfied is collected in a training set defined here as, 
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The task is then to train a machine to learn the relationship between the data and their respective labels. 
This amounts to learning the geometrical structure of the space in which the two classes of data lie. In 
Support Vector Machines, the idea is to define a boundary separating these two classes as much as 
possible. This can be interpreted as a linear hyperplane in data space where the distance between the 
boundaries of the two classes and the hyperplane is known as the margin of the hyperplane. 
Maximizing the margin of the hyperplane is then equivalent to maximizing the distance between the 
class boundaries. Vapnik suggests that the form of the hyperplane be chosen from family of functions 
with sufficient capacity[1]. In particular, F contains functions for the linearly and non-linearly 
separable hyperplanes;  
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The weight vector, w in (3) is no longer the same expansion as in the linearly separable case (2). In 
fact, the non-linear mapping  and :φ ⊂ ℜ →ℜnx [ ), 1,∈ ∞n m  defines the mapping from data space 
to feature space. Hence the weights in feature space will have a one to one correspondence with the 
elements of . Now for separation in feature space, we would like to obtain the hyperplane with the 
following properties; 

( )φ x
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The conditions in (4) can be described by a linear discriminant function, so that for each element pair 
in , we have; Θ
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The size of the soft-margin is govern by the positive slack variables, iξ  which relax the conditions in  

(4). The distance from the hyperplane to a support vector is 1
w

and the distance between the support 

vectors of one class to the other class is simply 2
w

 by geometry. The SVM margin maximization 

problem is then formulated as; 
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The parameter C can be interpreted as a regularization parameter which controls the tradeoff between 
generalization accuracy and the number of training errors. A larger C generally results in lower training 
errors but poorer prediction accuracy.  
 

The program in P.1 is difficult to solve using practical optimization methods. However, duality 
theory allows us to transform a program to an easier  and more practical version to solve. Duality in 
optimization theory was mainly developed by Fenchel, Kuhn and Tucker, Rockafeller, Dorn, Wolfe 
and many others[8-11]. Their theorems mainly contributed to the understanding of the popular and 
important Lagrange Theory which describes how to obtain an equivalent dual program of a 
mathematical program. In summary, suppose we have a mathematical program of the following form; 
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If the objective function , equality constraints ( )ℑ w ( )ig w  and inequality constraints  all 

have smooth first partial derivatives which are linearly independent, there exists scalars 
( )ih w
, 0α β ≥  

known as Lagrange Multipliers so that we can write; 
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The program A.II is the dual to the program A.I and the solution to it is also a solution to A.I. 

Kuhn and Tucker later generalized this duality to include non-differentiable functions by introducing a 
saddle point theorem. It turns out that when the objective functions are non-differentiable, any saddle 
point of A.II is also a solution to A.I. We now apply Lagrange Theory to solve (6) giving us the 
Lagrange Primal problem of the following form;  
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The program P.2 is popularly solved through the use of its dual representation which is found by 
incorporating the gradient condition in P.2 into the objective function and eliminating the primal 
variables. The stationary partial gradients of P.2 are given by; 
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We then eliminate the primal variables through back substitution, giving us the Lagrange Dual; 
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In P.3 we find that the feature vectors exist as dot products and can be represented by a kernel function 
using Mercer’s Theorem. The formulation avoids the task of explicitly specifying the feature space 
mapping and we simply have to choose a kernel function; 
 

 ( , ) ( ), ( )ϕ ϕ=i j i jK x x x x                                                                        (12) 
 
When solving the dual programs P.3, we can derive the following dual hyperplane form expressed 
solely in terms of the Lagrange Multipliers by using the gradient condition in (10) to substitute for  (4); 
                          

                                                                                       (13)                                               
1

( ) ( , )α
=

= ∑
l

i i i
i

f x y K x x b+

*
 
The SVM solution is the vectors * αw ,  which satisfy P.1-P.3 giving the trained Support Vector 
Classifier defined by the decision functions;         
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The asterisk denotes the optimal values of the variables and we should state that the form of (14) is 
only practical for linearly separable Support Vector Machine classifiers. It should be noted that the 
solution is sparse, meaning that a lot of 0α =i

0
 and the decision function,  could be represented 

solely by the Support Vectors, (i.e.
( )f x

α ≠i ). 

III. A  PRACTICAL LINEAR PROGRAM: MINIMIZATION OF TRAINING ERRORS 
 

The dual form of P.3 is in essence a constrained quadratic program which requires optimizers that 
use activesets, interior point methods and so on. However, simpler programs have been devised to 
solve a different problem to P.3 choosing instead to solve the following program; 
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Their algorithms terminate using a reformulated Karush-Kuhn-Tucker (KKT) conditions[12]; 
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Most of the successful SVM optimization algorithms mentioned before, including the popular SMO 
and SVMlight further use a decomposition method, first proposed by Osuna[13] to tackle the problem 
of memory with large datasets. However [12]have mentioned that decomposition methods tend to be 
slower than Newtonian methods. Unfortunately, Newtonian methods require that the entire kernel 
matrix be kept in memory which may not be possible for datasets that have 10000 points or more. Thus 
a compromise on which algorithm to use when solving a SVM problem has to be made. Therefore, the 
next logical thing which follows is to investigate a possible design of a hybrid optimization algorithm 
that possibly uses some Newtonian or linear iterative update method combined with a form of space 
decomposition to solve P.4. The problem with P.4 is that it is not immediately clear how to apply linear 
iterative methods which are specifically designed to solve a set of linear equations; in particular partial 
differential equations. The motive for this paper is then clear, for to apply these iterative methods we 
have to first establish a system of linear equations closely related to P.4. In the following, we show how 
this is done by deriving (16) from basic principles first and then forming the set of linear equations in 
matrix form.  
 

A. THE GRADIENT OF THE UNCONSTRAINED QUADRATIC PROGRAM 
In this section, we first investigate the unconstrained QP problem of P.3 derived by dropping the 

constraints on the objective function. We can easily rewrite the function ( )ψ α  in matrix form which 
we now define as; 
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The function ( )ψ α  is quadratic in terms of the variable α  (Lagrange Multiplier) and has a 

unique maximum which we denote as *α . As before the asterisk defines the optimal values of the 
α vector, which in this case refers to the unique maximizer. The maximum occurs when all partial 
derivatives vanish or simply the gradients with respect to the vector  become stationary, i.e  α

                                                  
                                                                                                                 (19) ( )*     0          ψ∇ =α

For a quadratic function, this condition is necessary and sufficient (ref kaplan)  in order to obtain 
the optimal vector α  which is the unique maximizer to * ( )ψ α .The gradients of (18) with respect to 
the Lagrange Multipliers, αi  can be found by taking the partial derivatives of (18) which is Gateux-
differentiable giving; 
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We verify the differentiability in the following simple example for ∈ℜα 2 . Let us denote 
( ,=ij i j )K K x x  and expanding the function ( )ψ α , we get; 
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We can clearly obtain (21) from (20) if we set =1i  and we can quickly check that this is true also 

for . We can now generalize this to the entire vector  and compute the maximizer  directly 
by applying (19); 
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The unique maximizer is then found by; 
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Resubstituting this back into (18), provided G is non-singular, we get the maximum value of 
 as; ( )ψ α
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This is somewhat interesting because we can conclude that no matter what the size of the training 

data set, the maximum value possible for P.3 is zero provided the matrix G is nonsingular. The 
constraints in P.3 actually restrict the feasible region of solutions which results in P.3 having a value 
larger than zero. A non-singular G is guranteed by using a positive definite kernel, e.g gaussian kernel 
and provided there are no duplicate examples with opposite labels. We will elaborate on the possiblities 
further arising from this observation in the next section. 

 
It can be shown quickly that if minimize the negative of ( )ψ α , we will end up with the same 

unique solution provided the condition of det  0≠G  on the matrix G holds. This fact is well known 
and, we have a trivial dual of the form; 
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In fact the negative maximization of P.3 is known as the Wolfe dual in the literature (ref smola). 

We now proceed further with a minor observation. Scalar multiples of the function  gives the 
same unique maximizer too. We show this in the following technical lemma. 

( )ψ α

 
Lemma III.1:  Let the quadratic function ( )ψ α  where ∈ℜlα , have a unique maximum denoted 

by . Then for any nonzero scalar *α , ∈ℜk k  the function ( )αψk  possesses the same unique 
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The solution to (26) is found as before when all gradients with respect to the variables are 
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At the maximum point,  which holds if and only if ( ) 0ψ∇ =k α ( ) 0,ψ α∇ = ∀ ∈iα α  and hence 

the solution is also α  *

 
The general element gradient function, (20) by itself seems rather uninteresting, yet it is explicitly 

used as the objective function for the program (16). We know that they have to be zero at the maximum 
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or minimum points of the quadratic function and this is what optimization methods such as gradient 
descent methods iterate on. However, keeping in mind that we are examining the objective function of 
P.3 alone minus the constraints, our previous observation gives us the idea that we could manipulate 
scalar multiples of the gradients of a quadratic function to a form which we could associate easily with. 
We now use the result in Lemma III.1 to tie in with a well-known quantity in the SVM classification 
problem by constructing the following theorem.  

 
Theorem III.1: Let  ( )ψ α  be an unconstrained SVM quadratic function having the form, 
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2
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Let  t  , we can see that the right hand most term is a constant which we can denote by 1= ε  and 

we now rewrite the inequality as ; 
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                                                        ( ) ,  ε→ − ≤ −i E i i   y f x bα                                            (30) 
      
 
We can then set i i bδ ε= −  and see from (28) that 0, 1..δ → ∀ =i i l  implies that *α α→ and 

thus the limit is proved. If G is singular, then ( )ψ α  has a critical point which is non-unique. Hence the 
theorem holds only if G is nonsingular.  

 
The quantity  is better known as the error on a particular training example, or 

simply the training error usually denoted by . We refer to this as the dual form of the training error,  
because incidentally if we examine our discriminant function (5) from the original problem closely, we 
recover the following; 
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This quantity happens to be the training error expressed in terms of the original hyperplane, 

which we believe could be refered to fondly as the primal training error form. The results in the 
Theorem III.1 show that if we set the dual training error for each example to zero, we would obtain 
the unique maximizer, α  to the quadratic function * ( )ψ α . In fact, ensuring zero training error using 
the dual hyperplane form (13) is now shown to be implicitly equivalent to ensuring that the partial 
gradients of ( )ψ α are stationary. Recall that the dual hyperplane form also ensures indirectly that the 
margin’s are maximized in the weight space, w.  
 

B. The Linear Program 
 

We can now construct a constrained linear program by applying the same set of constraints and 
minimizing the sum of the dual training errors instead. We postulate that this is different from direct 
Empirical Risk Minimization because our use of the dual hyperplane form implicitly enforces capacity 
control through minimization of the hyperplane margins. We now have the following mathematical 
program; 

 

                   

( ) ( )
1 1

i

1

minimize   ,

P.5   0
subject to 

0

α

α

α

= =

=

  
ℑ = − +  

  

 ≤ ≤
 

 = 

∑ ∑

∑

l l

i i i i j
i j

l

i i
i

y y K x x

C

y

α b

                                             (31) 

 
In fact, (30) in Theorem III.1 allows us to reconcile (31) with the previous linear program described in 
Joachims etc.  
 
Rewriting  (31), we obtain  
 

                         

( ) ( )

( )

1 1

1 1

,

1 ,

l l

i i i i j
i j

l l

i i i i j
i j

y y K x x

y y K x x b

α α

α

= =

= =

 
ℑ = − + 

 

 
= − + 

 

∑ ∑

∑ ∑

b

 

 
Each element then satisfies; 
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l
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T
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d

d

α ψ ε

ψ ε

ψ ε

ψ

ψ

=

=

=

=

ℑ → ∇ − ≤ −

→ ∇ ≤

→ ∇ − ≤

→ ∇ ≤

→∇ ≤

∑

∑

∑

∑

α

α

α

α

α

i b

 

 
since iε  is the constant from Theorem III.1 and equality is achieved at optimal α . We can now write 
the problem as a system of linear equations solved on a compact domain; 
 

                                         
        
subject to: 

Hu F
u Q

=
∈

                                                                            (32) 

                                               
11 1 1 1 1

1

y y
  u=  F=

y y

l

l ll l l l

K K b
H

K K b

α

α

−    
    =     
    




−     

 

 
The matrix H is better known as the Gram matrix, which is symmetrical, and positive definite provided 
we use a positive definite kernel. The vector of variables u could be written solely, in terms of the 
vector α but this would result in a non-symmetrical matrix H which would be unsuitable for 
acceleration methods suggested in [14]. The region Q is the feasible region of solutions, which will be 
discussed further in the next section. It is appropriate at this point to note that the iterates are bounded 
by this region, and hence optimization speeds using gradient methods or step length searches should 
have different rates of convergence. 
 

We can further incorporate the equality constraint into the objective function through methods of 
elimination. This will be useful for writing the problem in matrix form without the step of computing 
the threshold,b. We note, that the problem formulation commonly used in [5, 15] treats the threshold as 
a Lagrange Multiplier which allows the problem to be formed as a slightly different set of linear 
equations. We first apply some elimination methods in the following sections. 

 
1) Direct Elimination 

 
This is intuitively the simplest method which stems from solving equations with multiple 

variables in linear algebra. Consider the equality constraint expanded as a single equation. We now 
have the following; 

                   
                           1 1 2 2 ...... 0α α α+ l ly y y =

l

                                                                                   (33) 
 
where the elements , , 1...j jy jα ∈ ∈ ∀ =α y . Let us rewrite each element in terms of the 

others, we obtain; 

                     

( )

( )

( )

1 2 2 3 3
1

2 1 1 3 3
2

1 1 2 2 1 1

1 ...

1 ...

1 ...

α α α α

α α α α

α α α α − −

= + +

= + +

= + +

l l

l l

l l
l

y y y
y

y y y
y

y y y
y l

 

Then a particular Lagrange Multiplier can be expressed in the following relationship; 
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1

1α α
=
≠

= ∑
l

j k k
kj
k j

y
y

                                                                      (34) 

 
We can now substitute (34) back into the equation of the objective function P.5 to give; 
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We now obtain the following linear program. 
 

                                      (35) 
( ) ( )

{
1 1 1

i

minimize   ,
P.6

subject to   0

α α

α

= = =

    ℑ = − − +    
     

 ≤ ≤

∑ ∑ ∑
l l l

i k k j j i j
i j k

y y y K x x

C

α b

× −l

 
2) Generalized Elimination Method 

 
The direct elimination method might not be the best method or even practical to implement. A 

generalized elimination method[8] exists which uses a linear transformation on the variable, in this case 
the Lagrange Multiplier to reduce a problem with equality constraints to an unconstrained problem. In 
our case, we show that this method reduces to the direct elimination method. We first note that the 
equality constraint can be written in vector form as; 

 
                                             y                                                                                    (36) 0=Tα
 
Let A and B be a  matrix respectively such that [1  vector and a ( 1)×l l ]:A B  is a non-

singular matrix ; 

                            [ ]  

1 11 1, 1

1 ,

:

−

−

 
 
 =
 
 
  

l

l l l l

a b b

A B

a b b 1

 
Furthermore, let us choose A and B so that 1=TY A  and =TY B 0

Y

. A is generally a  matrix 
if there happens to be -equality constraints, but in our case it is a vector due to the single equality 
constraint. In any case, let us treat A as a generalized left inverse for  so that we can say that; 

×l k
k

                                          
0T

T

=

→ = =

Y α
α A 0 0

 
We state that this is simply the trivial solution of α  and is of course not unique because we can 

define other feasible points by taking any feasible direction from the trivial solution, i.e 
 
                                         α                                                                               (37) T= +A 0 κ
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provided of course that κ is a direction in the linear space { }0=Tκ Y κ  with dimension l . Now, let 

the matrix B, contain linearly independent coloumns, 

1−

{ }1 2 1, ... −lb b b  which can be viewed as reduced 

coordinate directions and the scalars iλ  form the reduced variables of these coordinate directions. Then 
any feasible direction, κ  is given by;  

 

                                          
1

1

λ
−

=

= = ∑
l

i i
i

κ Bλ b                                                                              (38) 

 
Fig III.1 shows an example of the feasible direction in terms of reduced coordinates when 

.  3∈ℜα

α 

y 

yTα=0 

κ 

b2 b1 κ 

AT0=0 

 
Fig III.1: The feasible points of α can be found by taking a step from the trivial point in the feasible direction κ. The reduced 
coordinate vectors b1 and b2  determine the feasible direction, κ.   

The problem that remains now is to choose a suitable matrix B which has linearly independent 
coloumns. We propose one such matrix B derived from the condition =T 0Y B  having the following 
form; 

 

                                         

2 3

3 4 1

1 2 1

α α α
α α α

α α α −

 
 
=

 
 

l

l




B                                                                  (39) 

 
Simplyfing (37), we now have the following α  vector expressed in reduced coordinate directions 

as; 
 

                                                =α Bλ                                                                               (40) 
 

We now can substitute this relationship into (31) to give us the following program; 
 

          
( ) ( )

( )

1

1 1 1,

k

minimize   ,

P.7
1

subject to   0

λ α

α
λ

−

= = = ≠

    
 ℑ = − +         

−  ≤ ≤
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l l l

i k k j i j
i j k k j

k

y y K x

C l

α x b

                              (41) 

 
We note that κ is sometimes known as a feasible correction.  

 

MECSE-7-2003: "Matrix Formulation for the Support Vector Machine Classifier", D. Lai and N. Mani



3) Geometrical Elimination 
 
Our equality constraint is unique because we can also use simple plane geometry to incorporate it 

into the objective function. In our previous discussion, we treated the equality constraint as a 
hyperplane which had a section lying in a convex polyhedra. We now expand this hyperplane idea by 
rewriting (36) in the general hyperplane equation form; 

                 
                                                           ( ). 0− =y α p                                                                   (42) 

 
The normal to the hyperplane is the vector, y and any point on the hyperplane satisfies equation 

(42). The point, p is any point lying on the hyperplane surface. Since the hyperplane passes through the 
origin, then p  is one such point. All we have to do now is to find the general parametric equation 
of the feasible alpha points lying on the plane and substitute it back into the objective function. We 
would have then incorporated the linear equality constraint into the objective function.  

= 0

 
First, let us recall that a hyperplane in the space lℜ  is a l 1− -dimensional affine subspace of 

. We expand (42) to give ,  lℜ
 

                             ( ) ( ) ( )1 1 1 2 2 2 ..... 0l l ly p y p y pα α α− + − + − =                                          
(43) 

 
Now, we can choose any nonzero scalar,  to solve for the corrosponding point ( )iy i ipα − . 

Since this is classification and the scalars are all either 1 or -1, we could choose any point. For the sake 
of this discussion, let us solve for the point lα . We get; 

 

                           ( ) ( ) ( )11 2
1 1 2 2 1 1..... l

l l
l l l

yy y
lp p p

y y y
α α α α−

= −− − − − − − −  

 
If we set , { } { }1 2 1 1 2 1, .... , ....l lα α α λ λ λ− −=  where , 1i i ..lλ−∞ < < ∞ ∀ = , we get the 

following; 
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    = + +
    

         − − − − − −         
          

l

l l
l

l l l

y py p y p
y y y 1

1λl

                       

(44) 
 

We can now simply substitute this relationship into (31) to get the objective function as; 
 

MECSE-7-2003: "Matrix Formulation for the Support Vector Machine Classifier", D. Lai and N. Mani



               

( ) ( )

( ) ( )

( ) ( )

1 1

1 1

1 1 1

1 1

1 1

,

       , ,

       , ,

l l

i j j i j
i j

l l k
k k

i j j i j k l i l
i j k l k

l k
k

i j j i j k k i l
j k k

y y K x x b

y py y K x x y K x x
y

py y K x x y K x x b

α

λ λ
λ

λ λ
λ

= =

− −

= = =

− −

= =

  
ℑ = − +  

   
   

→ − − − +        
   

→ − − − +        

∑ ∑

∑ ∑ ∑

∑ ∑

α

( ) ( )

1

1 1

1 1 1

       , ,

   

l

i

l l k

i j j i j k k i l
i j k

y y K x x y K x x bλ λ

=

− −

= = =



  
→ − − +  

   

∑

∑ ∑ ∑

b

 

We obtain the last step by using the origin as a known point, p on the hyperplane. We then obtain the 
linear program as; 

 

          (45) 
( ) ( ) ( )

{

1 1

1 1 1
minimize   , ,

P.8

subject to   0

l l k

i j j i j k k i l
i j k

k

y y K x x y K x x b

C

λ λ

λ

− −

= = =

   
ℑ = − − +   

    
 ≤ ≤

∑ ∑ ∑α

 
Let us make a note that this is closely similar in nature to the results of the direct elimination and the 
generalized elimination method. In fact, P6-P8 are the same linear program obtained through different 
methods of elimination. The geometrical method gives us a more general form of the linear program in 
terms of known points p which are also feasible solutions . This will be particularly useful for the 
design of a geometrical algorithm which solves the SVM problem based on search directions on the 
hyperplane enforced by the equality constraint. 

α

 

IV. GEOMETRICAL VIEW OF SVM SOLUTIONS 
 

A. Feasible Region of Solutions 
The solution to the P.3-P.8, must lie in the feasible region,  defined by the intersections of the 

constraint set. We denote the region algebraically as follows; 
 

                             

( ) ( )

( ) ( )(
1

1
,

where  , , 0, 0 

α α

α α α α

α

=

=

= ∩

= = −

≥ >

∑

∩
l

i
i

l

i i j j
i

j

H g

g y H C

i j C

)0≤                                            (46) 

 
The set H is of size  , and forms a -sided convex polyhedra lying entirely in the positive 

quadrant of the  space with each element 
l l

lℜ jh  forming a boundary plane. Recall that l  is the number 
of training examples and hence directly influences the dimension of the polyhedra. The region dictated 
by the equality constraint g is a linear manifold or hyperplane intersecting the polyhedra passing 
through the origin. Our optimal solution, α must lie in the region  or in other words the optimal 

vector of Lagrange Multipliers is a convex subset of , i.e 

*

* ∈α .   
 
We illustrate this in the following example, for 3l = , we have the following 3-dimension 

polyhedra having the form of a cube in  Fig IV.1 below. The linear manifold is now the plane 
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1
i i

i
g yα α

=

= ∑

ℑ

 which intersects the cube and the feasible region,  of solutions is now restricted to 

the surface of the plane contained within the region of the cube. 

ℑ

( )g α

 

 

α3 

(0,0,0) 

(C,C,C) 

  C 

Q 

  C 

  C 

3

1
i i

i

yα
=

=∑  
α1 

α2 

 
 Fig IV.1: The feasible region Q, for  a classification problem with just 3 Lagrange Multipliers. 

 
The problem with our now bounded region of solutions is that there could exist many linear 

manifolds (possibly infinite) all parallel to each other which gives a local minimum for P.3 and P.4. 
Optimization programs may then have slower rates of convergence if the solution set oscillates between 
these manifolds. In fact, Keerthi[16] has indirectly noted this problem with the Sequential Minimal 
Optimization(SMO) algorithm which he attributes to the pessimistic updates of the threshold, b in the 
original SMO. If we look at the derivations of P.3 and P.4, we see that the linear restriction arises 
directly from treating the threshold b, as a variable and is further evidence of our assertion that many 
possible linear manifolds exist which give equally good feasible regions. Adjusting the threshold b 
during optimization, is then geometrically interpreted as alternating between the possible linear 
manifolds whilst looking for the optimal solution. Note that the position of the final seperating 
hyperplane is also determined by the threshold b.    

 
There are a number of ways to avoid this problem. Firstly, we could remove the linear restriction 

completely from the quadratic program and end up with a feasible region which is a convex polyhedra 
due to H alone. We have discovered one way through the use of a special class of semiparametric 
functions which we have previously proposed in [14], but work on the generalization of this model has 
not yet been attempted. Others chose to incorporate the threshold as a Lagrange Multiplier instead[17] 
but this still requires explicit computation of b in a different form. We have proposed several ways to 
eliminate the equality constraint. We may obtain a local solution instead but end up with an easier 
implementation with possibly better rates of convergence. However, further investigation is need to 
assertain the effect of elimination on the generalization of the trained model.   

 

B. Dual Hyperplane Form 
 
It is interesting to note that P.3 simplifies P.2 greatly by reducing the objective function to just 

one variable, that is the Lagrange Multiplier. In fact, what is happening is that we are now looking for 
the solution to  where the weight vector, w is optimal provided ( * ,w α) * ( )* *,ℑ w α  is a saddle point 

of . This is guranteed anyway since is a saddle point obtained from the stationary gradient of P.2 
in (10). Then by Kuhn and Tucker’s saddle point theorem[18], we are assured that there exists an 

*w
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optimal value for α  so that  is a saddle point for P.3 and hence also a solution to P.2. 
This allows us to assert that the dual hyperplane form (13) is derived only when is a saddle point for 
P.2 and hence implicitly embodies the minimization of the hyperplane margin. We note though that a 
modfication of (13) has been used by Osuna[19] to approximate the decision surface, but his form can 
be shown to reduce to the original form by setting 

0 0≥ ( *
0,w α )

i

w

i iβ α δ= +  where iδ is some slack or tolerance 
variable. In our case, we argue that using this form in any objective function, ( ,w )αℑ  implies 
searching for the saddle point of , given that we have found the saddle point of w or in short, 
maximized the margin of the hyperplane.  Hence we conclude that the linear minimization programs 
solved by  Joachims et. al. and also our proposed system of equations indirectly solve the quadratic 
Support Vector Machine program for classification. 

α

α

 

V. DISCUSSION 
 

The derivation of programs P6-P8 is also indirectly related to solving a linear complementarity 
problem[8] which has been applied in some game theory and boundary value problems. Dantzig-Wolfe 
have used a principle pivoting method[9] which is an iterative method to find the solution to these kind 
of problems but in general all methods are closely related to solving a Linear Program and involves 
row operations on the equations in the objective function. Mangasarian[20, 21] further examines the 
solutions to linear complementarity programs if the objective function is concave. Concavity gurantees 
a solution which is difficult to prove for functions otherwise i.e nonconcave. However, the feasible 
region for our linear programs is bounded and it is known that there is a solution with every minimizer 
a relative boundary point and at least one minimizer an extreme point[22]. Geometrically, extreme 
points are vertices of the convex polyhedra which is the feasible region of solutions and if the unique 
minimizer to the unconstrained problem lies outside the polyhedra, the constrained minimizer lies on a 
boundary plane with at least one such minimizer being the vertex of the polyhedra.  

 
The method of geometrical elimination which resulted in P8 interestingly gives rise to a number 

of possibilities for incremental SVM methods. Incremental methods which investigate different C 
parameters actually look at convex polyhedra of different sizes but the region of feasible solutions 
remain bounded to the surface of the hyperplane (42). The solution vector,  of one C is now the 
known point p for the next value of C. Based on this, it is possible to calculate notions of distances 
between optimal solutions using the distances between the points of the surface or even angles between 
different hyperplanes resulting from different normal vectors y which arise due to additional input data. 

 
The matrix equations of the linear program allows us to apply modified linear iterative methods 

and other methods that operate on sets of linear equations. This was meant to demonstrate a fast and 
simple way of implementing Support Vector Machines for classification. The single iterate updates 
gives us the possiblity of using heuristics to choose the next point of update. We can cycle through the 
subsets of Support Vectors, arrange them in order of magnitudes or size of change and so on. Different 
datasets work well with different heuristics and we have yet to gain a full comprehension of the reasons 
for this observation. The convergence of this method has yet to be proved but we conjecture that it is 
similar to that of decomposition algorithms and activeset methods. The analysis of  the rates of 
convergence of such methods will be the direction of our future work. In particular, we would be 
investigating the effect of ordering the elements in the working subsets on the convergence speeds.   

 

VI. CONCLUSION 
We have transformed the quadratic program SVM classification problem to a set of linear 

equations which can be represented by a matrix equation solved on a compact set. Solving the system 
indirectly maximizes the margin of the hyperplane by using the dual hyperplane form. Future work 
would involve investigating this program applied to the Support Vector Regression model. Another 
interesting direction would be to investigate the effect of fixing the linear manifold on generalization 
accuracy. In fact, our previous work on semiparametric SVM classifiers can be interpreted as one 
example of fixing the linear manifold. The geometrical interpretation of the region of feasible solutions 
provides interesting ideas for the construction of optimization algorithms based on gradient flows in 
this bounded region. 
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