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Abstract 
 
In this paper we present a new method for 2D object 
detection. This method uses the Hough transform as a 
robust platform for edge detection and extends it in the 
scale space. This extension enables the Hough 
transform to detect the scale changes within an image.  
The method starts with a linear scale-space 
representation of the image. At each level of this space 
edges are extracted through a normalized derivative 
function and accumulated in the Hough space. Higher 
features are mapped from the Hough space into the 
spatial space and then tagged with a normalized 
descriptor. The feature with the maximum descriptor 
over scale is then selected as the object of interest   
 The new approach is applied to the classical 
problem of the license plate detection. This problem is 
characterized by a unique solution that can be easily 
verified by the human observation. 
 
1. Introduction 
 
Object detection is an old problem that remains 
essentially unsolved. In this paper we present a general 
approach for texture-based object detection. The 
algorithm starts by detecting interest points at different 
levels of the scale space.  

An interest point is any point in the image that is 
characterized by distinctive neighboring features. This 
includes L-corners, T-junctions, Y-junctions and 
textured areas. In [1] the interest point detectors are 
categorized into three main groups: Contour-based 
methods, Intensity-based methods and Parametric-
model based methods. The Contour-based methods 
define interest points either at the intersections of 
grouped line segments or at the maximum curvature of 
approximated contours. Intensity-based methods define 
interest points through the illumination distribution of 
the neighborhood. In most cases these algorithms are 
based on the second moment matrix, which is a 
mathematical measure for the neighboring gradient 

distribution. Parametric-based methods define interest 
points at regions that fit a predefined analytical 
intensity model.  

Interest point detectors are extremely sensitive to 
image scale variations: they have different spatial 
locations at different image scales. This problem was 
addressed in the recent work of [2, 3, 4 and 5]. Schmid 
and Mohr [2] use the Harris detector to extract interest 
points in the form of circular patches around corners. 
These patches are defined to be rotationally invariant. 
The work of [3 and 4] extends this idea to true scale 
invariance by defining a normalized descriptor for each 
interest point over the scale-space. Lowe [3] defines the 
descriptor as the maximum output of a difference of 
Gaussian filters. Lindeberg [4] defines the descriptor as 
the maxima of a scale-normalized Laplacian as well as 
the magnitude of a normalized gradient. Mikolajczyk 
and Schmid [5] use the descriptor of Lindeberg to 
define the so-called Harris-Laplacian detector. In this 
detector a scale-space representation is built for the 
Harris function of eq.1 by the second moment matrix 
C(z,s), where z is the spatial coordinates of the interest 
point, Lx and Ly the x and y gradients of z respectively, 
G the Guassian kernel and s  the scale of G. At each 
level s of the scale-space, candidate points with the 
local spatial maximum of the Harris function are 
selected. Interest points are then defined as the 
candidates with the local-scale maximum of the 
Laplacian function.      
 
  Harris function =    det(C) - αtrace2(C)            (1)                                                                                                    
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Tuytelaars and Van Gool [7] define scale-invariant 
regions in the form of parallelograms that start from a 
corner and its nearby edges. Each edge is extended to a 
point having a maximum photometric quantity. The 
corner together with the two extended edges form a 
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parallelogram. The extracted parallelograms are 
invariant to scale and geometric transformations but 
they are extremely dependent on the initially extracted 
corners. To solve this problem Tuytelaars and Van 
Gool [8] propose a complementary approach. In this 
approach a non-maximum suppression algorithm 
extracts interest points with local maximum in the 
image intensity. These interest points are characterized 
by a non-planar neighborhood and any slight change in 
their spatial location does not affect the constructed 
regions. Next the image intensities along a finite set of 
rays originating from each interest point are detected 
and the point with the maximum illumination 
difference along each ray is then selected. The set of 
selected points for each interest point are then linked to 
enclose an affinally invariant region. Finally an ellipse 
with similar shape, up to the second moment, replaces 
the detected region. In all the above techniques the size 
of detected regions are small, which makes them robust 
against occlusion and both background and viewpoint 
changes. Therefore these techniques are suitable for 
applications that include matching such as indexing 
and stereo correspondences.  

In this paper we present an approach that detects 
textured objects at different scales. The success of this 
approach is based on [1] a robust implementation of the 
Hough transform and [2] a normalized derivative 
descriptor that characterizes textured regions over both 
spatial and scale spaces. In this approach the image is 
initially represented by a linear scale-space. At each 
level of the scale-space; (a) interest points are detected 
by a normalized derivative function (i.e. value under Σ 
of eq.6), accumulated in the Hough-space and then 
mapped to the spatial space as line segments, (b) 
intersections between line segments are built up into 
rectangular regions and each region is identified by a 
normalized descriptor. Finally the region with the 
maximum descriptor over both scale and spatial spaces 
is selected as the target object.  
 
Overview. This paper is organized as follows. In 
section 2 we discuss different implementations for the 
scale-space. The Hough-space is summarized in section 
3. The proposed algorithm for license plate detection is 
described in section 4 and finally experimental results 
are presented in section 5.  
 
2. Scale-space  
 
An image represented at the finest scale usually 
contains a substantial amount of spurious information. 
To identify the coarser details of the image it needs to 
be smoothed with a neighborhood operator or kernel 
where the increased amount of smoothing suppresses 

structures with characteristic length less than the kernel 
size. The Gaussian distribution as described in the 
literature of Lindeberg and Romeny [11] is considered 
the most appropriate neighborhood operator. The stack 
of images as a function of increasing inner scale is 
known as the linear scale-space. 
 
2.1 Space Representation 
 
A linear scale-space is defined by the solution of the 
following diffusion equation; 
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with the initial condition that L(z, 0) is equal to the 
original image I(z), ∇ 2 is the laplacian kernel and z is 
the spatial coordinates of the interest point. 
Equivalently a linear scale-space can be defined by the 
convolution with the Guassian kernel of eq.3. 
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To reduce the amount of smoothing around edges 
Perona and Malik [6] propose the use of anisotropic 
diffusion as a generalization of the linear scale space 
representation.  
                                                

    ( )),(),(
2
1),( 2 szLszh

s
szL

∇∇=
∂

∂               (4) 
 
where h(z, s) is defined to be dependant on the image 
gradient. A number of possible solutions of h(z, s) are 
presented by eq.5 where k defines the range of 
gradients in an image and thus controls the amount of 
smoothing at point z.    
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2.2 Space Dimensionality  
 
The dimension of the scale-space is represented by an 
initial scale σ0, final scale σf and a number of levels n. 
It can also be represented by σo, a factor k of scale 
change between successive levels and the number n. In 
our application we have adopted the exponential 
scheme of [9] for gradual incremental changes in the 
successive levels of the scale.  This scheme is defined 
by sm= kms0 where k is the scale change factor, m the 
number of levels, s0 the initial scale and sm the scale at 
level m.  
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3. Hough-space  
 
The Hough space is usually used to map the interest 
points to higher featured shapes such as line segments, 
circles and ellipses. In our application we are interested 
in detecting straight lines and therefore the two 
dimensions of the Hough space are the perpendicular 
distance r from the origin and the orientation θ of r 
with respect to the x-axis. As we intend to impose a 
new scale-dimension to this space, the resolution of r 
and θ becomes a critical constraint on the feasibility of 
the new approach.  
The resolution of r depends on the size of the image 
and the area, around the origin, within which we intend 
to detect the interest points. In our application the 
license plate can be located anywhere within the image 
and therefore the image size remains an upper bound 
on the range of the r-dimension. The shape of the 
license plate can be modeled as an upright rectangle. 
This assumption requires few bins in the θ-dimension 
and therefore it becomes quite feasible to add a new 
dimension to the Hough space.     

A major disadvantage in the Hough transform is 
that it cannot identify the right scale of a detected 
interest point. This leads in most cases to the 
accumulation of interest points of different scales in a 
single (θ, r) location within the Hough space, which in 
turn results in the detection of spurious features that 
affects the localization accuracy of the plate detector.  
For the Hough transform to perform reliably interest 
points of different scales must be accumulated at 
different locations. This suggests we add a new scale-
dimension to the Hough transform. Taking a linear 
scale-space representation of the image, at each level of 
this space interest points with values under Σ in eq.6 
greater than a predefined threshold G are accumulated 
in a separate Hough array.   

For an accurate localization of the license plate the 
value of G must be defined to be proportional to the 
image illumination. In order to detect the value of G 
automatically a fourth dimension was added to the 
Hough transform. The new dimension is represented by 
a range of n thresholds where at each threshold step 
new interest points are detected and accumulated in the 
Hough array. To prove the validity of the new approach 
different tests were carried out with a wide range of 
images being captured at different illumination levels.  

At this stage it is essential to define a characteristic 
descriptor for the detected regions. The descriptor must 
first identify the contents of the region and then sustain 
a maximum value for license plates over spatial, scale 
and gradient dimensions.  
 

4. License Plate Detection 
 
A good survey of the recently developed approaches 
for license plate detection is presented in [10]. Among 
these approaches are a number of algorithms that rely 
on the fact that license plates are characterized by a 
unique and homogenous color (gray-level). A different 
approach focuses on the high contrasts between the 
plate numbers and the background. A third approach 
detects plates through the well-known method of 
colored-texture analysis. In our approach we define the 
license plate as a highly textured region with a 
significant amount of variations in brightness. This 
definition suits the scale-space representation because 
contrasts are defined by derivative functions and again 
normalized derivative functions have the ability to 
localize characteristic regions within the scale-space. 
 
4.1 License Plate Classifiers  
 
Two different classifiers C1 and C2 have been defined 
for the license plate. C1 and C2 define the brightness 
and contrast levels respectively of a detected region R 
and we will refer to them as the histogram and texture 
measures. To calculate C1 we first build a histogram for 
R and then identify the region within the histogram that 
contains the brightest p% of the pixels of R. The upper 
and lower bounds of this region are the rightmost 
column of the histogram (i.e. brightest color) and 
column C1 respectively. The higher the value of C1 the 
more probable R is considered a license plate. If C1 is 
less than a predefined threshold dth then R is rejected. 
The problem with the histogram measure is that it is 
totally dependent on the illumination and it usually 
fails with darker images.   
 
 
 
 
 
  
 
 
 
 
 
 
 
 
The texture measure is defined by eq.6 as the average 
magnitude of the normalized Sobel gradients of region 
R, where lx and ly are the gradients in the x and y 

Figure.1 histogram of region R with threshold dth  
(a) probably R is a license plate i.e. C1 >dth  (b) R 
is not a license plate i.e. C1< dth. 

       C1      dth       (b)        dth             (a)   
                  

Region 2Region 1

     C1 

Region 2 Region 1 
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directions respectively, s is the scale and r is the size in 
pixels of region R.  
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4.2 Region Detection 
 
For a point (x, y) in the spatial space we calculate a 
normalized Sobel gradient at each (s, Gth) level with 
scale s and gradient threshold Gth. If the normalized 
gradient is greater than Gth then point (x, y) is defined 
as an edge. Edges of each (s, Gth) level are accumulated 
in a single Hough array within a range of θ around the 
horizontal and vertical lines. Points of each Hough 
array are mapped into the spatial space as line 
segments. Intersections between lines segments are 
marked and rectangular regions are identified. Finally 
each group of overlapping regions is merged into one 
common boundary.  
 
4.3 Plate Detection 
 
First the input image is converted to the gray scale. The 
size of the radius-dimension of the Hough transform is 
set to be proportional to the image size. A finite set of 
scale levels are calculated from the exponential scheme 
of section 2.2. At each scale level s a discrete Gaussian 
kernel of size 3.7s-0.5 is applied to the image through 
convolution. The smoothed image is then differentiated 
with a normalized Sobel gradient. Edges are detected 
over the spatial coordinates in incremental threshold 
steps. Rectangular regions are extracted from each step 
and characterized with a normalized classifier as 
defined in section 4.2. Finally the region with the 
maximum classifier over both the gradient and scale 
dimensions is selected as the most fitting region for a 
license plate. 

The above algorithm provides an automatic 
selection of the gradient thresholds of the plate 
boundaries. Its performance is independent from the 
size, orientation, structure and color of the plate. It uses 
a texture measure that is designed to be somewhat 
independent from the illumination and scale variations. 
Moreover its implementation is feasible. In the 
following section we will conduct several experiments 
with a large dataset of images to verify the reliability of 
this approach.  
 
5. Experimental Results 
 
A number of experiments were carried out to (a) tune 
the parameters of the Hough transform for a robust 
performance, (b) choose an appropriate classifier for 

the license plate, (c) define a feasible linear scale-space 
and (d) verify the effectiveness of the new approach.          
 
5.1.  Data Set deduced   
 
The results were based on a large dataset that contains 
116 images for different cars captured at different 
scales, illumination levels and viewing conditions. The 
license plates are of different sizes, colors, shapes and 
structure of the contents. Figure.2 shows some of the 
extreme cases that we have dealt with. The accuracy of 
the test results (i.e. extracted plates) is defined by the 
four fuzzy states, very good, good, bad and failure. 
Very good  means  that  the  plate  is  extracted up to its 
boundaries, good means that the extracted region does 
not fit exactly the plate boundaries but it contains the 
whole plate information, bad means only part of the 
plate is extracted and failure means the plate was not 
extracted at all. These fuzzy states are shown in 
figure.3. 
 

     
           (a)                        (b)                        (c) 

      
           (d)                        (e)                        (f) 

Figure.2 extreme cases (a) bent plate (b) one 
plate on top of another (c) plate foreground and 
background are of same color (d) plate 
boundaries are not clear because of dirt (e) plate 
without a boundary and (f) numbers are not 
clear.      

 
5.2 Experiments 
 
It was experimentally determined that license plates 
have a characteristic height/width ratio that is less than 
or equal to 0.6 and greater than 0.29 and accordingly a 
detected region must satisfy this constraint to be 
considered a license plate. It was also determined that 
the maximum and minimum lengths of the plate 
boundaries are 120 and 17 pixels respectively and 
accordingly lines outside this range are omitted from 
the Hough array. The thresholds for the gradient were 
represented by an optimal range of 70 levels starting 
with G0=10 and ending with Gf=80. The radius 
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dimension of the Hough transform ranged from 0 to the 
maximum diagonal length of the image while the θ-
dimension ranged from 80 to 110 degrees for horizontal 
lines and 0 to 10 degrees for vertical lines. 
             

                 
                   (a)                (b)                  (c)  

 
Figure.3 extracted plates at 3 different fuzzy 
states (a) very good (b) good and (c) bad.  

 
A number of experiments were conducted without the 
scale-space to test the reliability of the current 
implementation of the Hough transform. These tests 
included the histogram measure with k=50 and dth=90 
and a simple contrast-stretching scheme. Plates were 
extracted on an average speed of 3.08 seconds on a 1.6 
GHz celeron processor. The results are as shown in 
table.1. In test 1 no contrast stretching was applied 
while in 2 the image illumination was increased by a 
constant value. In test 3 the brightening scheme of 2 
was applied to images with a histogram measure less 
than 50. In test 4 again no brightening was applied and 
detected regions with height/width ratio less than 0.29 
were rejected. Test 5 was a combination of both 4 and 
3. The texture measure was used in test 6 together with 
the constraint of 4. 
 

Test number  
Accuracy 1 2 3 4 5 6 
V. good 59.5% 57.8 58.6 65.5 58.6 66.4 
Good 10.3% 13.8 10.3 5.1 13.8 8.6 

Bad 9.5% 5.2 4.3 6.9 6.03 10.3 
Failure 20.7% 23.2 26.7 22.5 21.6 14.7 

 

Table.1 
 
The texture measure was able classify the failure cases 
much better than the histogram measure. The average 
speed for plate detection was still 3.08 seconds. The 
performance of the algorithm at this stage was unstable 
to small variations in scale and viewing conditions. 
Some of these results are shown in figure.4 where in 
the first image pair, (a) and (b), the algorithm failed to 
locate the plates but nearly located the same regions in 
the two images. In the second image pair the plate was 
detected more properly in (d) than (c).  

To improve the results of figure.4 we added a linear 
scale-space to the system. The exponential scheme of 
section 2.2 was used to define a finite set of scale levels 
with k=1.5 and s0=0.75. The number of scale levels was 

              
                       (a)                              (b) 

              
(c) (d) 

Figure.4 (a) and (b) differ in their viewing 
conditions while (c) and (d) differ by a simple 
stretching. 

 
increased in unit steps from 1 to 4 and at each step the 
results were recorded in table.2. Plates were detected at 
an average speed of 5.25 seconds for the first 2 scales 
and increased to an average of 9 seconds for the third 
scale and finally reached an average of 14 seconds for 
the 4th scale. Adding scale 2 the algorithm performed 
much better with the good cases leading to a substantial 
increase in the number of very good cases while the 
percentage of bad cases remained the same. At scale 3 
the algorithm improved the results of the bad cases and 
again increased the number of very good cases. The 
number of good cases remained unchanged for both 
scales 2 and 3.  
 

Number of  scales  
Accuracy 1 2 3 4 

V.  good 58.6% 61.2 73.3 61.2 
Good 12.9% 8.6 8.6 14.7 
Bad 14.7% 15.5 6 9.5 
Failure 13.4% 12.9 12.1 14.7 

Table.2 
 
At scale 4 the performance of the algorithm was 
setback and the improvements of scale 3 were 
misinterpreted at scale 4. On the other hand the 
percentage of failure cases proved to be dependent only 
on the type of classifier used. This is clear from the 
results of the 2 tables where the percentage remained 
steady for the first 5 tests of table.1 and did not 
decrease until a new classifier was applied in test 6. 
Also the percentage remained unchanged along test 6 
of table 1 and the different tests of table 2 because their 
results were based on the same classifier. To 
summarize the above discussion we can say that the 
good and bad cases result from detections at 
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inappropriate scales while the failure cases result from 
misleading classifications. On the other hand scale 2 
and 3 are more suitable for the good and bad cases 
respectively.  

The problem that not all the good cases were 
detected probably at scale 2 and similarly for the bad 
cases at scale 3 is due to the quantization errors of the 
scale space and in order to improve these results more 
scale levels should be involved. Moreover, most of the 
very good cases that were misjudged at scale 4 were 
those images classified as very good cases at scales 1 
through 3. This means that any feature can be detected 
correctly over a limited range of scales after which it 
decays and become unrecognizable.  

Our previous discussions can be further verified by 
the results of figure.5. Referring to figure.4 both 
images (a) and (b) are of the same size but of different 
viewing angles and looking back to the sequence (a) of 
figure.5 we find that both plates were detected at scale 
2 and up to scale 4. On the other hand the image pair 
(c) and (d) of figure.4 are of different sizes but with the 
same viewing angle. Again looking back to sequence 
(b) of figure.5 the plate of the smaller car was detected 
at scale 1 and up to scale 3 while the plate of the larger 
image was detected later at scale 2 and up to scale 4.  
 
 

 Scale1   

 Scale2   

 Scale3    

 Scale4    
                         (a)                                    (b)               

Figure.5 plates of the 2 images of figure.4 
detected at 4 consecutive scales. 

 
 
Similar to the results of Lindeberg [4] figure.5 shows 
that detected regions with normalized derivative 
features remain dominant over scale-space. Moreover 
we add that the normalized derivative feature of an 
object remains dominant only for a limited interval of 
scales after which it diminishes and becomes 
insignificant. The power of expression of a feature over 
scale space differs from one object to another. In 
figure.6 we represent a group of license plates that has 
been detected correctly in the 4 consecutive scales. 

         

       

               

      
Figure.6 detected plates with different sizes, 
colors, orientation and structures.  

 
6. Conclusion and Future Work 
 
In this work we have defined a new scale-invariant 
object detector. This detector is characterized by an 
automatic selection of the gradient threshold of edges. 
The performance was verified through license plate 
detection of a large data set of car images. In most 
cases plates were detected in a good shape. The 
proposed algorithm was robust to illumination and 
viewpoint changes. In order to improve the 
performance of our approach we need to define new 
feature descriptors that are in general invariant to affine 
transformations.  
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