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Abstract 

The aim of this work was to determine, experimentally, whether the relative pose (position and 
orientation of an aircraft), with respect to the ground plane, could be usefully determined by vision 
alone. It is relatively well known that such is, in principle, possible by exploiting the image 
homography between two views of the same planar surface.  
 
1. Introduction 
 
This work is related to the ARC SPIRT grant funded project “Vision for Aircraft Landing“. In that 
project, the main aim is to develop visual means to enable a robotic aircraft to land (without the 
assistance of a trained remote control pilot). As such, the project requires the determination of what 
useful information can be extracted visually. Specifically, in this case, whether one can determine the 
relative change in pose, given two views taken from the aircraft at two different time instants (see 
figure 1).  
 
In some sense, the present work is complementary to the work reported in [Suter, Hamel & Mahony 
02]. In that work, the principle of using an homography to visually servo an aircraft to a given 
position, w.r.t. a ground plane (or, indeed, any planar surface that is visible) was investigated. 
However, that paper focused on the control aspects of the task – assuming that the visual processing 
could provide the required quantities (rotation and translation, up to a scale, between the two views). 
The work reported here aims to determine the accuracy to which one can realistically extract these 
parameters by that method. Moreover, [Suter, Hamel & Mahony 02], since it dealt with control 
aspects, was more concerned with a particular airframe (the X4-flyer), whereas this work is 
independent of the viewing platform – there are no dynamics involved. A major motivation of this 
work is to aid in the visual positioning and landing of any aircraft – but particularly the fixed wing 
type craft typically flown by Aerosonde. This work is an alternative approach to that of [Mahony & 
Suter 01]. It was also intended to be integrated with the work of [Tung, Suter & Bab-hadiashar 03]. 
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Fig.1 – Illustration of the aircraft pose-estimation task 
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The approach taken here is to employ pose estimation method based on the tracking of a rigid planar 
patch [Tsai & Huang 82]. The steps involved are : 
    1. A corner tracker algorithm is used to track at least 4 points belonging to the plane of interest. This 
work used the token tracker available in OpenCV. This token tracker consists of two steps: first, it 
determines strong corners in an image and then, it calculates the optical flow between two images 
using the iterative hierarchical Lucas-Kanade method [Shi & Tomasi 94] to follow the tracked points. 
    2. A pose estimation algorithm based upon homography extraction [Tsai & Huang 82].  
The code developed uses several libraries: 

- Direct Show  : to read video sequences (AVI files). 
- OpenCV  : to read images, track points and compute matrices. 
- OpenGL  : to visualize the results (2D and 3D). 

 
 

 
2. Homography estimation 
 
 
The three-dimensional motion parameters of a rigid planar patch can be determined by 
computing the singular value decomposition (SVD) of a 3x3 matrix containing the eight so 
called “pure parameters.” This planar transformation is called a homography. Furthermore, 
aside from a scale factor for the translation parameters, the number of solutions is either one 
or two, depending on the multiplicity of the singular values of the matrix [Tsai & Huang 82]. 
 
This method provides the rotation, the translation of the moving camera (mounted on an 
aircraft in our case) up to a scale factor and the orientation of the 3D plane of interest. To lift 
the ambiguity and ensure a unique solution, Faugeras suggests the use of a third image in the 
estimation scheme [Faugeras & Lustman 88]. Thus, the first estimation (using 2D points of 
image 1 and image 2) gives two different planes orientation (defined by their normals). The 
second estimation (using image 2 and image 3) leads to two solutions too. The common 
solution to both estimations is the right one. 
 
2.1 – 2D Mapping 
 
We consider a 3D point M belonging to a plane (P), moving to M’ belonging to a plane (P’), 
respectively such that: 
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The projective transformation A (or homography) between the two planes is as follows: 

 
















=
















⇒
















•=
















⇒
















=

















1
/
/

1
'/'
'/'

'

1
/
/

'
'
'

'
'
'

zy
zx

Azy
zx

z
zzy

zx
Az

z
y
x

z
y
x

A
z
y
x

 

2 

MECSE-1-2004: "Aircraft Pose Estimation from Homography", E. Beets, S. Boukir, and D. Suter


















=
















⇔

1
'.
'.

Y
X

A
S
YS
XS

 

 

 with    and S being an indeterminate scale factor. 















=

333231

232221

131211

aaa
aaa
aaa

A

The former development involves the well-known perspective projection equations for a pin-hole 
camera: 
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Without a loss of generality, the focal length f has been set to 1. 
 
2.2 – Least squares estimation of the homography 
 
The following system links the 2D coordinates of two corresponding image points via the homography 
A: 
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This system is composed of 9+1 unknowns (parameters of the homography A and the scale factor S).  
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The estimation of the parameters is possible if we set, for example, , a commonly used 
assumption. Indeed, A is defined up to a scale factor. 

ia 133 =a
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Thus: 
 

''..'.... 3231232221 YYYaYXaaYaXa =−−++⇔  (2) 
This leads to the following linear system of 8 unknowns (ai): 
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3. Singular value decomposition
 
 To compute the SVD decomp
library were employed. 
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4 – Computing actual motion parameters from pure parameters 
 
If the singular values of the homography A are all distinct, e.g. λ1 > λ2 > λ3, then there are exactly two 
solutions for the motion and geometrical parameters of a rigid planar patch aside from a scale factor 
for the translation and geometrical parameters [Tsai & Huang 82].  

We denote the motion parameters by a rotation matrix R and a translation vector T. The plane 
is defined by its normal n. 

 
Closed-form solution to the pose-estimation of a planar patch is as follows: 
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In each of the two solutions, sgn(β) = - sgn(δ), and w is an arbitrary coefficient (we will set it 

at 1). Let us notice that only the orientation of the planar patch is estimated. Its position is not known. 
 

 To solve the ambiguity problem, i.e. to choose the right solution from above, Faugeras and 
Lustman suggest three ways to proceed [Faugeras & Lustman 88]: 
 

1) Look at a second plane. 
2) Use a third image. 
3) Use relationships between features in the plane. 

   
We have chosen the second way which provides then two pairs of solutions (S1,S2) and (S’1,S’2) for the 
motion and geometrical parameters of the rigid planar patch. In general, there is only one compatible 
pair and the problem has therefore a unique solution [Faugeras & Lustman 88] as confirmed by our 
experiments. 
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Fig.2 – Illustration of the ambiguity problem 
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In practice, to determinate the right solution, we compute four different screw products between the 
four obtained normal vectors. The compatible pair of normal vectors is then the one which minimizes 
the absolute value of this product. 
However, an ambiguity in the direction of the normals remains. For example, the planes 1 and 3 (see 
fig. 3) are parallel but their normals have opposite direction. 
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Fig.3 – Illustration of the sign ambiguity  
 
With P1 and P’1, defined as: 
 0.. 1111 =++= zcybxaP       with ( )tcba 1111 =n     and here  ( )tn 1001 =

    with 0'.'.'' 1111 =++= zcybxaP ( )tcba 1111 '''' =n  and here n  ( )t100'1 −=
 
To solve this sign ambiguity, we just apply to the estimated normals the same sign we obtained for the 
first estimated normal. 
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5 – Summary of the Pose-estimation algorithm 
 
The 3D motion estimation of a rigid planar patch algorithm is summarized here with 
flowcharts. 
 
5.1 - General algorithm 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5.2 – Pose-estimation algorithm 

Corner tracking between the 
first and the second images 

Corner tracking between the second 
and the third images 

Second pose-estimation 
(From the first and third images) 

End 

Least squares estimation of the homography

Determination of the motion and geometrical 
parameters of the plane using Tsai method 

SVD decomposition of the homography

End 

Begin 

Determination of the right solution 

First pose-estimation 
(From the first and second images) 

Begin 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6. Experiments 
 
6.1 – Corner Tracking  
 
We used the corner finding and corner tracker provided by OpenCV. During the initialisation step, if 
the video sequence contains significant corners, these routines will find and track them. However, we 
can also choose them manually with the mouse (we can add or remove points). In the following 
illustrations, the green points are the tracked points. 
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6.1.1 – Corner detection 
 

The OpenCV function GoodFeaturesToTrack finds corners with big eigenvalues of the corner 
strength matrix. The function first calculates the minimal eigenvalue for every pixel of the 
source image and then performs non-maxima suppression (only local maxima in 3x3 
neighborhood remain). The next step is rejecting the corners with the minimal eigenvalue less 
than a threshold. Finally, the function ensures that all the corners found are distanced enough 
from one another by getting two strongest features and checking that the distance between the 
points is satisfactory. If not, the point is rejected. 
For accuracy, one should try to refine the location of the corners to sub-pixel accuracy.  

 
 
 
 
 
 
 
 

The OpenCV function FindCornerSubPix iterates to find the accurate sub-pixel location of a 
corner.The core idea of this algorithm is based on the observation that every vector from the center q 
to a point p located within a neighborhood of q is orthogonal to the image gradient at p subject to 
image and measurement noise. Thus: 

q p1 

p0 

(red) gradient direction 

 Sub pixel accurate corner 
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T
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where ∇  is the image gradient at the one of the points p in a neighborhood of q. The value of q is 

to be found such that 
ipI

iε is minimized. A system of equations may be set up with iε  ‘s set to zero: 
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where the gradients are summed within a neighborhood (“search window”) of q. Calling the first 
gradient term G and the second gradient term b gives: The algorithm sets the center of 
the neighborhood window at this new center q and then iterates until the center keeps within a set 
threshold. 

..1 bGq −=

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Manual selection of additional 
features 

Low contrast image Significant corners – easily found. 

Automatic and manual selection of corners 
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6.1.2 – Tracking 
The OpenCV function CalcOpticalFlowPyrLK calculates the optical flow between two images 
for the given set of points using a hierarchical pyramid approach to handle large motions. The function 
finds the flow with sub-pixel accuracy. Both parameters pyrA and pyrB comply with the following 
rules: if the image pointer is 0, the function allocates the buffer internally, calculates the pyramid, and 
releases the buffer after processing. Otherwise, the function calculates the pyramid and stores it in the 
buffer unless the flag CV_LKFLOW_PYR_A[B]_READY is set.  
 
 Example 1: “Star sequence” 
 

frame 0 frame46 frame75 

 
frame 75 frame 41 

 
frame 0 

 
frame 0 frame 28 

 
 
 

8 tracked points

 
 
 
 
 
 10 tracked points

 
 
 
 
 
 
 
 
 

24 tracked points

 
 
 
 
However, the tracking is not as 
significant shown below. 
 
Example 2: “Rotation Square seque
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frame 0 
frame 27 
frame 33 
frame 39 
 
frame 59 
frame 68 
frame 76 
frame 83 
quence 



 
 

As we can see, little by little the four tracked points are lost. They are still representing a 
square, but they are not any more corners of the real square, therefore, the corresponding 
estimated rotation will be of poor quality. This shows the need for sub-pixel refinement of 
corner locations. The resulting tracking is of much better quality as shown below. 
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Example 4: “Indoor sequence.” 

 
frame 0 

 
frame 63 

 
frame 90 frame 126 

 

 
frame 153 

 
frame 207 

 
frame 252 frame 279 

 

frame 414 
 

frame 387 frame 333 
 

 
frame 315 

 

 
 
 
 
 
 
 
 
 

8 tracked points

 
 
 
 
 
 
 
 

Successful corner tracking over the Indoor sequence (with a manual selection of features).  
  
These various examples show the Lucas-Kanade feature tracker [Shi & Tomasi 94] can perform 
adequately. However, a refinement of corner locations is indispensable after each tracking step to keep 
an accurate feature tracking over the sequence. 
 
We used the following parameters for the relevant functions: 
 
cvGoodFeaturesToTrack(  img0, m_temp[0] ,  

m_temp[1]      , &m_features[0][0], 
&m_count     , 0.01,  
10 ); 

 
cvFindCornerSubPix(  img0, &m_features[0][0],  m_count,   

cvSize(5,5)            , cvSize(-1,-1), 
                       cvTermCriteria( CV_TERMCRIT_ITER, 10, 
0.1f )); 
 
cvCalcOpticalFlowPyrLK( img0, img1,  

pyr0, pyr1, 
&m_features[I][0], &m_features[J][0],  
m_count , cvSize(10,10), 3,  
&m_status[0], NULL, 
cvTermCriteria(CV_TERMCRIT_ITER|CV_TERMCRIT_EPS
,10,0.1), pyr0_ready ? CV_LKFLOW_PYR_A_READY : 
0 ); 
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6.2 – Pose-Estimation  

 
6.2.1 –Transformations 

 
 After having estimated the 3D transformation from three images of a planar patch, we 
obtain the translation, the rotation and the normal parameters to the plane. 
For a better illustration and also to show the stability of the pose-estimation process through 
the sequence, we represent the normal parameters with respect to the initial coordinates 
system (related to the initial position of the camera). This involves the following. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 
 
 
 
 
 
 
 

First 
iteration? 

Recording of the sign of the 
maximum in absolute value of the 

estimated normal components 

The current normal has 
the same direction than 

the last? 

current normal = -current normal First 
iteration? 

Application of the total transformation to the
estimated normal 

Application of the current transformation to 
the estimated 2D points 

Total transformation • = 
current transformation 

Total transformation = 
current transformation 

Begin 

3D transformations 

2D transformations 

End 
 
 

Determination of the normal sign 
Transformation  
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6.2.2 – Estimation results  
 
Example 1: Aerosonde sequence with 4 points 
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The three components of the estimated normal: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 27 - Estimation of the normal  to the plane on the Aerosonde 
sequence (4 tracked points) 
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 We have normalized the estimated normal. We have obtained a normal close to: . 
Since the plane did not changed orientation with respect to the ground plane, significantly, during the sequence, 
these results are encouraging. The standard deviations of the three normal components are σA=0.003872, 
σB=0.000037, σC=0.005257 which show a satisfactory estimation stability. 

( )tn 010=
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Example 2: Square sequence: 
Experiments such as the above are not that informative if we do not have precise ground truth. 
Here we provide results of experiments with more artificial data. 
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 Estimation of 2D points positions from
sequence (4 tracked points). 
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Around the frame 15, we can notice that the error between the tracked points and the estimated points 
is about 17 pixels.  This important error is due to the poor video sequence quality. 
 
 
The three components of the estimated normal are as follows: 
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The standard deviations of the three normal components are σA=0.004188, σB=0.000043, σC=0.003047, thus the 
same accuracy is achieved here. 

Estimation of the normal ( )tCBAn ,,=  to the plane on the Square sequence (4 tracked 
points) 
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Example 3: Aerosonde sequence with several points: 
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The three components of the estimated normal: 
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The standard deviations of the three normal components are σA=0.008937, σB=0.000217, 
σC=0.003686. The results obtained with four points are of equivalent quality as shown in example 1.  
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6.2.3 - Comparison between Mahony method and Tsai method  
 
In this section, we compare the pose-estimation results we have obtained using a SVD method 
[Tsai & Huang 82] with a recursive approach developed by Mahony [Mahony & Suter 01]. 
The former method offers a closed-form solution to the pose-estimation problem without any 
filtering stage. It is therefore much less costly than the latter. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 E
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On the top, are the trajectories of four point features from the Aerosonde sequence. These features have been 
manually extracted in 2001. On the bottom, are shown both the pose-estimation results obtained by Mahony 
method and by Tsai method respectively. We can notice that, in the first iterations, the 2D trajectories estimated 
by Mahony method are noisier than the results we have obtained with Tsai method. However, because of its 
recursive nature, the estimated trajectories of Mahony method are significantly improved over time. One could 
adopt some recursive smoothing into the currently investigated method.  
 
The figure below shows the 2D trajectories we have obtained using the Lucas-Kanade [Shi & Tomasi 94] feature 
tracker combined with a sub-pixel corner location refinement. These trajectories are smoother than the manually 
extracted ones and lead to a significant improvement in pose-estimation accuracy by Tsai method as shown on 
the bottom of this figure. 
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Conclusion 
 
We have shown through experiments on real image sequence that the SVD pose-estimation method of 
Tsai gives satisfactory results in carefully controlled experiments with ground truth available. The 
Lucas-Kanade corner tracking algorithm combined with a sub-pixel corner local refinement (available 
in OpenCV library) performed reasonably well even on tough sequences. In this regard, since we have 
used automatic point tracking, the results and method presented here are more reasonable than the 
implementation of the method to which he hoped to compare [Mahony and Suter 01]. The intention of 
this work was to ultimately compare the two methods more fairly and conclusively. Moreover, the aim 
included integrating these approaches with the work of another part of the project [Tung, Suter & Bab-
hadiashar 03]. However, time and other factors, meant that this was not possible. 
It is hoped that the software developed here, supplemented by the documentation in the appendix to 
this report,  will be of use for further research in this area. 
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Appendix 
User interface and Implementation Details 
System sequence diagram: 
 

  
    
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Application Bitmap Tracker Pose-estimation 

Tracked corners 
Estimated plane 

Estimated 3D motion 

Estimated motion and geometry 
parameters 

Tracked corners 

Get tracked 
corners 

Current 
frame 

Get frames 

Set frames 

Visual 
informations 

Mouse click 

OpenGL 
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 Interface appearance and general flowchart 
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 the projection of 

timated 3D points 

  Aircraft pose-estimation interface 
 
 

26 



This interface is based on the following flowchart: 
 
 

Tracker initialisation for the first frame

Video sequence opening 

Begin  
 
 
 
 With default point 

number (=0)  
 
 

End 

Event loop 
 
 
 
 
 
 
Event loop flowchart: 

Show 
statistics? 

Show data?

Show 
configuration?

Step? 

Add or remove 
tracked points?

Refresh contents 
Show the dialog box

Close the 
dialog box? 

Hide this dialog box 

Refresh contents 
Show the dialog box

Are the 
configurations 

changed? 

Refresh contents of 
the main dialog box

See section IV.3.2.1 
Stepping forward/backward 

in the bitmap images

See section IV.3.2.2
Add / remove points 

End? 

Using posted
messages

End 

Begin  
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Video Sequence reading flowchart: 
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-   
 
Control Dialog boxes 
 
File conversion 
 
 
 
Dialog box look: 
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Configuration 
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Set the zoom of the 2D-OpenGL
representation
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(Start the conversion 
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Name of the current file e
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t
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ul information about the current video sequence. 

Number of tracked points 

Current frame  

Set the number of 
lick on the current image), its coordinates are unknown. 
ain the tracking with the proper number of tracked points. 

Reset the view (zoom and 
position) of the OpenGL views 

Set the zoom of the 3D-OpenGL 
representation 

tracked points 

29 



Data 
 
 
 
 
 
 
 
 
 
 

Current calculated
normal to the plane

 
 
  
 The three dialog boxes ar
 
Corner tracking process: 
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Current tracked points

e managed with accessor functions to refresh their content. 

Does the bitmap 
array exist? 

Convert the current bitmap 
image into Ipl image 

With a flipping of the image 
since bitmap files have 
inverted coordinates 

First iteration or 
asked reset? 

Initialise the corner tracker 

Follow tracked points 

Convert the current Ipl 
image into bitmap image 

ncrement the tracker indicator

End 

Begin 
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Tracker object 
 
Token Tracker initialization: 
 
 
 

Current colour image 
conversion into grey imageUsing the OpenCV function:

cvGoodFeaturesToTrack 

Determination of the most 
significant points 

Were points 
found? 

Refine corner location 

Using the OpenCV function: 
cvFindCornerSubPix 

End 

Temporary images creation

Begin 
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Token Tracking: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Add a point: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Remove a point: 

Do the 
images exist?

Images swap 

- Follow of the tracked points
- Refine corners 

Update of the point coordinates 

End Begin 

Adjust the coordinates of the point
(Its coordinates are parameters) 

Is the point valid? 

End 

Add those coordinates behind the 
others. 

Using the OpenCV function: 
cvFindCornerSubPix 

Adjust the coordinates of the point
(Its coordinates are parameters) 

Using the OpenCV functions: 
cvCalcOpticalFlowPyrLK
and 
cvFindCornerSubPix 

Creation of the images 

Begin 

 

End

Remove the corresponding id

Match the id of the selected point by the mouse

Begin 

As we can see, we adjust the
coordinates of the point: for
instance, when we use the mouse to
add a point (click in the image) we
cannot select a corner accurately, so
the OpenCV routine adjusts the
point coordinates. 
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Tracking and Pose Representations 
2D perspective projections 
 
  Tracked points (connected points) 

 Estimated points (using the estimated 3D transformations) 
 Wrong estimated points (rejected through the ambiguity  

resolution). 
 

 
 

 
 
 
 
 
 
 
 
 
 

 
 2D perspective projections 

3D geometry 

 
 3D pose  estimations 

 

33 

 
 
 
 
 
 
 
 
 

 The right estimated plane 
 The wrong estimated plane (rejected through the  

ambiguity resolution) 
  

In this representation, we can see the estimated normal with respect 
to the first coordinate system related to the initial position / orientation of the 
camera . 

Components of the normal to the current plane 

 
Normal components 

 
 
 
 
 
 
 
 
 
 

 First component of the estimated normal: A 
 Second component of the estimated normal: B 
 Third component of the estimated normal: C 
 

We can see the evolution over time of the three components of the 
current estimated normal. 

3D motion 
 

 
This last OpenGL representation shows the estimated pose of the 

aircraft over the sequence.  

 
 
 

3D motion 
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