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Abstract 

This paper presents a novel temporal domain simulation for studying the generation 

and propagation of photonic pulses in mode-locked lasers. The pulse propagation 

equation has been solved fully in time domain using finite difference method (FDTD) 

without the need of conversion of optical signals into frequency domain. Unlike other 

published works on the modeling of mode-locked lasers where only partial pulse 

sequence could be represented, in this work the complete pulse sequence can be 

generated in harmonic mode-locked fiber lasers has been simulated using this FDTD 

approach. To the best of our knowledge, the simulation of the whole pulse train in 

such laser is demonstrated for the first time. The propagation of an optical pulse 

through an optical fiber has been simulated and compared to the analytical results to 

ensure the validity of the numerical approach. The pulse formation in a harmonic 

mode-locked fiber laser has been simulated. The effects of the laser cavity settings on 

the characteristics of the mode-locked pulses have been studied and the simulated 

results have shown consistency with the experimental results which have also been 

reported in another report posted on this website. 

 

1 Introduction 

Generation of ultra-short optical pulses with multiple gigabits repetition rate is critical 

for ultra-high bit rate optical communications, particularly for the next generation of 

terabits/sec, optical fiber systems. In addition, the field of optical packet switching has 

gained recognition in recent years and requires very short and high peak power pulse 

generators to provide all optical switching. Recent reports on the generation of short 

pulse trains at repetition rates in the order of 40 Gb/s show that active mode-locked 

fiber lasers are the potential sources of such pulse trains [1-5]. Therefore it is 
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important to develop theoretical models and simulation techniques to analyze the 

performance and characteristics of these lasers. 

Prior works for studying the propagation of photonic pulses in optical fibers and the 

formation of optical pulse in active mode-locked fiber lasers have been largely based 

on the nonlinear Schodinger (NLS) equation [6-8]. The most popular method used for 

solving the propagation of the pulse in an optical fiber is the well known split-step 

Fourier (SSF) [6]. In which the equation can be split into two parts: the linear and 

nonlinear parts. The linear part is solved in frequency domain by taking the Fourier 

transform. The resultants are then converted back to time domain by taking the 

inverse Fourier transform. The nonlinear part is solved in time domain. 

The SSF is claimed to be a fast method for studying the propagation of pulse in fiber 

and has been applied to study the formation of a single pulse in an active mode-locked 

laser [6-11]. However, since SSF requires converting signal from time domain into 

frequency domain by using Fast Fourier Transform (FFT) algorithm, the signal must 

be windowed and the number of samples in the window must be limit. Although each 

FFT operation is relatively fast, a large number of FFT operations on a large-size 

array make the computation impossible. 

This paper presents a novel approach of simulation in which the propagation of the 

pulse envelops through all photonic components in the laser cavity is analyzed fully in 

temporal domain. The linear dispersion and nonlinear self phase modulation has been 

approximated accurately using the finite difference method. Indeed simulated results 

have been compared and confirmed with those obtained analytically and 

experimentally. 

This paper is organized as following: Section 2 outlines the temporal domain 

representation of the laser model, the optical filter, the EDFA, the fiber and the optical 

modulator. Section 3 described the mathematical models using finite difference 

approach for all these elements. Simulation results are then presented firstly for the 

propagation of light pulses through an optical fiber to demonstrate the validity of our 

modeling technique. Models of other photonic elements are then integrated with the 

fiber propagation model to form a generic simulation package for generation of mode-

locked pulses. The simulation results are presented in Section 4. The effects of the 

modulation frequency, modulation depth, filter bandwidth and pump power on the 
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generated pulses are studied and confirmed with experimental observations. 

Simulation of the generation and mode-locking of pulses in a rational harmonic mode-

locked laser is also demonstrated. 

2 The laser model 

The laser is modeled as shown in Figure 1. All optical and photonic components are 

indicated and the signal flow paths are noted by straight lines with arrowed end. The 

model consists of an EDFA, which is the gain medium for the laser, a length of 

optical fiber of dispersion shifted type (DSF), an optical filter BPF, and an optical 

intensity modulator. The optical waves are amplified in the EDFA and then propagate 

through the DSF. The lightwaves intensity is then modulated by the optical 

modulator. The BPF ensures that a certain optical frequency band is allowed to pass 

through, hence this determines the central wavelength and the pulse width of the 

generated signals. The output of the modulator is fed back into the EDFA to create a 

loop. The signals are then circulating through the optical loop. The detail modeling of 

each photonic component of the cavity is described in the following sections. 

Figure 1 – General schematic model of the fiber laser  

 

2.1 The fibre wave propagation equation 
The fiber can be modeled by the propagation equation [8] 
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where A is the signal envelope, z is the axial distance, T is the delayed time ( T = t – 

z/vg), vg is group velocity, α is the linear attenuation factor of the fiber and accounts 

for the loss, γ is the nonlinear coefficient which accounts for the self phase 
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modulation effect, β2 is the second order derivative of the propagation constant β and 

can be calculated from the fiber dispersion parameter as 

 
c
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2 −=  (2) 

in which λ is the operating wavelength in vacuum, D is the dispersion factor of the 

fiber, c is the speed of light. 

2.2 Modeling of the EDFA 
The EDFA can be modeled by an EDF with ions pumped into excited state for 

providing gain when the signal travels through it. The propagation equation for the 

signal traveling through the EDF is [8] 

 ( ) ( ) AAjAg
T

ATjgj
z
A 2

02

2
2

202 2
1

2
γαβ =−+

∂
∂

++
∂
∂  (3) 

This equation follows the similar form of (1) except that the gain factors g0 and T2 are 

included. The T2 term accounts for the decrease of the gain coefficient at the 

wavelength located far from the gain peak and is usually defined as the inverse of the 

3 dB bandwidth of the gain spectrum. The saturation of the EDFA is usually modeled 

by presenting g0 as a function of the signal average power 
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where gss is small signal gain, Pav is the signal average power, Psat is the saturation 

power level. 

2.3 The optical modulator 
The modulator can be modeled from the transmission function  
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where Vπ is the voltage applied into the modulator causes π phase shift in one arm of 

the integrated optical interferometer, Vsh accounts for the DC drift of the modulator, 

αm is the insertion loss, vm is the modulating voltage signal and can be given by 
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 vm = Vmcos(ωmt) + Vb  (6) 

in which Vm is the amplitude of the modulating signal, ωm is the modulating 

frequency, Vb is the bias voltage. 

Substituting (6) into (5) and note that Vsh can be assumed to be zero without any affect 

to the final result, the transmission function of the modulator can be written as 

 ( ) 
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where ∆m = 2Vm/Vπ is the modulation depth. When the modulation is biased at the 

quadrature point Vb = Vπ/2, (7) becomes 
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2.4 The optical filter model 
The optical filter BPF can be described by the following transfer function following a 

Gaussian profile as 
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where αF is the insertion loss, B0 is half of the (1/e) bandwidth of the filter 

 

3 Numerical analysis of the model 

To simulate every pulses that exist in a harmonic mode-locked laser without 

windowing, a fully time domain method is used here. The propagation equations of 

the pulses in the optical fiber are solved using finite element method. 

Firstly, the propagation equation of the pulse in the EDF is solved to obtain the signal 

at the output of the EDF. The time and space are discretized by using the following 

equations 

 z = k∆z (10) 

 T = m∆T (11) 
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where ∆z and ∆T are the step in space domain and time domain respectively, k and m 

are integers. The derivatives of A in Eq. (3) can be approximated as following 
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where Ak,m = A(k∆z,m∆T). Substitute (12), (13), and (14) into (3) 
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Therefore the field at (z + ∆z) can be calculated from the values of field at the 

preceding position z as follow 
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The process is repeated till the end of the fiber is reached. The output optical field 

then travels through the DSF. The same method is used to solve the Eq. (1) for getting 

the optical field at the end of the DSF. 

The optical field output from the DSF is then filtered using the filter transfer function 

in Section 2.4. The filter is implemented in time domain as well. The filter output is 

calculated as follow 

 AF = ADSF*h(t) (17) 

Where AF is the optical field at the output of the filter, ADSF is the optical field at the 

output of the DSF, h(t) is the pulse response of the filter function H(f) and is 

determined using the Finite Impulse Response (FIR) technique [12]. 

The output of the filter is then multiplied with the modulator transmission function 

described in Eq. (7). The output is loop back to the input of EDFA and the calculation 

is repeated till the steady state is reached. 
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4 Results and discussion 

4.1 Propagation of optical pulses in the fiber 
Firstly, the fiber model is used to study the propagation of the pulses in an optical 

fiber. A sech profile pulse is launched into the fiber and the changes of the pulse along 

the traveling distance z are recorded. In the next two sections, the effects of dispersion 

and nonlinearity on the pulses are discussed. 

4.1.1 Dispersion effect 
The effect of GVD on the pulse propagation along an optical fiber is studied by 

setting other terms in Eq (1) to zero except the GVD term. The pulse envelope A(z,T) 

satisfies the following equation: 

 
2

2

22 T
Aj

z
A

∂
∂

−=
∂
∂ β  (18) 

Figure 2 shows the simulation results for a hyperbolic-secant pulse with a full width at 

half maximum (FWHM) of 20 ps propagating in a standard single mode fiber (SMF) 

under GVD effect. Taking the value of the SMF’s dispersion D = 17 ps/nm/km at 

1550nm, β2 can be calculated as: β2 = -21.7 ps2/km. 

It can be seen from Figure 2a that the pulses are broadened in temporal domain under 

GVD effect. Pulse width increases along the fiber and this broadening causes the 

pulse peak power drop by 65% at z = 25km. However there is no change in the pulse 

spectrum as seen in Figure 2b. 

 
 (a) (b) 

Figure 2 - Hyperbolic-secant pulse propagation in a single mode fiber (SMF) under GVD effect in 
temporal domain (a) and in frequency domain (b); λ=1550nm, β2=-21.7ps2/km 
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Figure 3 - Pulse broadening in SMF at z = 5km, 15km, and 25km 

The pulse broadening at different traveling distances is illustrated in Figure 3. As the 

traveling distance increases the pulse width gets wider and the pulse peak power 

decreases. The pulse width is nearly double that of the initial pulse at z = 25 km and 

the peak power reduces to 35% of the initial value. 

Propagation of the same pulse in a non-zero dispersion shifted fiber (NZ-DSF) is 

illustrated in Figures 4 and 5. The value of β2 = -3.82 ps2/km calculated from the 

dispersion value of D = 3 ps/nm/km at 1550nm for NZ-DSF. 

Pulse broadening is less severe in NZ_DSF than in SMF. The pulse width (FWHM) 

just increases slightly after traveling a distance of 25 km to 21 ps. This can be 

understood by comparing the traveling distance to the dispersion length for the pulse 

when traveling in SMF and in NZ_DSF. The dispersion length is defined as 

 
2

2
0

β
T

LD =  (19) 

where T0 is the 1/e pulse width and related to the full width at half maximum TFWHM 

as: TFWHM = 1.665T0. 

For the pulse width of TFWHM = 20 ps, the dispersion lengths for SMF and NZ-DSF 

are 6.66 km and 37.7 km respectively. 
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 (a) (b) 

Figure 4 - Hyperbolic-secant pulse propagation in a non-zero dispersion shifted fiber (NS-DSF) 
under GVD effect in temporal domain (a) and in frequency domain (b); λ=1550nm, β2=-
3.82ps2/km 

 

-120 -96 -72 -48 -24 0 24 48 72 96 120

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

T (ps)

in
te

ns
ity

 (W
)

initial pulse
after 5 km
after 15 km
after 25 km

 
Figure 5- Pulse broadening in NZ-DSF at z = 5km, 15km, and 25km 

4.1.2 Self phase modulation effect 
The self phase modulation effect is studied by setting other terms in Eq (1) to zero 

except the SPM term. The pulse propagation is described by following equation 

 AAj
z
A 2γ=

∂
∂

 (20) 

Figure 6 shows the propagation of a hyperbolic-secant pulse with the pulse width of 

TFWHM = 20 ps and peak power of P0 = 0.1W. The γ takes the typical value of 1.53W-

1km-1. There is no change in the temporal domain. The pulse shape and pulse width 

does not vary along the traveling distance. However, the pulse spectrum is spread out 

severely due to the phase shift induced by the SPM. 
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The spreading of the pulse spectrum is illustrated clearly in Figure 7, in which the 

pulse spectrums at different traveling distances are plotted. The pulse spectrum gets 

wider as the pulse propagates along the fiber. The two peaks appear at z = 25 km. This 

is consistent with the results in [6], where the nonlinear Schrodinger equation is 

solved analytically. There are two peaks in the pulse spectrum at ξ = 4.5, where ξ is 

the normalized propagation length and is defined as 

 ξ = z/LNL (21) 

with z is the propagation length, LNL is the nonlinear length 

 LNL = 1/γP0  (22) 

Using γ = 1.53 W-1km-1 and P0 = 0.1 W, the nonlinear length is LNL = 6.54 km. The 

normalized propagation length for z = 25 km is ξ = 3.8. 

The pulse spectrum broadening is also studied with different values of γ and P0. The 

results are plotted on Figures 8 and 9. Pulse spectrum broadening at z = 25 km 

decreases as γ decreases or Po decreases. 

 
 (a) (b) 

Figure 6 - Hyperbolic-secant pulse propagation in a single mode fiber (SMF) under SPM effect in 
temporal domain (a) and in frequency domain (b); λ=1550nm, γ=1.53W-1km-1 
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Figure 7 - Pulse spectrum broadening at z = 5km, 15km and 25km 
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Figure 8 - Hyperbolic-secant pulse spectrum after propagating a distance of z = 25km for 

different values of γ 
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Figure 9 - Hyperbolic-secant pulse spectrum after propagating a distance of z = 25km for 

different values of peak power P0. 
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4.1.3 Combine effect of GVD and SPM effect, soliton pulse 
The equation for the pulse propagation under GVD and SPM effects is 

 AAj
T
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The soliton theory shows that when a hyperbolic-secant pulse with the pulse width To 

and peak power Po satisfy the condition T0
2/|β2| = 1/γP0 launched into the fiber, the 

GVD and SPM effects will balance each other and hence the pulse will propagate 

without any change in its pulse shape and spectrum. 

Figure 10 shows simulation result of the propagation of a hyperbolic-secant pulse in a 

SMF. The pulse width is TFWHM = 20 ps (To = 12 ps) and the peak power is P0 = 0.1 

W. Therefore the soliton condition is satisfied and hence the pulse shape as well as 

pulse spectrum keeps unchanged when the pulse propagates along the fiber as seen in 

Figure 10. 

 
 (a) (b) 

Figure 10 - Hyperbolic-secant pulse propagation in a single mode fiber (SMF) under GVD and 
SPM effects in temporal domain (a) and in frequency domain (b); λ=1550nm, γ=1.53W-1km-1, 
β2=-21.7ps2/km, P0=0.1W, TFWHM=20ps  

4.2 Harmonic mode-locked fiber laser 

4.2.1 Mode-locked pulse evolution 
The laser model is as described in Section 2. Unlike other simulations on the mode-

locked fiber laser reported so far [11, 13], which are solely based on split-step Fourier 

method for solving the nonlinear Schrodinger (NLS) equation and simulate only one 

pulse in the ring, the method simulation reported here is modeled fully in time domain 

and hence there is no need to convert the pulses into frequency domain. This makes 
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the model can simulate not just one pulse but all pulses traveling in the ring, which 

actually happens in harmonic mode-locked ring laser. 

The laser is excited from a flat amplitude initial line, which is regarded as a 

continuous wave. After about 3000 round trips, steady state output harmonic mode-

locked pulses are reached as shown in Figure 11. It can be seen that there are 4 pulses 

exist in one time period of the ring as the modulation frequency is set to be 4 times the 

ring frequency. The laser is locked to the 4th harmonic. The ring period is the time 

required for the pulses propagate a round trip and calculated from the lengths of the 

fibers (0.1 m of EDF and 2 m of DSF) with assumption that there is no delay induced 

by other components such as modulator and filter. The lengths of the fibers are chosen 

to be short to reduce the simulation time. The insertion losses of the modulator and 

filter are set to zero to minimize the total loss of the cavity. The other settings for the 

ring are: amplification factor gss = 3, saturation power Psat = 10 mW, filter bandwidth 

BWf = 400 GHz (0.32 nm), modulation depth ∆m = 0.5, modulation frequency fm = 

0.39GHz (the 4th harmonic of the ring frequency), the dispersion of the EDF and DSF 

at 1550nm are 17 ps/nm/km and 3 ps/nm/km respectively, the nonlinear parameters of 

both fibers are 1.53 W-1km-1. 

The close look of the mode-locked pulses and its spectrum are shown in Figure 12. 
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Figure 11 - Pulse evolution in a harmonic active mode-locked fiber laser, 4 pulses traveling in the 
ring for the fourth harmonic order. The pass number indicates the number of pass though the 
ring laser. 

 
 (a) (b) 

Figure 12- Pulse evolution in an active harmonic mode-locked fiber laser, (a) temporal domain, 
(b) frequency domain 

4.2.2 Effect of modulation frequency 
The effect of modulation frequency on the mode-locked pulses is studied by running 

the simulation with different values of modulation frequency. Other settings of the 

laser are the same as previous. 

Steady-state pulses and their spectrums with modulation frequencies of 0.39 GHz, 

0.78 GHz, 1.16 GHz and 2.32 GHz (corresponding to the 4th, the 8th, the 12th and 24th 

harmonic of the ring frequency/fundamental frequency fF = 97.6 MHz) are plotted in 

Figure 13. 

MECSE-14-2004: "FDTD simulation of mode-locked fiber lasers", Lam Quoc Huy



 
 

15 

The peak power of the pulses reduces as the modulation frequency increases. This is 

consistent with the energy conservation. As the modulation increases more pulses 

traveling in the rings and they are sharing the same energy provided by the pump 

signal in one ring period. The energy provided by the pump in one ring period is 

constant, as the pump power is kept unchanged. When the number of the pulses, 

which are traveling simultaneously in the ring, increases the total energy is divided 

among those pulses and hence each pulse accumulates less energy. 

The steady-state pulse train’s pulse width and bandwidth are plotted against 

modulation frequency in Figure 14. As the modulation frequency increases 4 times, 

the pulse width decreases to a half and the bandwidth is double. The simulation results 

show that the bandwidth increases proportional to the square root of modulation 

frequency while the pulse width decreases proportional to square root of modulation 

frequency. Therefore higher modulation frequency not only produces pulses with 

higher repetition rate but also makes the pulses shorter. This is consistent with the 

experiment results shown in [14]. However, as discussed above, the modulation 

frequency cannot increase infinitely but is limited by the bandwidth of the modulator. 

The higher repetition rate can be obtained by detuning technique, which will be 

simulated and discussed in details in Section 4.3. 

 
 (a) (b) 

Figure 13 - Mode-locked pulses with different modulation frequencies, (a) temporal domain, (b) 
frequency domain 
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 (a) (b) 

Figure 14 - Pulse width and bandwidth as a function of modulation frequency 

4.2.3 Effect of modulation depth 
In this section, the effect of modulation depth is examined by studying the laser output 

under different settings of modulation depth ∆m. The pulse evolutions with ∆m = 0.5, 

∆m = 0.2, and ∆m = 0.1 are shown in Figures 15, 16, and 17. The modulation 

frequency is fm = 1.56 GHz. Other settings are the same as earlier discussion. 

The simulation result shows that with the decrease of modulation depth, the damped 

oscillation process during pulse evolution is last longer. This can be easily explained 

by comparing these simulated with experimental results. Deeper modulation depth 

shapes the pulse effectively and mode-locking process is enhanced. However, there is 

only a slight difference in both the pulse width and bandwidth when the pulses reach 

the steady state as shown in Figures 18 and 19. 

When the modulation depth is reduced to 0.001 (or 0.1%), no mode-locked pulse is 

generated. This is the modulation depth threshold for mode locking. This value is 

quite different to the threshold obtained from experiment, where the threshold value 

of modulation depth is found to be 0.08 [14]. The difference may be due to the noise 

and environmental conditions in the experiment set-up which are not included in our 

simulation model. 
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 (a) (b) 

Figure 15 - Pulse evolution in temporal domain (a) and frequency domain (b) under modulation 
depth of 0.5 

 
 (a) (b) 

Figure 16 - Pulse evolution in temporal domain (a) and frequency domain (b) under modulation 
depth of 0.2 

 

 
 (a) (b) 

Figure 17 - Pulse evolution in temporal domain (a) and frequency domain (b) under modulation 
depth of 0.1 
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 (a) (b) 

Figure 18 - Mode-locked pulses with different modulation depths, (a) temporal domain, (b) 
frequency domain 

 
 (a) (b) 

Figure 19 - Pulse width and bandwidth as a function of modulation depth 

4.2.4 Effect of the optical filter bandwidth 
The filter is inserted into the laser cavity to select the central wavelength and help to 

shape the pulse. As the pulse pass through the modulator on every round trip, it is 

compressed in temporal domain and spread in frequency domain due to the sidebands 

induced by the modulation. However, the pulse cannot be compressed endlessly. The 

filter bandwidth will limit the pulse spectrum width and thus balances the temporal 

domain pulse compression. In this section, the mode-locked pulses are studied with 

variation of the filter bandwidth. The cavity settings are the same as before except that 

the filter bandwidth is varied. The simulation results are shown in Figures 20 and 21. 

Figure 20 shows the steady-state pulses for various values of the filter bandwidth. 

Cavity with wider filter bandwidth generates pulses with narrower pulse width and 

wider bandwidth, and vise versa. As the filter bandwidth increases the pulse width 

becomes shorter with higher peak power. On the other hand, the pulse bandwidth 

increases with wider filter bandwidth. 
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Pulse width and bandwidth are plotted against the filter bandwidth in Figure 21. The 

pulse width decreases exponentially with the increase of filter bandwidth. Therefore, 

wider filter bandwidth is preferred as it generates shorter pulse. However in practice, 

mode locking is easier to obtain with narrow filter bandwidth. The laser is more 

difficult to be locked when the filter bandwidth is so wide because neither center 

frequency selection nor super-mode filtering obtained with a wide bandwidth filter.  

 
 (a) (b) 

Figure 20 - Mode-locked pulses with different filter bandwidths, (a) temporal domain, (b) 
frequency domain 

 

 
 (a) (b) 

Figure 21 - Pulse width and bandwidth as a function of filter bandwidth 

 

4.2.5 Effect of pump power 
The effect of the pump power on the mode-locked pulses is also studied by varying 

the values of Psat in the EDFA model and keeping other settings the same.  
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Figure 22 shows the mode-locked pulses for various values of Psat. When Psat
 varies, 

only the peak power of the pulses is affected while the pulse width and bandwidth is 

nearly unchanged. This is consistent with the result obtained in experiment. The pulse 

width and bandwidth do not vary with the change of the pump power in the short 

length ring setup. The shortening of the pulse due to the increase of the pump power is 

just observed when the length of the ring is 118 m [14]. 

 
 (a) (b) 

Figure 22 - Mode-locked pulses with different values of Psat , (a) temporal domain, (b) frequency 
domain 

 

4.3 Rational harmonic mode-locked fiber laser 
As discussed above, the repetition rate of the active mode-locked laser is limited by 

the bandwidth of the modulator. To increase the repetition rate, rational harmonic 

mode-locking (RHML) technique is applied. In RHML laser, the modulation 

frequency is not an integer number harmonic of the fundamental frequency fR but 

detuned by an amount of fR/N 

 fm = mfR + fR/N (24) 

where m and N are integer numbers and  N is defined as the multiplying factor. The 

output pulse repetition rate is now no longer fm but Nfm. In another word, the repetition 

rate has been multiplied by a factor of N. 

The cavity settings are the same as before, except that the modulation depth is ∆m = 

0.1, and the gain factor is gss = 6. The higher gain factor is required because in RHML 

the pulses do not pass the modulator at the minimum loss position but at different loss 

positions for every round trip. Therefore the pulses in RHML experience more loss 
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than that of HML and hence require higher gain to compensate for the loss. When the 

modulation frequency is set to 0.39 GHz, which corresponds to the 4th of the 

fundamental frequency fF = 97.6 MHz, harmonic mode-locking is obtained with 4 

pulses traveling in the ring as shown in Figure 23 

When the modulation frequency is detuned by fF/2 to become 0.439 GHz, doubling 

repetition rate has been obtained as shown in Figure 24. It can be seen that there are 

totally 9 pulses traveling in the ring during one ring period TR. It is interesting that the 

amplitude-unequal pulses are also observed. This again confirms the experimental 

result that RHML can be used to increase the repetition rate but the output pulses 

suffer amplitude fluctuating from pulse to pulse unless pulse amplitude equalization is 

applied. 
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Figure 23 – Harmonic mode-locking with 4 pulses in one ring period TR when the modulation 
frequency is set to 4 times the fundamental frequency 
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Figure 24 – Rational harmonic mode-locking with 9 pulses in one ring period TR when the 
modulation frequency is set to 4.5 times the fundamental frequency 
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5 Conclusions 

A novel temporal domain approach has been developed to simulate the generation and 

propagation of photonic pulses in mode-locked lasers and presented in this paper. The 

pulse propagation equation has been solved fully in both time and spatial domain 

using finite difference method without the need of conversion of optical signals into 

frequency domain unlike other published works that employed the split-step Fourier 

method [6, 8]. This approach allows simulation of not just only one pulse but the 

whole pulse train generated in the harmonic mode-locked fiber laser. To the best of 

our knowledge this simulation is developed for the first time. 

In summary this paper presents the followings: firstly, the propagation of an optical 

pulse inside a fiber has been simulated to ensure the validity of our numerical 

approach. Propagation of lightwave pulses has been tested and compared when the 

fiber is under linear and nonlinear operating conditions, that is under the linear 

dispersion effect and/or under the self-phase modulation effect. It is noted that only 

the SPM effect is included in this simulator. Other nonlinear effects such as Raman 

scattering and four wave mixing effects can be easily incorporated without difficulty. 

It is found that GVD and SPM play important roles in the propagation of the pulse. 

Under GVD effect, different chromatic components of the fiber travel with different 

velocity and that causes the pulse spread out in temporal domain while its spectrum 

keeps unchanged. On the other hand, phase shift induced by the SPM effect widen the 

pulse spectrum while keeping the pulse shape in temporal domain unchanged. When 

the two effects work together on a hyperbolic-secant pulse, their effects cancel each 

other and the result is that the pulse shape and spectrum keep unchanged while the 

pulse propagates inside the fiber. 

The pulse formation in a harmonic mode-locked fiber laser has been simulated. The 

formation of N mode-locked pulses traveling in the ring when the laser is locked to 

the Nth harmonic has been demonstrated in our simulation technique. The effects of 

the modulation frequency on the output pulse characteristics such as pulse width and 

bandwidth have also been studied. The pulse width decreases inverse proportionally 

while the bandwidth increases linearly with the square root of modulation frequency. 

The effect of modulation depth on the output pulses has also been examined. It is 

found that as the modulation depth increases the pulse width slightly decreases and 
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the bandwidth increases a little. The filter bandwidth has been found to have great 

effect on the pulse width and bandwidth. The pulse width decreases exponentially 

with an increase of the filter bandwidth. Hence wider filter bandwidth is preferred for 

shorter pulse generation. However, in practice the fiber laser can be easily locked 

using narrow filter bandwidth than with the wider one.  

The output pulse characteristic has also been examined with the variation of the pump 

power. As the pump power increases the output pulse power increases but the pulse 

width and bandwidth remain the same. This is consistent with the experiment result 

that the pump power does not affect to the pulse width and bandwidth as the fiber ring 

length is short compared to the nonlinear length of the fiber. 

Finally rational harmonic mode-locking has been demonstrated. By detuning the 

modulation frequency to a half of the fundamental frequency, doubling repetition rate 

has been realized. Simulation results of rational harmonic mode-locking have been 

demonstrated with the multiplication of the repetition rate of the mode-locked pulse 

trains. However there is amplitude fluctuation in the output pulses and hence 

amplitude equalization should be employed in the RHML laser. 
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