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Abstract: Anisotropic diffusion was first introduced by Perona and Malik [1] for 

image smoothing and denoising. Since then, the field has matured and a better 

understanding of its properties and implementation has led to numerous applications 

for image processing. The objective of this study is to evaluate the effectiveness of 

anti-geometric diffusion as a method for segmenting knee cartilage from MRI scans. 

This report will give a detailed description of anti-geometric diffusion and investigate 

its use together with energy based region merging as a greyscale segmentation method 

proposed by Manay [2]. A description of the method as well as its implementation 

will be presented in this report. We will also display and discuss some of the results 

obtained from running Manay’s segmentation method on our library of knee MRI. 
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1 Introduction 

According to the Arthritis Foundation of Australia, over 3.1 million people in 

Australia suffer from some form of arthritis. Arthritis means “joint inflammation” and 

is a serious chronic condition with no known cure. There is currently an urgent need 

to better understand the disease, as arthritis is the leading cause of disability among 

people over the age of 65. With an aging population and no known cure, the disease is 

expected to reach epidemic proportions in the near future. 
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Osteoarthritis is the most common form of arthritis and involves the gradual loss of 

articular (joint) cartilagea. It affects about 14% of the adult population [3] and is most 

prevalent in the knee and hip joints. Recent studies have shown that the quantitative 

measurement of knee cartilage volume is an accurate and reproducible method for the 

measurement of osteoarthritis progression [4]. 

 

Current methods of cartilage volume measurement involve some form of manual 

segmentation carried out by a trained clinician. The key steps in the segmentation 

process involve delineating the cartilage and separating it from the surrounding 

tissues. Images of a patient’s knee are obtained using magnetic imaging resonance 

(MRI) with fat-suppression to provide the best contrast between cartilage and bone. 

The scans obtained are usually greyscale images in the sagittal plane and consists 

typically of 60 images (slices) for each knee. Using some form of medical/imaging 

software, the clinician will visually inspect and identify the presence of cartilage on 

each image slice. If cartilage is present, the cartilage boundary is manually traced, see 

Figure 1. When all 60 slices have been processed, an interpolation function is applied, 

using the inter-slice distance (slice thickness) as a parameter to approximate the 

cartilage volume.  

 

This manual process is laborious and can take up to 1 hour for each patient scan. It is 

also subject to the judgement of the clinician and requires significant experience and 

training to produce accurate and reproducible results. Thus, there is a strong demand 

for an improved automated method that will segment and measure the volume/surface 

area of articular cartilage in the human knee joint from MRI scans. 

 

                                                 
a Cartilage: A tough, elastic, fibrous connective tissue found in various parts of the body, such as the 

joints, outer ear, and larynx. In the knee region, it is smooth and white, and lines the surface of the 

femur, tibia and patella within the joint. 
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Figure 1: MRI of the Knee in Sagital Plane, Tibial Cartilage Manually Segmented by Clinician 

 

Apart from the manual methods described, a number of semi-automated methods have 

been developed [5-9]. These usually involve a human operator initialising the 

procedure by setting a number of starting points, followed by an automated process 

that performs some image processing operations. Canny’s edge detection filter, active 

contours (snakes), template matching, and cubic B-splines are some of the key 

components of the methods used. 

 

The objective of this study is to explore the usefulness of anti-geometric diffusion as a 

segmentation method proposed by Manay [2]. Section 2 will introduce the concept of 

anti-geometric diffusion, followed by a description of the segmentation algorithm in 

Section 3. Section 4 will present the results of the segmentation algorithm on our 

database of MRI knee images. Finally Sections 5 and 6 will provide some discussion 

on the results and end with a conclusion. 

 

2 Anti-Geometric Diffusion 

Anisotropic diffusion was first introduced by Perona and Malik [1] for image 

smoothing and denoising. Their anisotropic diffusion method is formulated to 

encourage intraregion smoothing in preference to smoothing across region 
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boundaries. Most of the research on anisotropic diffusion over the years has been 

focused on the preservation of features in the image while denoising the image data. 

Anti-geometric diffusion is a form of anisotropic diffusion that goes against this trend 

by diffusing across image edges, in a direction orthogonal to the geometric heat flow. 

Geometric heat flow diffuses along image edges, thus preserving the edges while anti-

geometric diffusion effectively spreads out the edge information. The method is thus 

termed anti-geometric because it is orthogonal to the geometric heat flow.  

 

The advantage of smearing edge information is that it allows quick detection of 

features and their location within an image, thus enabling fast segmentation of the 

image. Image regions that lie nearby, but on opposite sides of a prominent edge are 

quickly distinguished. 

 

Edge directions are usually related to the tangents of the isointensity contours (level 

curves), since the tangent direction of an isointensity contour is the direction 

perpendicular to the image gradient. Using the first derivatives of the image Ix and Iy, 

we can define η, the direction normal to a given point on a level curve and ξ, the 

tangential direction (see Figure 2), as: 
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Figure 2: Normal and tangential directions of a point on a level curve 
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Image diffusion is based on partial differential equations. In the case of anti-geometric 

diffusion, the tangential diffusion is excluded and only the normal diffusion is 

applied. The result of diffusion in the normal direction is that the image edges are 

smeared. The anti-geometric diffusion equation is defined as:  
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3 Manay’s Segmentation Method 

Manay [2] introduces a segmentation method for greyscale images using anti-

geometric diffusion together with energy based region merging. This method has not 

been tested on knee cartilage segmentation, but has proven to successfully segment 

cardiac MRI scans. The basic idea behind the segmentation method is to iterate 

between diffusion and region merging steps until a desired number of regions is 

reached, and the difference between the region merging steps is small. The desired 

number of regions is defined by the user. The diffusion step essentially breaks the 

image down into regions, or when applied to an undersegmented region, breaks it 

down into smaller regions to reveal small-scale features. The region merging step is 

carried out to compensate for the oversegmentation that occurs as a result of the 

diffusion process. When the segmentation process eventually stops, the resulting 

image should consist of the desired number of regions, and among these, one region 

will represent the femoral cartilage, and another region, the tibial cartilage.   

 

This section will present the segmentation algorithm in detail, as well as some of the 

methods used for classification during the diffusion process. 

 

3.1 Consistency Problem 

One of the crucial steps involved while segmenting using diffusion is the 

classification of pixels. In the method proposed by Manay, classification is made 

during the diffusion process, instead of afterwards. A pixel is classified as soon as its 

classification criterion becomes unambiguous and this classification is maintained as 

the diffusion proceeds.  
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In the early stages of diffusion, only the intensity values of pixels near object 

boundaries change significantly. This is due to the nature of anti-geometric diffusion, 

which diffuses across image edges, and the fact that boundaries are defined by a sharp 

change in pixel intensity. As diffusion proceeds, the image edges are smeared even 

more and the global averaging effect enables classification of pixels further away 

from important image features like object boundaries. However, prolonged diffusion 

can result in diffused intensities near boundaries of smaller features changing from 

being brighter than the original intensities to darker than the original intensities (or 

vice-versa). By classifying a pixel when its classification criterion becomes 

unambiguous and maintaining this classification, consistency problems for pixels 

already classified are avoided. This also enables the diffusion process to be run for as 

long as is necessary to classify pixels far from region boundaries. The diffusion 

process is generally stopped when enough pixels have been classified. 

 

3.2 Classification Criteria 

A common classification criteria use during diffusion is to track a pixel’s net intensity 

change. A single constant change in the pixel’s diffusion intensity is used to decide 

when and how a pixel is classified. However, a more robust method would be to track 

whether a pixel’s diffusion intensity is consistently increasing or decreasing 

(monotonic). The advantage of tracking monotonicity instead of absolute intensity 

changes is that the classification will not be sensitive to the magnitude of intensity 

changes, thus it will be more robust to noise.  

 

For example, given an isolated bright pixel of noise on a dark background near the 

boundary of a large bright point, Figure 3; diffusion will initially result in the isolated 

pixel’s diffusion intensity decreasing by a large amount as the noise is smoothed 

away. However, as diffusion continues, the pixel’s intensity will increase due to the 

diffusion of the large bright region. Even though the latter increase in intensity may 

be smaller than the initial decrease in intensity, the initial decrease happens quickly 

while the latter increase may continue steadily for a long time. Therefore, 

classification by absolute intensity change will incorrectly classify the noise as part of 
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the bright region while classification by monotonicity will correctly classify the noise 

as part of the dark region. 

 

 

Figure 3: Plot of the intensity of the noise pixel as anti-geometric diffusion is applied 

 

It is common to use a combination of monotonicity and absolute intensity change to 

increase the overall robustness of classification in the presence of noise. 

 

3.3 The Algorithm 

The segmentation method starts off by applying anti-geometric diffusion on the image 

for a short time, during which all pixels are classified into one of the three categories, 

1) pixel intensities that diffused significantly and/or monotonically upward, 2) pixel 

intensities that diffused significantly and/or monotonically downward, and 3) pixels 

which did not diffuse significantly. Neighbouring pixels with the same classification 

are then grouped into connected regions, where each connected region Ri is assigned a 

unique label, i. Because anti-geometric diffusion acts as a region splitting operator, 

the original image is broken into smaller regions. Diffusion progresses until a 

preselected percentage of the pixels in the image are classified. 
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The next step involves energy based region merging suggested in [10, 11]. Statistics 

for each region are calculated and neighbouring pairs of regions Ri and Rj that yield 

the smallest increase in ∆Eij are merged, where Ei is termed the squared error for Ri 

and ∆Eij, the change in squared error when Ri and Rj are merged. Ei and ∆Eij are 

defined as: 

 
( )∑ −=

iR
ii IE 2µ   (3) 

 I = Image data, µi = Mean of region Ri. 
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Rij = Ri ∪  Rj, µij = Mean of region Rij 

 

The number of regions is reduce by one each time two neighbouring pairs are 

successfully merged. This merging process is repeated until a desired number of 

regions are obtained or until the total squared error, E, reaches a predefined maximum 

limit. E is defined as the sum of the squared errors for all the regions in the image, 

i.e.:  

 ∑=
i

iEE  (5) 

 

When the merging process stops, the region with the highest squared error is split 

using anti-geometric diffusion. This is because regions exhibiting large squared errors 

are likely to contain undersegmented regions. After this step of diffusion, the image is 

likely to be oversegmented and merging is again required to reduce the number of 

regions. This iterative process of splitting and merging is repeated until the total 

square error converges, i.e. 
E
E∆  becomes small. 

 

3.4 Implementation 

The implementation of anti-geometric diffusion suggested by Manay consists of 2 key 

steps per iteration of diffusion; the calculation of the new intensity value of each pixel 
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after diffusion for 1 timestep, and the classification of pixels according to their 

diffusion behaviour and the specified classification criterion.  

 

The implementation of each anti-geometric diffusion step makes use of a standard 

forward Euler step: 

 [ ] [ ] [ ]tjitItjiIttjiI ,,,,,, ηη∆+=∆+  (6) 
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The step size, ∆t, should be chosen such that ∆t < 0.5(∆x)2. This is to maintain the 

stability condition of the forward Euler calculations. In cases where Ix and Iy both 

equal zero, Iηη is reverted to the linear flow, i.e. yyxx III +=ηη . The diffusion is 

iterated until a predetermined percentage of the pixels in the image are classified. As 

mentioned before, after a pixel has been classified, its classification is maintained. 
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The classification criteria used by Manay involves a combination of time of 

monotonicity (∆t) and intensity. The classification criteria can be defined as: 

 

 ThreshtmIntensity >∆+∆   (9) 

 

where the coefficient m and Thresh are values determined by the user. 

 

The pixels are then classified as either white or black depending on whether the pixel 

intensity diffused monotonically downward or upward respectively, or grey if the 

value calculated for the criteria is smaller than Thresh. It should be noted that the anti-

geometric diffusion process has to be applied on the whole image initially, then on a 

specific region, the one with the largest squared error, after the region merging step. 

The approach Manay has taken is to have two anti-geometric diffusion functions, one 

that requires an image as an input parameter and applies diffusion on the whole 

image, and another function that takes a region (linked list of pixels) as an input 

parameter and applies anti-geometric diffusion only within the region. 

 

The implementation of the region merging step involves the use of a graph data 

structure, where each node in the graph is use to represent a region in the image and a 

connection between two nodes indicate that the corresponding regions are adjacent. 

Each node will contain a linked list of all the pixels in the region as well as the 

following statistics about the region: 

 

 Ai    → area (number of pixels) within region Ri 

 Si    → sum of pixel intensities within region Ri 

 Qi    → sum of squared pixel intensities within region Ri 

 µi = Si / Ai   → mean pixel intensity with region Ri 

 Ei = Qi - 2µi Si + µi
2Ai  → squared error for region Ri 

 

The graph is constructed initially by performing a connected component analysis of 

the classified and unclassified pixels. After the graph has been constructed, we iterate 

through each node and calculate ∆Eij for each of its adjacent regions in search of a 

James Cheong and David Suter  - 10 – 

MECSE-15-2004: "A Study on Anti-Geometric Diffusion for the Segmentation of ...", J. Cheong and D.Suter



suitable merging pair. After all adjacent nodes have been analysed, the pair of regions 

with the smallest ∆Eij are merged. 

 

It should be noted that we do not need to scan through the image data repeatedly to 

compute ∆Eij for each pair of adjacent regions Ri and Rj. Instead, after the intial graph 

has been constructed, the statistics of the proposed region Rij = Ri  Rj can be 

calculated using the statistics of Ri and Rj, and the following relationships: 

∪

 

 Aij = Ai + Aj 

 Sij = Si + Sj 

 Qij = Qi + Qj 

 µij = Sij / Aij 

 Eij = Qij - 2µij Sij + µij
2Aij 

 ∆Eij = Si µi + Sj µj - Sij µij 

 

Region merging stops when the desired number of regions in the image is reached.  

 

4 Results 

This section will display some of the results of using Manay’s segmentation method 

on our library of MRI knee images. As described in the previous section, there are a 

number of parameters that apply to the stop conditions for the diffusion and region 

merging process that the user has to determine beforehand. These are: 

 

Thresh   – Threshold for classification criteria, see Equation 9. 

m   – Coefficient of monotonicity for classification, see Equation 9. 

%Complete  – Stop condition for diffusion, percentage of pixels classified. 

FNR   – Stop condition for region merging, final number of regions. 

Tolerance  – Stop condition for the segmentation algorithm, maximum tolerable  

   change in total squared error of the image, E.  

 

The following table shows the values of the five parameters set and the corresponding 

figures that were obtained. The parameters set for the first row are considered the 

“optimal” in a sense that these seem to produce the most consistent segmentation of 
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the cartilage across a range of input images, i.e. the tibial and femoral cartilage are 

clearly distinct regions with minimum noise fused to the regions. The other rows in 

the table have a single parameter varied from the “optimal” to highlight how each 

parameter affects the final output. It should be noted at this stage that the input images 

are cropped versions of the original 512x512 8 bit greyscale MRI images. This was 

done to save on processing time. These input images are 200x150 and contain the 

region of interest, namely the area surrounding the tibiofemoral joint.  

 
Combination Figures Thresh m %Complete FNR Tolerance 

1 Figure 4 to Figure 9 10 0.01 0.8 20 0.85 

2 Figure 10 & Figure 11 10 0.01 0.8 40 0.85 

3 Figure 12 & Figure 13 10 1 0.8 20 0.85 

4 Figure 14 & Figure 15 5 0.01 0.8 20 0.85 

5 Figure 16 & Figure 17 10 0.01 0.5 20 0.85 

Table 1 

Figure 4 and Figure 7 show the cropped versions of the MRI images MRIM1040 and 

MRIM1045 respectively. Figure 5 and Figure 8 show the result of running the first 

step of anti-geometric diffusion on the whole input image until 80% of the pixels have 

been classified. White indicates a pixel has diffused monotonically downward, black, 

monotonically upward, and grey that the pixel is still “unclassified”. The remaining 

images in this section show the final image that results from running Manay’s 

segmentation algorithm according to the different combination of parameters used.  

 

Figure 6 and Figure 9 show good segmentation of the tibial cartilage using the 

“optimal” combination of parameters, but the femoral cartilage is fused with some 

background noise and surrounding tissue. In the case of Figure 9, because the tibial 

and femoral cartilage are in contact in some areas, they have been classified together 

as one region. 
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Figure 4: Cropped version of MRIM1040 

 

Figure 5: MRIM1040 after 1st iteration of Anti-geometric Diffusion is stopped 

 

Figure 6: Final 20 regions segmented for MRIM1040 using Combination 1 
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Figure 7: Cropped version of MRIM1045 

 

Figure 8: MRIM1045 after 1st iteration of Anti-geometric Diffusion is stopped 

 

Figure 9: Final 20 regions segmented for MRIM1045 using Combination 1 
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Figure 10: Final 40 regions segmented for MRIM1040 using Combination 2 

 

Figure 11: Final 40 regions segmented for MRIM1045 using Combination 2 

 

Figure 10 and Figure 11 show the result of choosing a high value for the final number 

of regions in the image. There is essentially not much difference in the shape of the 

cartilage detected compared with the “optimal” combination, however, some 

background noise has merged with the tibial cartilage in Figure 10. The additional 

regions detected don’t interfere with shape of the cartilage, but the resultant image is 

noisier because with a higher value for the final number of regions, the background 

noise is separated into different regions when they can actually be grouped together. 

 

 

 

James Cheong and David Suter  - 15 – 

MECSE-15-2004: "A Study on Anti-Geometric Diffusion for the Segmentation of ...", J. Cheong and D.Suter



 

Figure 12: Final 20 regions segmented for MRIM1040 using Combination 3 

 

Figure 13: Final 20 regions segmented for MRIM1045 using Combination 3 

 

Figure 12 and Figure 13 show the result of choosing a large value for m, the 

coefficient for monotonicity. With a larger value for m, large chunks of background 

are merged with the femoral cartilage. The computation time is much faster than the 

“optimal” combination because the pixels require less diffusion timesteps before 

classification. The shapes of the tibial cartilage segmented are very similar to the 

“optimal” combination, but due to the large value for m, the effect of monotonicity on 

the classification procedure is weakened. This results in the surrounding tissues with 

relatively high pixel intensities merging with the cartilage region. 
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Figure 14: Final 20 regions segmented for MRIM1040 using Combination 4 

 

Figure 15: Final 20 regions for segmented for MRIM1045 using Combination 4 

 

Figure 14 and Figure 15 show the result of decreasing the value of Thresh to 5. In 

general, the shape of the cartilage regions are very similar to those obtained using the 

“optimal” combination. The computation time is also faster, as expected, because a 

pixel is classified more quickly due to the smaller threshold. However, some 

background regions have been separated into different regions when they should be 

merged together. This is the result of lowering the threshold and not allowing 

monotonicity to smooth out the noise. 
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Figure 16: Final 20 regions segmented for MRIM1040 using Combination 5 

 

Figure 17: Final 20 regions segmented for MRIM1045 using Combination 5 

 

Figure 16 and Figure 17 show the result of decreasing the %Complete variable to 

50%. For image MRIM1040, a large portion of the background has fused with the 

femoral cartilage. With a lower value for %Complete, the first diffusion step quickly 

identifies the 2 cartilage regions. However, the region merging step incorrectly 

merges the femoral cartilage with a large region of unclassified background and this is 

maintained for the whole segmentation process. With image MRIM1045, the tibial 

cartilage has fuse with some noise.  

 

There was no noticeable change in the output image if the tolerance was increased to 

0.95, therefore no images were shown for this combination. It would not be sensible 

to have a low value for tolerance, because this would stop the algorithm prematurely. 
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5 Discussion 

The results obtained using Manay’s segmentation method were satisfactory. The 

algorithm performed well in images where the femoral and tibial cartilage are clearly 

distinguishable and not in contact. An initial problem encountered was deciding on 

the combination of input parameters to use. The “optimal” combination was obtained 

heuristically. This combination is optimal in the sense that we had the highest rate of 

successfully segmenting the cartilage into clearly distinct regions with minimal noise 

across a range of cropped knee images. 

 

The main problem encountered with segmenting the cartilage involves the low 

contrast between cartilage and surrounding tissue in some areas of the joint surface, 

especially around joint contact areas, tendons and ligaments. The similar fat 

composition of these tissues results in similar greyscale values.  

 

Another significant problem is that the range of pixel intensities that define a cartilage 

region can be quite large. In some slices, the range is 70 to 255 for an 8 bit greyscale 

image. Also, with images towards the middle of the 60 slices, the tibial cartilage thins 

out and this often results in there being more than one region of tibial cartilage. Figure 

18 shows a good example of tibial cartilage with a wide range of pixel intensities and 

having more than one region. Figure 19 shows the ineffectiveness of Manay’s method 

at successfully recognising the presence of cartilage when it has a large variation in 

intensity. 

 

Figure 18: MRIM1058 with Tibial Cartilage Highlighted 
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Figure 19: Final 20 regions segmented for MRIM1058 using Combination 1 

 

Some of the other problems encountered include cases where the tibial and femoral 

cartilages are touching, as in the case of MRIM1045. With such images, the two 

cartilages have been classified as a single region. The desired outcome of course is to 

have the two cartilages segmented into two separate regions, but because some parts 

of the cartilage are actually in contact, this is difficult to achieve using Manay’s 

method, or any method based on pixel intensity values alone. 

 

Another foreseeable problem is with severe cases of osteoarthritis, the femoral and 

tibial cartilage can be in contact and total cartilage volume is small, complicating 

detection and segmentation. 

 

The implication of these problems is that Manay’s method alone will not successfully 

segment cartilage for all the slices of a patient’s MRI scan. It is difficult to rely simply 

on the pixel intensity to segment a cartilage region. Simple thresholding of the image 

will not separate cartilage from the surrounding tissue, and other methods like region 

growing from a seed pixel with fixed maximum and minimum threshold work only 

with limited success. 

 

A human can easily detect the boundaries of the cartilage by taking into account the 

expected shape of the cartilage for the particular slice and the surrounding anatomy to 

infer the cartilage boundaries. With sufficient training and experience, a human can 

segment knee cartilage accurately and without too much difficulty, albeit a bit tedious. 
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Therefore, to successfully segment cartilage automatically, these factors of expected 

shape, surrounding anatomy and training have to be taken into account. For example, 

we could combine bone structure recognition with Manay’s segmentation technique. 

When the tibia and femur is identified in an image, Manay’s segmentation method is 

performed on the image. The classified regions resulting from the segmentation are 

then examined by the program to determine the likelihood that a region is the tibial or 

femoral cartilage based on parameters like proximity to the bone identified and shape 

of the region. 

 

6 Conclusion 

The use of anti-geometric diffusion as a means of segmenting human knee cartilage 

has been examined. The segmentation algorithm developed by Manay performs 

satisfactorily for most of the knee images in our library. It performs well when the 

femoral and tibial cartilages are clearly distinguishable and not in contact. The 

limitations of the method have been highlighted and discussed. Automatic 

segmentation of knee cartilage is a challenging problem and it seems unlikely that 

anti-geometric diffusion alone will solve the problem. It is suggested that Manay’s 

segmentation method be used together with other techniques that make use of higher 

level knowledge such as anatomical structure to deal with the problem more 

effectively. 
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